人教版七年级数学上册 4.2直线、射线、线段 知识点归纳
- 格式:docx
- 大小:2.23 MB
- 文档页数:3
直线、射线、线段1.直线:直,向两边无限延伸,无宽窄。
2.直线的性质(公理):经过两点能够做一条直线,且只有一条直线。
两点确定一条直线。
.........3.关系【同一平面内】1)相交(垂直) 2)平行相交:如果两条直线有一个..公共点,则两条直线相交。
平行:两条直线没有公共点。
关系【不在同一平面内】1)相交(垂直) 2)平行 3)异面直线1.射线:直线上一点和它一旁的部分。
2.射线直线关系:射线是直线的一部分。
3.规律若直线上有N个点,则有2N条射线。
射线只能..反向延伸。
1.线段:直线上两点和它们之间的的部分。
2.线段的性质(公理):连接两点的所有线中,线段最短。
两点之间线段最短........。
3.两点间的距离叫连结两点间的线段的长度..。
距离不是线段,线段是一个几何图形,而距离是一个数值,它反映的是线段长短。
重要规律当一条直线有N个点时射线 2N条线段 N(N-1)÷2(射线和线段都是直线上的一部分:将射线反向延伸就可得到直线;将线段一方延伸就得到射线,两方延伸就得到直线。
)线段的比较一、线段的比较大小【长度】1.度量法2.叠合法:a.两条线段一个端点重合。
b.共线c.看另一端位置二.线段和、差、倍、分倍、分1.线段的中点线段上一点把这条线段分成两条相等的线段。
若三条线段中满足两条线段之和等于第三线段,则三点共线。
角1.角的定义:(1)有公共端点的两条射线所组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边.(2)角也可看成是由一条射线绕着它的端点旋转而成的图形.(3)角定义包含两层含义:①有公共端点;②两条射线.2. 1周角=2平角=4直角 【度、分、秒的转换计算】160160''''︒==(1)平角是指射线旋转到与起始位置成一直线时所成的角.(2)周角是指射线旋转回到起始位置所成的角.注意:平角的特点是两边成一条直线,但直线与平角的意义是不同的,不要误认为直线就是平角.同样,周角的特点是两边重合成一条射线,不要误说射线就是周角,射线和周角的意义也是不一样的.3.角的平分线一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线4.余角:如果两个角的和等于90︒(直角),就说这两个角互为余角.5.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.90,αβαβ+=︒⇔互余180,αβαβ+=︒⇔互补6.方向表示(应用题)(1)东北方向(即北偏东45︒或东偏北45︒)————射线OA(2)北偏西60︒方向(或西偏北30︒方向) ————射线OB7.时钟上的时针与分针的角度注意半点的时候时针的位置5:30时,时针与分针的夹角的度数为:8.角的个数数角的个数必须不重不漏,从一点引出n (n ≥2)条射线组成的角有n (n-1)÷2个。
4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
七年级上学期数学直线射线线段知识点的归纳整理
七年级上学期数学直线射线线段知识点的归纳整理
1、基本概念
图形直线射线线段
端点个数无一个两个
表示法直线a
直线AB(BA) 射线AB 线段a
线段AB(BA)
作法叙述作直线AB;
作直线a 作射线AB 作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延长射线AB 延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点.
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.
6、线段的.性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上 (2)点在直线外.。
七年级线段直线射线知识点七年级数学课程中,线段直线射线是重要的知识点,它为学生提供了理解几何学和代数学中的基础。
下面我们将介绍线段、直线和射线的概念以及重要的性质和应用。
一、定义
1. 线段:两点之间的线段称为线段。
线段由两个端点和它们之间的所有点组成。
用AB表示端点为A、B的线段。
2. 直线:无限延伸的笔直的路径称为直线。
用l表示。
3. 射线:从一个端点开始,沿着一条方向无限延伸的线段称为射线。
用AB ->表示以A为端点,以B为方向的射线。
二、性质
1. 线段的长度是有限的,直线的长度是无限的。
2. 直线上的任何两个点都可以确定一个直线。
3. 射线上只有一个端点。
4. 在平面直角坐标系中,直线可以表示为y = mx + b的形式,
其中m是斜率,b是截距。
5. 在同一平面上,当线段的长度相等时,它们是同一线段。
当
两条直线重合时,它们是同一条直线。
当射线的起始点和方向相
同时,它们是同一射线。
三、应用
1. 线段可以用来构造图形,如三角形、正方形等等。
2. 直线可以用于描述平面内的方向和位置,用来解决几何问题。
3. 射线可以用于表述针对一个特定方向的运动,例如描述自行
车行走的方向。
4. 知道线段的长度和点的坐标可以用勾股定理计算距离。
结论
在七年级的数学课程中,线段直线射线是非常重要的知识点,
学生应该熟练掌握它们的概念和性质,并能够应用到实际问题中。
人教版直线射线线段知识点
人教版直线、射线、线段知识点如下:
1.直线的性质:经过两点有一条直线,并且只有一条直线。
2.线段的性质:两点之间,线段最短。
3.画一条线段等于已知线段的方法:度量法和尺规作图法。
4.线段的中点、三等分点、四等分点等定义:把一条线段平均
分成两条相等线段的点。
5.两点间的距离定义:连接两点的线段的长度叫做两点的距离
(距离是线段的长度,而不是线段本身)。
6.点与直线的位置关系有:点在直线上(或者直线经过点)和
点在直线外(或者直线不经过点)。
7.角的定义:有公共端点的两条射线所组成的图形叫做角。
8.角的比较方法:度量法和叠合法。
9.角的四则运算:角的和、差、倍、分及其近似值。
10.画一个角等于已知角的方法:借助三角尺能画出15°的倍数的
角,在0~180°之间共能画出11个角;借助量角器能画出给定度数的角;用尺规作图法。
此外,还有一些关于线段和角的计算法则和统计知识,如计算法则中的相同数位对齐,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐;竖式计算以及验算;整数的四则运算顺序和运算定律在小数中同样适用等。
在统计知识
中,条形统计图和折线统计图的特点和作用,以及折线统计图中变化趋势的含义等也需要掌握。
如需更多关于人教版直线、射线、线段的知识点总结,建议查询教辅练习资料或咨询数学老师获取更全面的信息。
人教版七年级数学上册4.2直线、射线、线段过两点有且只有一条直线。
简称:两点确定一条直线。
直线、射线、线段都是直的,都由无数个点构成。
直线、射线、线段的特征:
①直线:没有端点,向两端无限延长,长度无法测量。
②射线:有一个端点,从这个端点开始向另一端无限延长,长度无法测量。
③线段:有两个端点,从一个端点连向另一个端点,长度可以测量。
线段向一个方向无限延长,就成了射线;线段向两个方向无限延长,就成了直线。
点的表示方式:用一个大写字母表示。
如点A、点M、点P。
直线、射线、线段的表示方式:
①直线用一个小写字母或两个大写字母表示,例如直线a或直线AB 。
温馨提示:直线AB和直线BA是同一条直线。
②射线用一个小写字母或两个大写字母表示,例如射线a或射线AB 。
温馨提示:射线AB指从A射向B,射线BA指从B射向A,不是同一条射线。
③线段用一个小写字母或两个大写字母表示,例如线段a或线段AB 。
温馨提示:线段AB和线段BA是同一条线段。
点与直线的位置关系有两种:
①点在直线上。
这时我们也可以说,这条直线经过这个点。
②点在直线外。
这时我们也可以说,这条直线不经过这个点。
当两条不同的直线有一个公共点时,我们就说这两条直线相交。
这个公共点叫做它们的交点。
用无刻度的直尺和圆规作图,叫做尺规作图。
尺规作图:作一条线段AB等于已知线段a。
步骤①:用直尺画一条射线AC 。
步骤②:用圆规在射线AC上截取AB=a 。
比较两条线段长短的方法:
①度量法。
用刻度尺测量它们的长度,再进行比较。
②叠合法。
用圆规把其中一条线段移到另一条线段上,再进行比较。
把一条线段分为两条相等线段的点,叫做这条线段的中点。
线段的中点到线段两端的距离相等。
如图,点P是AB的中点写法规范如下:
∵点P是AB中点
∴PA=PB=1
AB
2
把一条线段平均分成三份的点,叫做这条线段的三等分点;把一条线段平均分成四份的点,叫做这条线段的四等分点;把一条线段平均分成五份的点,叫做这条线段的五等分点;…
依次类推。
两点的所有连线中,线段最短。
简称:两点之间,线段最短。
连接两点之间的线段的长度,叫做这两个点的距离。