4-2 直线、射线、线段(提升训练)(解析版)
- 格式:docx
- 大小:1.29 MB
- 文档页数:72
4.2 线段、射线、直线专题一与线段、射线、直线有关的操作问题1. 如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子的条数是()A.3 B.4 C.5 D.62. 一根绳子弯曲成如图1所示的形状,当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b平行a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+53. 由河源到广州的某一次列车,运行途中停靠的车站依次是:河源-惠州-东莞-广州,那么要为这次列车制作的火车票有()A.3种B.4种C.6种D.12种专题二线段、射线、直线有关的探究问题4.平面内有三点A、B、C,过其中任意两点画直线,有如下两种情况:(1)若平面内有四个点A、B、C、D,过其中任意两点画直线,有多少种情况?请画图说明;(2)若平面内有6个点,过其中任意两点画直线,最多可以画多少条直线?(3)若平面内有n个点,过其中任意两点画直线,最多可以画多少条直线?(直接写出结果)5.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成几部分?(3)当直线为n条时,把平面最多分成几部分?(不必说明理由)状元笔记【知识要点】1.像长方体的棱、长方形的边,这些图形都是线段;将线段向一个方向无限延长就得到了射线;将线段向两个方向无限延长就形成了直线.射线和线段都是直线的一部分. 2.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.3.两条直线相交只有一个交点.【方法技巧】1. (1)从端点的个数看,直线没有端点,射线有一个端点,线段有两个端点.(2)从长度来讲,线段有确定的长度,可以度量,而直线、射线却不能度量其长度. (3)从表示方法上来说,尽管三者都可以用两个大写字母表示,但表示射线时表示端点的大写字母必须写在前面.2. “经过两点有一条直线,并且只有一条直线”包含两层意思:○1过两点存在一条直线;○2过两点的直线虽然存在,但只有唯一的一条.参考答案1. B解析:把一条绳子从中剪断,得到两条;折一次,从中剪断,得到三条,折两次,从中剪断得到四条.故选B.2.A解析:设段数为x,则依题意得:n=0时,x=1;n=1,x=5;n=2,x=9;n=3,x=13;…所以当n=n时,x=4n+1.故选A.3. D解析:画线段,动手操作,由河源要经过3个地方,所以要制作3种车票;由惠州要经过2个地方,所以要制作2种车票;由东莞要经过1个地方,所要制作1种车票,这次列车制作的火车票的总数=3+2+1=6(种).故选C.4. 解:(1)如图:(2)最多可画:1+2+3+4+5=15(条).(3)最多可画:1+2+3+…+n=(1)2n n-(条).5. 解:(1)根据表中规律,当直线条数为5时,把平面最多分成16部分,1+1+2+3+4+5=16;(2)根据表中规律,当直线为10条时,把平面最多分成56部分,为1+1+2+3+----+10=56;(3)设直线条数有n条,分成的平面最多有m个.有以下规律:n m2 13 1+1+24 1+1+2+3::n m=1+1+…+(n-1)+n=(1)12n n++.。
第四章几何图形的初步4.2直线、射线、线段(直线、射线、线段的表示)精选练习答案一. 选择题(共10小题)1.(2018·广信区第七中学初一期末)下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m【答案】A【详解】A选项,直线A、B相交于点M符合直线和点的表示,符合题意,B选项,过A、B、C三点画直线l,由于三点不确定在同一条直线上在,因此表述不正确,不符合题意,C选项,直线、相交于点M ,直线表示不正确,因此不符合题意,D选项,直线a、b相交于点m,因为点用大写字母表示,因此表述不正确,故选A.2.(2018·西藏达孜县中学初一期末)下列说法正确的是( )A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短【答案】B【详解】A、过一点P可以作无数条直线;故错误.B、直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故正确.C、射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故错误.D、射线和直线不能进行长短的比较;故错误.故选:B.3.(2018·河北省保定市第十七中学初一期末)下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.4【答案】A【详解】①两条端点重合的射线组成的图形叫做角,故①错误;②反向延长线段AB,得到射线BA,故②正确;③延长线段AB到点C,使BC=AB,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误;⑤连接两点间的线段的长叫做两点间的距离,故⑤说法错误;⑥两点之间线段最短,故⑥错误.故正确的有②故选A.4.(2018·广东省东城春晖学校初一期末)下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C【答案】C【详解】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OC到点C,错误.故选:C.5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.【答案】A【分析】由定义知,直线是向两方无限延伸的,射线是向一个方向无限延伸的,所以直线、射线只要不经过线段,就不会和线段相交;射线方向只要朝着直线所在位置,或者直线朝着射线所在位置,两者就一定相交;如果直线在射线延伸的反方向,则两者不相交.【详解】A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.6.(2018·广东大光勘九年一贯制学校初一期末)直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【答案】D【详解】解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.7.(2019·宿州市第十一中学初一期末)下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短【答案】B【详解】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n-3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点的所有连线中,线段最短,故错误.故选:B.8.(2018·广东省东城春晖学校初一期末)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【答案】C【详解】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.9.(2018·河南郑东新区九年制实验学校初一期中)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段【答案】B【详解】解:A、因为直线向两方无限延伸;所以直线AB与直线BA是同一条直线,说法A正确,故本选项不符合题意;B、射线OA与射线AB端点不同,不是同一条射线,说法B错误,故本选项符合题意;C、射线OA与射线OB的端点和方向都相同;是同一条射线,故说法C正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,故说法D正确,故本选项不符合题意;故选:B.10.(2018·惠州市实验中学初一期末)下列说法中正确的是()A.三条直线两两相交有三个交点B.直线A与直线B相交于点MC.画一条5厘米长的线段D.在线段、射线、直线中直线最长【答案】C【详解】A.三条直线两两相交有三个或一个交点,故A选项错误;B.直线a与直线b相交于点M,直线可以用一个小写字母表示,不能用一个大写字母表示,故B选项错误;C.画一条5厘米长的线段,线段的长度可度量,故C选项正确;D.在线段、射线、直线中,直线和射线的长度无法度量,而线段的长度可度量,故D选项错误;故选:C.二. 填空题(共5小题)11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.【答案】3【详解】如图,有3条.12.(2018·安达市吉星岗镇吉星岗中学初一期末)如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.【答案】30【解析】线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.故答案为:30.13.(2018·南宁市期末)如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票.【答案】12【详解】如图所示:其中每两个站之间有AC、AD、AB、CD、CB、DB,故应该安排6×2=12(种).14.(2018·邢台市第七中学初一期中)如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。
4.2 直线、射线、线段基础巩固1.(题型一)如图 4-2-1,下列说法正确的是()图 4-2-1A.图中共有 5 条线段B.直线 AB 与直线 AC 是同一条直线C.射线 AB 与射线 BA 是同一条射线D.点 O 在直线 AC 上2.(知识点 1)木工师傅用刨子可将木板刨平,如图 4-2-2,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其道理正确的是()图 4-2-2A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.不在同一条直线上的三点,确定一个平面3.(知识点 6)已知 C 是线段 AB 上的一点,不能确定 C 是 AB 的中点的条件是()A. AC=CBB. AC= 1 ABC. AB=2BCD. AC+CB=AB24.(题型三)已知线段 AB=8 cm,在直线 AB 上画线段 BC,使它等于3 cm,则线段 AC 等于 _______.5.(题型四)经过任意三点中的两点可以画出的直线共有 _____条.6.(题型六)如图 4-2-3,由泰山到青岛的某一次单程列车,运行途中停靠的车站依次是泰山、济南、淄博、潍坊、青岛,那么需要为这次列车制作的火车票有 _____种.图 4-2-37.(题型三)如图 4-2-4,线段 AC=6 cm,线段 BC=15 cm,M 是 AC的中点,在 CB 上取一点 N,使得 CN∶NB=1∶2,求 MN 的长 .图 4-2-48.(题型六)如图 4-2-5,设 A,B,C,D 为四个居民小区,现要在四边形 ABCD 内建一个购物中心,试问应把购物中心建在何处,才能使 4 个居民小区到购物中心的距离之和最小?请用一句话说明理由.图 4-2-59.(题型二)如图 4-2-6,已知线段 a,b,利用直尺和圆规画一条线段 c,使它的长度等于3a-b.图 4-2-6能力提升10. (题型三)如图4-2-7,在线段 AF 中, AB=a,BC=b ,CD=c ,DE=d ,EF=e ,则分别以A,B,C,D,E,F 为端点的所有线段长度之和为()图 4-2-7A.5a+8b+9c+8d+5eB.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5eD.10a+16b+18c+16d+10e11.(题型五)如图 4-2-8,试确定各图中分别有几条线段、几条射线 .(1)如图 4-2-8(1),直线 l 上有 1 个点 P1;(2)如图 4-2-8(2),直线 l 上有 2 个点 P1,P2;(3)如图 4-2-8(3),直线 l 上有 3 个点 P1,P2,P3;(4)如图 4-2-8(4),直线 l 上有 4 个点 P1,P2,P3,P4;(5)如图 4-2-8(5),直线 l 上有 n 个点 P1,P2,P3,, P n.图 4-2-812.(题型三)如图 4-2-9,线段 AB=12,动点 P 从点 A 出发,以每秒 2 个单位长度的速度沿射线AB 运动, M 为 AP 的中点.(1)出发多少秒后, PB=2AM?(2)若点 P 在线段 AB 上运动时,试说明 2BM-PB 的值为定值.(3)当点 P 在 AB 的延长线上运动时, N 为 PB 的中点,其他条件不变,下列两个结论:①MN 的长度不变;②AM+NP 的值不变 . 请选择正确的结论,并说明理由.图 4-2-9答案基础巩固1.B 解析:A. 图中共有 6 条线段,故 A 错误;B.直线 AB 与直线 AC是同一条直线,故 B 正确; C.射线 AB 与射线 BA 不是同一条射线,故 C 错误; D.点 O 在直线 AC 外,故 D 错误 .故选 B.2.A 解析:经过刨平的木板上的两个点,就能弹出一条笔直的墨线,此操作的依据是两点确定一条直线 .故选 A.3.D 解析:A.若 AC=CB,则 C 是线段 AB 的中点; B.若 AC=1/2AB,则 C 是线段 AB 的中点; C.若 AB=2BC,则 C 是线段 AB 的中点; D.若 AC+BC=AB ,则 C 是线段 AB 上任意一点,故不能确定 C 是 AB的中点 .故选 D.4. 11 cm 或 5 cm解析:根据题意可知,AB=8 cm,BC=3 cm.因为点C的位置不确定,所以要分两种情况分别进行讨论:如图 D4-2-1(1),当点 C 在点 B 的右侧时, AC=AB+BC =8+3=11(cm);如图 D4-2-1(2),当点C 在点B 的左侧时,AC=AB-BC=8-3=5(cm).综上所述,线段 AC 等于 11 cm 或 5 cm.图 D4-2-15.1 或 3 解析:如图 D4-2-2,可以画出 1 条或 3 条直线 .图 D4-2-26.10 解析:如图 D4-2-3,将泰山、济南、淄博、潍坊、青岛这五站分别用 A,B,C,D,E 表示,则有线段 AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共 10 条,所以需要为这次列车制作的火车票有 10 种.图 D4-2-37.解:因为 M 是 AC 的中点,线段 AC=6 cm,所以 MC=AM= 1AC=1×6=3(cm). 22又因为 CN∶NB=1∶2,线段 BC=15 cm,所以 CN= 1BC=1×15=5(cm). 33所以 MN=MC+NC =3+5=8(cm) .8.解:应建在 AC,BD 连线的交点处 .理由:两点之间,线段最短 .将 A,B,C,D 用线段连起来,在路程最短的两条线段的交点处建超市,则使 4 个居民小区到购物中心的距离之和最小 .9.解:(1)画射线 AP,在射线 AP 上顺次截取 AB=BC=CD=a ;(2)以 D 为端点,在线段 AD 上截取 DE=b .如图 D4-2-4,线段 AE 的长度就是 3a-b,设 AE 的长度为 c,则 c=3a-b.图 D4-2-4能力提升10.A 解析:以 A 为端点的线段有 AB,AC,AD,AE,AF,这些线段的长度之和为 5a+4b+3c+2d+e;以 B 为端点的线段有 BC,BD,BE,BF,这些线段的长度之和为4b+3c+2d+e;以 C 为端点的线段有CD,CE,CF,这些线段的长度之和为3c+2d+e;以 D 为端点的线段有DE,DF,这些线段长度之和为2d+e;以 E 为端点的线段有EF,线段的长度为 e.所以分别以A,B,C,D,E,F 为端点的所有线段的长度之和为 5a+8b+9c+8d+5e.故选 A.11.解:(1)题图( 1)中有 0 条线段, 2 条射线 .(2)题图( 2)中有 1 条线段, 4 条射线 .(3)题图( 3)中有 1+2=3(条)线段, 6 条射线 .(4)题图( 4)中有 1+2+3=6(条)线段, 8 条射线 .(5)题图( 5)中有 1+2+3+ +(n-1)= n n1(条)线段, 2n 条2射线 .12.解:(1)设出发 t(t>0)秒后, PB=2AM.如图 D4-2-5(1),由题意,得 AP=2t,则 PB=12-2t.因为 M 为 AP 的中点,所以 AM=t.由 PB=2AM,得 12-2t=2t,解得 t=3.故出发 3 秒后, PB=2AM.(2)设点 P 在 AB 上运动的时间为t(t >0)秒.如图 D4-2-5(1),可得 AP=2t,AM=t ,所以 BM=12-t.所以 2BM-PB=2×( 12-t)-(12-2t)=24-2t-12+2t=12.所以当点 P 在线段 AB 上运动时, 2BM-BP 的值为定值 12.(3)结论①是正确的 .理由如下:如图 D4-2-5(2),设点 P 在 AB 的延长线上运动的时间为1则 AP=2t,则 AM=t ,PB=2 t- .t( t>0)秒,2因为N 为PB 的中点,所以 NP= 1PB=1×( 2t-12) =t-6.2 2①M N=AP-AM-NP =2t-t-(t-6)=6.所以当点 P 在 AB 的延长线上运动时, MN 的长度不变 .所以结论①正确 .②A M+NP =t+(t-6)=2t-6,所以当点 P 在 AB 的延长线上运动时, AM+PN 的值会改变.所以结论②不正确.(1)(2)图 D4-2-5。
直线、射线、线段(提高)知识讲解【学习目标】1 •理解直线、射线、线段的概念,掌握它们的区别和联系; 2. 利用直线、线段的性质解决相关实际问题; 3 •利用线段的和差倍分解决相关计算问题. 【要点梳理】要点一、直线1概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用 “一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述. 2.表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图 1所示,为直线AB (或直线BA ) •(2) 也可以用一个小写英文字母表示,如图2所示,可以表示为直线I •3. 基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2 )直线没有粗细. (3) 两点确定一条直线.(4) 两条直线相交有唯一一个交点.4•点与直线的位置关系:(1) 点在直线上,如图 3所示,点A 在直线m 上,也可以说:直线 m 经过点A . (2) 点在直线外,如图 4,点B 在直线n 外,也可以说:直线 n 不经过点B .要点二、线段1. 概念:直线上两点和它们之间的部分叫做线段.2. 表示方法:(1) 线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段线段BA . (2) 线段也可用一个小写英文字母来表示,如图5所示,记作:线段 a .a•,•A83. “作一条线段等于已知线段”的两种方法: 法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线 AC 上截取可表示 AB 或AB = a .AA aB C法二:用刻度尺作一条线段等于已知线段•例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4. 基本性质:两点的所有连线中,线段最短•简记为:两点之间,线段最短.如图6所示,在A , B两点所连的线中,线段AB的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5. 线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点•如图7所示,点C1是线段AB的中点,贝y AC二CB AB,或AB = 2AC = 2BC•2■ _ ■■A C B图7要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.要点三、射线1. 概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线I上点0和它一旁的部分是一条射线,点0是端点.(丿J |图82. 特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线0A .(2)也可以用一个小写英文字母表示,如图8所示,射线0A可记为射线I.要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线•如图9中射线0A,射线0B是不同的射线.---- --------- -------------- ■亍二——BOA图9(2)端点相同且延伸方向也相同的射线,表示同一条射线•如图射线10中射线0A、射线0B、0C都表示同一条射线.图10要点四、直线、射线、线段的区别与联系 1. 直线、射线、线段之间的联系(1) 射线和线段都是直线上的一部分,即整体与部分的关系•在直线上任取一点,则可将 直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2) 将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得 到直线. 2. 三者的区别如下表类别、\图形 --- ■ ------ 1 ---- f ----- H ——/A B *A B A B責示方法 ① 两伞丸宵字母: ② 一牛小馬字母① 两4大胃字母(展崇 增点的宇母准蕾h② 一d 小馬丰堆&表示曲端点的两 个丸骂字母*②一金1喘歳亍数无1牛2个延悌性1 尙两方无隈肚伸 囱一方尤陲睫伸不可琏忡性质菊虽嶋定一条直復SB作图叙述以>1均均壷作射慣沖直要点诠释:(1)联系与区别可表示如下:直线•(直察的性 盛公理)(2)在表示直线、射线与线段时,勿忘在字母的前面 【典型例题】类型一、有关概念【总结升华】 在表示线段和直线时, 两个大写字母的顺序可以颠倒•然而, 在叙述线段的延 长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成方一方 延伸反向琏伸向两方 延伸写上“直线” “射线” “线段”字样.1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A D F 分别是线段CB BC BE 的延长线上的点,也就是说, D F 三点的位置并不是完全确定的.此时, 【答案与解析】 解:直线有一条:直线射线有六条:射线 线段有三条:线段 我们也就能分清楚图中的直线、射线和线段了.A 、AD ;BA 、射线BD 、 BC 、线段BE 、 射线CA 、射线CD 、射线BF 、射线EF ; 线段CE . 线段 銭段长氟的比较, 践程的中点了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【高清课堂:直线、射线、线段397363拓展4】【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点•这是为什么?画图说明•【答案】解:图<1)•••过两点有且只有一条直线.(或两点确定一条直线.)•••两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点•类型二、有关作图2•如图(1)所示,已知线段a, b(a> b),画一条线段,使它等于2a-2b.. a ’亠⑴【答案与解析】解:如图(2)所示:A DB EC FI I2b----- 2a ------- *(2)(1)作射线AF ;(2)在射线AF上顺次截取AB = BC = a;(3)在线段AC上顺次截取AD = DE = b,则线段EC就是所要求作的线段. 【总结升华】用尺规作图时,要熟悉常用的画图语言,注意保留作图痕迹.举一反三:【变式1】下列说法正确的有()①射线与其反向延长线成一条直线;②直线a、b相交于点m;③两直线相交于两个交点;④ 直线A 与直线B 相交于点M A . 3个 B . 2个 C . 1个 D . 4个 【答案】C【变式2】下列说法中,正确的个数有 ()① 已知线段a , b 且a-b = c ,贝U c 的值不是正的就是负的; ② 已知平面内的任意三点 A , B , C 则AB+BC > AC ; ③ 延长 AB 到C ,使BC = AB ,贝U AC = 2AB ; ④ 直线上的顺次三点 D 、E 、F ,贝U DE+EF = DF .A . 1个B . 2个C . 3个D . 4个 【答案】C类型三、个(条)数或长度的计算3. 根据题意,完成下列填空.如图所示,h 与12是同一平面内 的两条相交直线,它们有1个交点,如果在这个平面内, 再画第3条直线13,那么这3条直线最多有 ___________ 个交点;如果在这个平面内再画第 4条直线14,那么这4条直线最多可有 __________ 个交点•由此我们可以猜想:在同一平面内, 3, 6, 15,吃 1)2本题探索过程要分两步:首先要填好 3条直线最多可有 2+1 = 3个交点,再类推 4 5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般 【总结升华】n (n 为大于1的整数)条直线的交点最多可有:1 2 3 ... (n -1)=耳2举一反三:【变式1】平面上有n 个点,最多可以确定 ________ 条直线 【答案】血92【变式2】一条直线有n 个点,最多可以确定 _________ 条线段, ________ 条射线 【答案】n(n一1), 2n2【高清课堂:直线、射线、线段 397363拓展1 ( 4)】 【变式3】一个平面内有三条直线,会出现几个交点 ?【答案】0个,1个,2个,或3个.4. 已知线段 AB = 14cm ,在直线 AB 上有一点 C ,且BC = 4cm , M 是线段AC 的中 点,求个交点,n ( n 为大于1的整数)条直线最多可有个交点(用【解析】 条直线,6条直线最多可有【答线段AM的长.【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB夕卜(也就是在线段AB的延长线上)•所以要分两种情况求线段AM的长.【答案与解析】解:①当点C在线段AB上时,如图所示.A M C B因为M是线段AC的中点,1所以AM AC •2又因为AC = AB-BC , AB = 14cm, BC = 4cm,1 1所以AM (AB - BC) (14 - 4) = 5(cm).②当点C在线段AB的延长线上时,如图所示.因为M是线段AC的中点,1所以AM AC •2又因为AC = AB+BC , AB = 14cm, BC = 4cm,1所以AM (AB BC)=9( cm)•所以线段AM的长为5cm或9cm •【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.举一反三:【变式】(武汉武昌区期末联考)如图所示,数轴上线段AB = 2(单位长度),CD = 4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16•若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时,BC = 8(单位长度)(2)_________________________________________________________ 当运动到BC = 8(单位长度)时,点B在数轴上表示的数是__________________________________一BD—AP (3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 3 •PC若存在,求线段PD的长;若不存在,请说明理由.I I 一」_ 1 ____ ・■A B O C D【答案】解:(1)点B在数轴上表示的数是-8,设运动t秒时,BC = 8 (单位长度),则:①当点B在点C的左边时,6t+8+2t = 24t = 2(秒)②当点B在点C的右边时,6t-8+2t = 24t = 4(秒)答:当t等于2秒或4秒时,BC = 8(单位长度)A B O CD⑴CADS(2)(2)由(1)知:当t= 2(秒)时,B点坐标为:-8+6t= - 8+6X 2=4 (单位长度)当t = 4(秒)时,B点坐标为:-8+6t= - 8+6X 4=16 (单位长度)所以答案为:4或16(3)存在,若存在,则有:BD = AP+3PC,设运动时间为t(秒),则:1°当t= 3时,点B与点C重合,点P在线段AB上,O V PC < 2且BD = CD = 4, AP+3PC = AB+2PC = 2+2PC所以:2+2PC=4,解得:PC= 1•••此时,PD = 5132°当3 : t 时,点C在点A与点B之间,O V PC V 24①点P在线段AC上时.BD = CD-BC = 4- BCAP+3PC = AC+2PC = AB - BC+2PC = 2- BC+2PC由4- BC=2 - BC+2PC , 可得:PC= 1, 此时PD = 5.②点P在线段BC上时BD = CD-BC = 4- BC , AP+3PC = AC+4PC = AB - BC+4PC = 2- BC+4PC1 7由4- BC=2 - BC+4PC,可得:PC ,此时PD -2 23°当t 时,点A与在点C重合,0 V PC W 24BD = CD-AB = 2, AP+3PC = 4PC1 7由2= 4PC,可得:PC ,此时PD -2 213 74° 当t 时,0V PC V 44 2BD = CD —BC = 4-BC , AP+3PC = AB - BC+4PC = 2- BC+4PC1 7由4—BC=2 - BC+4PC,可得:PC ,此时PD 二一2 2综上可得:存在此关系式,且PD的长为5或2类型四、路程最短问题5. 如图所示,某公司员工分别住A、B、C三个住宅区,A区有30人,B区有15人,C区有10人•三个区在同一条直线上,该公司的接送车打算在此间设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在哪个区?100 m 200 m■■…T■ i・…i •A B C【答案与解析】解:所有员工步行到停靠点A区的路程之和为:0X 30+100 X 15+(100+200) X 10= 0+1500+3000 = 4500( m);所有员工步行到停靠点B区的路程之和为:100 X 30+0 X 15+200 X 10 = 3000+0+2000 = 5000( m);所有员工步行到停靠点C区的路程之和为:(100+200) X 30+15 X 200+10 X 0= 9000+3000+0 = 12000( m) •因为4500 V 5000V 12000 ,所以所有员工步行到停靠点A区的路程之和最小,所以停靠点的位置应设在A.【总结升华】本题是线段的概念在现实中的应用,根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可得解•举一反三:【变式】如图,从A到B最短的路线是( )匚A. A-G-E-B 【答案】D A-C-E-B A-F-E-BC. A-D-G-E-B D。
人教版数学七年级上册第4章 4.2直线、射线与线段同步练习一、单选题(共10题;共20201、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出( )A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=( )A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是( )A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是( )A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB,AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C ①画直线AB ②画射线BC③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.2020知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.答案解析部分一、单选题1、【答案】C【考点】两点间的距离【解析】【解答】解:如图(一)所示,当点C在线段AB外时,AC=AB+BC=5+2=7cm;如图(二)所示,当点C在线段AB内时,AC=AB﹣BC=5﹣2=3cm.故选C【分析】根据题意画出图形,由于点C与线段AB的位置不能确定,所以应分点C在AB外和在AB之间两种情况进行讨论.2、【答案】D【考点】直线、射线、线段【解析】【解答】解:当另一条直线与两条相交直线交于同一点时,交点个数为1;当另一条直线与两条相交直线中的一条平行时,交点个数为2;当另一条直线分别与两条相交直线相交时,交点个数为3;故它们的交点个数为1或2或3.故选D.【分析】本题中直线的位置关系不明确,应分情况讨论,包括两条相交直线是否是另一条直线平行、相交或交于同一点.3、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,最多可画6条直线.,故选D.【分析】画出图形即可确定最多能画的直线的条数.4、【答案】D【考点】直线、射线、线段【解析】【解答】解:AC=BC,AC= AB,AC=2CB都不能说明点A、B、C三点共线,由AB=2AC=2CB可知A、B、C三点共线,且AC=BC,所以,点C是AB中点.故选D.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.5、【答案】A【考点】直线、射线、线段【解析】【解答】解:交点个数最多时, = =6,最少有0个.所以b=6,a=0,所以a+b=6.故选:A.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.6、【答案】D【考点】直线、射线、线段【解析】【解答】解:以O为端点的射线有2条,以A为端点的射线有3条,以B为端点的射线有3条,共有2+3+3=8条.故选D.【分析】根据射线的定义,分别数出以O、A、B为端点的射线的条数,再相加即可解得.7、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图所示:平面上有四个点最少画1条直线,最多画6条直线.故a=1,b=6.则a+b=1+6=7.故选:D.【分析】当四点在一条直线上时,可画1条,当任意三点不在同一条直线上时可画出6条直线,1+6=7.8、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.9、【答案】B【考点】直线、射线、线段,角的概念,角平分线的定义【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;④连接两点的线段叫两点之间的距离,错误;⑤两条射线组成的图形叫做角,错误;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;其中正确的有1个.故选:B.【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.10、【答案】C【考点】直线、射线、线段,点到直线的距离,三角形三边关系【解析】【解答】解:A. 射线AB和射线BA表示不同的射线,故A不符合题意;B. PQ⊥AB时,线段PQ的长度就是点P到直线m的距离,故B不符合题意;C. 连接AP,BP,则AP+BP>AB,故C符合题意;D. Q在A的右边时,不满足AQ=AB-BQ或AQ=AB+BQ,故D不符合题意;故选:C.【分析】二、填空题11、【答案】2020【考点】直线、射线、线段【解析】【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;∴有10种不同的票价;∵有多少种车票是要考虑顺序的,∴需准备2020票,故答案为:2020【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.12、【答案】2;1;0【考点】直线、射线、线段【解析】【解答】解:根据线段、射线、直线的定义即可得出: 线段有2个端点,射线有1个端点,直线有0个端点.故答案为:2,1,0.【分析】根据线段、射线、直线的定义即可得出其顶点的个数,此题得解.13、【答案】6;5【考点】直线、射线、线段【解析】【解答】解:图中线段有:ED、EC、EB、DC、DB、CB共6条,射线有:ED、EB、CD、CB、BE共5条,故答案为:6,5.【分析】根据直线、射线、线段的概念进行判断即可.14、【答案】BC;CD;AD;BC【考点】直线、射线、线段【解析】【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC;CD;AD;BC【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.15、【答案】10【考点】直线、射线、线段【解析】【解答】解:根据题意得: =10,则共有10种不同票价,故答案为:10【分析】根据在一条直线上n个点连为条线段规律,计算即可得到结果.三、作图题16、【答案】解:如图所示: .【考点】直线、射线、线段【解析】【分析】根据直线、射线、线段的定义画出即可.四、解答题17、【答案】解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.①当点C在线段AB上时,如图①,则有AC=AB﹣BC=10﹣4=6.∵点D是线段AC的中点,∴DC= AC=3,∴DB=DC+BC=3+4=7;②当点C在线段AB的延长线上时,如图②,则有AC=AB+BC=10+4=14.∵点D是线段AC的中点,∴DC= AC=7,∴DB=DC﹣BC=7﹣4=3.综上所述:线段BD的长度为7cm或3cm.【考点】两点间的距离【解析】【分析】由于AB>BC,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC与BC的和或差,就可解决问题.18、【答案】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE= AB=x,CF= CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x= ,∴AD=AB+BC+CD=2x+3x+4x=9x= cm【考点】两点间的距离【解析】【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.19、【答案】解:由线段的和差,得DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.【考点】两点间的距离【解析】【分析】根据线段的和差,可得DB的长,根据线段中点的性质,可得答案.2020答案】解:设AC=2x,CD=3x,DB=4x,∴AB=AC+CD+DB=9x,∵AB的中点为M,∴MB= AB=4.5x,∵N是DB的中点,∴NB= DB=2x,∴MB﹣NB=MN,∴4.5x﹣2x=5,∴2.5x=5,∴x=2,∴AB=9x=18cm【考点】两点间的距离【解析】【分析】根据AC:CD:DB=2:3:4,可设AC=2x,然后根据条件列出方程即可求出AB的长度.21、【答案】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=2+4=6cm,∵M是线段AC中点,∴AM= AC=3cm,∴BM=AM﹣AB=3﹣2=1cm.故BM长度是1cm.【考点】两点间的距离【解析】【分析】先根据AB=2cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC中点求出AM,再由BM=AM﹣AB即可得出结论.。
4.2 直线、射线、线段【提升训练】一、单选题1.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.102.下列说法正确的个数为()①用一个平面去截一个圆锥,截面的形状可能是一个三角形;①若2AB=AC,则点B是AC的中点;①连接两点的线段叫做这两点之间的距离;①在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.A.1个B.2个C.3个D.4个3.下列说法正确的有()①绝对值等于本身的数是正数;①近似数4.60与4.6的精确度相同;①连接两点的线段的长度就是两点间的距离;,则点C就是线段AB的中点.①若AC BCA.1个B.2个C.3个D.4个4.如果A、B、C三点在线段AB上,且线段AB=10cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.3cm B.7cm C.5cm或1cm D.7cm或3cm5.己知A 、B 、C 三点,6cm AB =,2cm BC =,则AC =( )A .8cmB .4cmC .8cm 或4cmD .无法确定6.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;①1()2MH AH HB =-;①1()2MN AC HB =+;①1()2HN HC HB =+,其中正确的是( )A .①①B .①①①C .①①①①D .①①①7.线段AB 的长为2cm ,延长AB 到C ,使3AC AB =,再延长BA 到D ,使2BD BC =,则线段CD 的长为( )A .10cmB .8cmC .6cmD .12cm8.下列说法中,正确的个数为( ) ①单项式223x y π-的系数是23-;①0是最小的有理数;①2t 不是整式;①33x y -的次数是4;①4ab 与4xy 是同类项;①1y是单项式;①连接两点的线段叫两点间的距离;①若点C 是线段AB 的中点,则AC BC =. A .2个 B .3个 C .4个 D .5个9.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm10.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者1811.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm12.若线段AB =12cm ,点C 是线段AB 的中点,点D 是线段AC 的三等分点,则线段BD 的长为( ) A .2cm 或4cm B .8cm C .10cm D .8cm 或10cm13.下列说法不正确的是( )A .两点确定一条直线B .两点间线段最短C .两点间的线段叫做两点间的距离D .正多边形的各边相等,各角相等14.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =15.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .1816.如图,点C ,点D 在线段AB 上,若3AC BC =,点D 是AC 的中点,则( )A .23AD BC =B .35AD BD =C .3AC BD DC += D .2AC BC DC -=17.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm18.如图,把长方形沿虚线剪去一个角,得到一个五边形,则这个五边形的周长______原来长方形的周长,理由是______,横线上依次填入( )A .大于:经过两点有一条直线,并且只有一条直线B .大于:两点之间的所有连线中,线段最短C .小于:经过两点有一条直线,并且只有一条直线D .小于:两点之间的所有连线中,线段最短19.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ PQ PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+ 20.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( )A .1B .5C .3或5D .1或521.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 1222.如图,把一根绳子对折成线段AB ,从点P 处把绳子剪断,已知2PB PA =,若剪断后的各段绳子中最长的一段为40cm ,则绳子的原长为()A .30cmB .60cmC .120cmD .60cm 或120cm23.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm24.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( )A .P 点一定在直线AB 上B .P 点一定在直线AB 外C .P 点一定在线段AB 上D .P 点一定在线段AB 外25.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .21226.如图,点D 把线段AB 从左至右依次分成1:2两部分,点C 是AB 的中点,若2DC =,则线段AB 的长是( )A.16B.14C.12D.1027.若线段AB=13cm,MA+MB=17cm,则下列说法正确的是()A.点M在线段AB上B.点M在直线AB上,也有可能在直线AB外C.点M在直线AB外D.点M在直线AB上28.已知线段AB=6cm,在直线AB上取一点C,使BC=2cm,则线段AB的中点M与AC的中点N的距离为()A.1cm B.3cm C.2cm或3cm D.1cm或3cm29.已知:线段a,b,求作:线段AB,使得AB=2a+b,小明给出了四个步骤(如图):①作-条射线AE;①则线段AB=2a+b;①在射线AE上作线段AC=a,再在射线CE上作线段CD=a;①在射线DE上作线段DB=b;你认为顺序正确的是()A.①①①①B.①①①①C.①①①①D.①①①①CD ,若线段AB的长度是一个正整数,则图中以A,B,C,D 30.如图,线段CD在线段AB上,且3这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.不能确定二、填空题31.已知线段20AB =,14AM BM =,点P 、Q 分别是AM 、AB 的中点.(1)如图,当点M 在线段AB 上时,则PQ 的长为___________.(2)当点M 在直线AB 上时,则PQ 的长为__________.32.已知A 、B 、C 三点在一条直线上,6cm AB =,且2BC AC =,则线段BC 的长为____________cm . 33.已知点A 、B 、C 在同一直线上,若AB =10cm ,AC =16cm ,点M 、N 分别是线段AB 、AC 中点,则线段MN 的长是________.34.如图,线段AB =5.C ,D ,E 分别为线段AB (端点A ,B 除外)上顺次三个不同的点,图中所有的线段和等于26,则CE =_____.35.已知线段10AB =cm ,点C 在直线AB 上,且3AC =cm ,则线段BC 的长为____________.三、解答题 36.如图,已知四个点A 、B 、C 、D ,根据下列要求画图:(1)画线段AB 、射线DC 、直线AD ;(2)画CDB ∠;(3)找一点P ,使P 既在直线AD 上,又在直线BC 上.37.如图,90PAQ ∠=︒,点B 、点C 分别在边PA 、QA 上,且12cm BA =,6cm CA =,动点M 沿AP 边从点A 出发,向点B 以2cm /s 的速度运动;动点N 沿QA 边从点C 出发,向点A 以1cm /s 的速度运动;若M 、N 同时运动,用(s)t 表示移动的时间.(1)当AM AN =时,求t 的值;(2)①当t 为何值时,点M 恰好在AB 的13处? ①在①的前提下,AM AN +等于BA CA +的13吗? 38.如图,已知AB =10cm ,点E 、C 、D 在线段AB 上,且AC =6cm ,点E 是线段AC 的中点,点D 是线段BC 的中点.(1)求BD 的长;(2)求DE 的长.39.如图所示,点 A 、B 、C 、D 表示在同一直线上的四个车站的位置.求:(1)A 、D 两站的距离;(2)C 、D 两站的距离;(3)若C 为AD 的中点,求a 与b 之间所满足的相等关系.40.对数轴上的点P 进行如下操作:先把点P 表示的数乘以()0m m ≠,再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P ',我们称P '为点P 的“倍移点”.例如点P 表示的数是1,当2m =,3n =时,那么倍移点P '表示的数是1235⨯+=.数轴上,点A ,B ,C ,D 的“倍移点”分别为'A ,B ′,'C ,D . (1)当12m =,1n =时,若点A 表示的数为-2,则点A '表示的数为____________;若点B '表示的数是3,则点B 表示的数为____________;(2)当4n =时,若点D 表示的数为3,点D 表示的数为-5,则m 的值为_____________;(3)若线段5A B AB ''=,请写出你能由此得到的结论,并说明理由.41.已知:如图,点C D 、在线段AB 上,点D 是AB 中点,1,123AC AB AB ==.(1)求线段CD 在长;(2)E 是线段BD 上一点,且DE CD =,请在图中画出点E ,并直接写出长度是线段DE 长度2倍的线段.42.如图,点C 为线段AB 上一点,点M 、N 分别是线段AC 、BC 的中点.回答下列问题:(1)试判断线段AB 与MN 的关系为 ;(2)若点P 是线段AB 的中点,AC =6cm ,CP =2cm ,求线段PN 的长.43.如图,点B ,D 在线段AC 上,13BD AB =,34AB CD =,线段AB 、CD 的中点E 、F 之间的距离是10,求线段AC 的长.44.如图,点A 在点B 的左边,线段AB 的长为24cm ;点C 在点D 的左边,点C 、D 在线段AB 上,12cm CD =.点E 是线段AC 的中点,点F 是线段BD 的中点.(1)若8cm BD =,求线段EF 的长;(2)若cm BD a =,012cm a cm <<,用含a 的式子表示线段AE 的长.45.如图,已知线段AB .(1)请用尺规按要求作图:延长线段AB 到C ,使2BC AB =;(2)若3AB =,D 为AC 的中点,求线段BD 的长.46.如图,已知线段 2MN = ,点Q 是线段MN 的中点,先按要求补全图形.(1)延长线段NM 至点A ,使 2AM MN =;延长线段MN 至点B ,使13BN BM =; (2)求线段BQ 的长度;(3)若点P 是线段 AM 的中点,求线段 PQ 的长度. 47.如图,线段10AB cm =,点C 为线段AB 上一点,4BC cm =,点,D E 分别为AC 和AB 的中点,求线段DE 的长.48.如图,点C 、D 是线段AB 上两点,:3:2AC BC =,点D 为AB 的中点.(1)如图1所示,若30AB =,求线段CD 的长;(2)如图2所示,若E 为AC 的中点,5ED =,求线段AB 的长.49.如图,点P 是线段AB 上一点,18cm AB =,点C ,D 分别同时从点P ,B 出发,且分别以1cm/s ,2cm/s 的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上),运动的时间为t s . (1)当2t =时,2PD AC =,求AP 的长;(2)若点C ,D 运动到任何时刻时,总有2PD AC =,求AP 的长;(3)在(2)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.50.如图,已知线段AB m =(m 为常数),点C 为直线AB 上一点(不与A 、B 重合),点P 、Q 分别在线段BC 、AC 上,且满足2CQ AQ =,2CP BP =.(1)如图1,点C 在线段AB 上,求PQ 的长;(用含m 的代数式表示)(2)如图2,若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),求22AP CQ PQ +-的值.51.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.52.如图,点C 是线段AB 外一点,用没有刻度直尺和圆规画图:(1)画射线CB ;(2)画直线AC ;(3)①延长线段AB 到E ,使3AE AB =;①在①的条件下,如果2AB cm =,点O 为线段AB 的中点,那么线段OE 的长度是多少?53.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .54.已知A ,B 是数轴上两点,点A 在原点左侧且距原点20个单位,点B 在原点右侧且距原点100个单位.(1)点A 表示的数是: ;点B 表示的数是: .(2)A ,B 两点间的距离是 个单位,线段AB 中点表示的数是 .(3)现有一只电子蚂蚁P 从点B 出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从点A 出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C 处相遇,求点C 表示的数.55.已知线段AB ,点C 、点D 在射线BA 上,并且CD =7,AC①CB =1①2,BD①AB =1①3. (1)工具画图:请根据题意画出符合条件的图形;(2)求出线段AB 的长.56.如图,点C 在线段AB 上,线段AB =30cm ,点M ,N 分别是AC ,BC 的中点,CN =6cm ,求线段MC 的长度.57.A ,B 两地相距a 千米,C 地在AB 的延长线上,且3BC a =千米,D 是A 、C 两地的中点.(1)求AD 长(结果用含a 的代数式表示).(2)若90BD =千米,求a 的值.(3)甲、乙两车分别从A 、D 两地同时出发,都沿着直线AC 匀速去C 地,经4小时甲追上乙.当甲追上乙后甲马上原路返回,甲返回行驶1小时时发现甲车距D 地50千米,已知600a =千米,求乙车行驶的平均速度58.如图1,P 点从点A 开始以2cm /s 的速度沿A B C →→的方向移动,Q 点从点C 开始以1cm /s 的速度沿C A B →→的方向移动,在直角三角形ABC 中,90A ∠=︒,若16cm AB =,12cm AC =,20cm BC =,如果P ,Q 同时出发,用t (秒)表示移动时间.(1)如图1,若点P 在线段AB 上运动,点Q 在线段CA 上运动,当t 为何值时,QA AP =; (2)如图2,点Q 在CA 上运动,当t 为何值时,三角形QAB 的面积等于三角形ABC 面积的14;(3)如图3,当P 点到达C 点时,P ,Q 两点都停止运动,当t 为何值时,线段AQ 的长度等于线段BP 的长.59.已知点C 在线段AB 上,AC =2BC ,点D ,E 在直线AB 上,点D 在点E 的左侧.(1)若AB =15,DE =6,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;①点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CF =3,求AD 的长;(2)若AB =2DE ,线段DE 在直线AB 上移动,且满足关系式AD EC BE +=32,求CD BD的值.60.如图,点A ,B 在数轴上所对应的数分别为-5,7(单位长度为1cm ),P 是A ,B 间一点,C ,D 两点分别从点P ,B 出发,以1cm /s ,2cm /s 的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上),运动的时间为s t .(1)AB =______cm .(2)若点C ,D 运动到任一时刻时,总有2PD AC =,请求出AP 的长. (3)在(2)的条件下,Q 是数轴上一点,且AQ BQ PQ -=,求PQ 的长.。
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
4.2直线、射线、线段同步训练一、选择题1.下列说法中,错误地是( )A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确地是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点地线段叫做两点间地距离3. 如果点P 在AB 上,下列表达式中不能表示P 是AB 中点地是( )A .AP=12AB B .AB=2BPC .AP=BPD .AP+BP =AB4.下列四个图中地线段(或直线、射线)能相交地是( )1()2()C4()C3()BA A BC D5.如右图,从A 地到C 地,可供选择地方案是走水路、走陆路、走空中.从A地到B 地有2条水路、2条陆路,从B 地达到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择地方案有( )A .20种 B . 8种 C . 5种 D .13种二、填空题6.在直线MN 上取A 、B 、C 三个点,则图中共有射线__________条. 7. 已知线段AB=18,直线AB 上有一点C,且BC=8,M 是线段AC 地中点,则AM地长为________.8. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点地距离是____个单位. 三、解答题9. 在一条直线上取两上点A 、B ,共得几条线段?在一条直线上取三个点A 、B 、C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?10.通过阅读所得地启示来回答问题(阅读中地结论可直接用)阅读:在直线上有个不同地点,则此图中共有多少条线段? 分析:通过画图尝试,得表格:问题:(1)某学校初三年级共有8个班进行辩论赛,规定进行单循环赛(每两班之间赛一场),那么该初三年级地辩论赛共有多少场次?(2)有一辆客车,往返两地,中途停靠三个车站,问有多少种不同地票价?要准备多少种车票?6=0+1+2+3 直线上点地个数 共有线段条数图形两者关系2 3 4 5 1 3 6 10 ......n ......n(n-1)/2=0+1+2+……+(n-1) n(n-1)/210=0+1+2+3+4 3=0+1+2 1=0+1A 1 A 2A 1 A 3 A 1 A 2 A 2 A2 A3 A 1 A 3 A 3 A 1 A4 A 2 A 5A 4 A 4 A n …答案:1.C 2.C 3.D 4.A 5.D6.67.58.509.在一条直线上2个点时1条线段;在一条直线上3个点时有2+1=3条线段;在一条直线上4个点时有3+2+1=6条线段;在一条直线上n 个点时有(n-1)+(n-2)+……+3+2+1=12()n n-条线段.10.(1)取n=8,比赛场次为:881282()-=.(2)5个站点共有551102()-=种不同票价,每两站之间要准备往返两种车票,所以需要准备20种不同地车票.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.LDAYt。
4.2直线、射线、线段同步练习一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线3.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.84.已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB 与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上5.若线段AB=13cm,MA+MB=17cm,则下列说法正确的是()A.点M在线段AB上B.点M在直线AB上,也有可能在直线AB外C.点M在直线AB外D.点M在直线AB上6.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线7.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm8.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.159.图中共有线段()A.4条B.6条C.8条D.10条10.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=10,CD =4,则EF的长为()A.6B.7C.5D.8二.填空题11.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.12.已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为.13.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14.把一段弯曲的河流改直,可以缩短航程,其理由是.15.如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.三.解答题16.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.17.如图,C、D在线段AB上,AB=48mm,且D为BC的中点,CD=18mm.求线段BC和AD的长.18.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.3.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.4.解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.5.解:当点M在线段AB上时,MA+MB=AB,∵AB=13cm,MA+MB=17cm,∴M点不在线段AB上;当点M在线段AB的延长线上时,AB=AM﹣BM=13cm,∵MA+MB=17cm,∴AM=15cm,BM=2cm;当点M在线段BA的延长线上时,AB=BM﹣AM=13cm,∵MA+MB=17cm,∴BM=15cm,AM=2cm;当点M不在直线AB上时,则构成△ABM,∵AM+BM>AB,∴17cm>13cm成立,∴点M不在直线AB上;综上所述,点M可能在直线AB上,也可能在直线AB外,故选:B.6.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.7.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.8.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.9.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.10.解:由线段的和差,得AC+DB=AB﹣CD=10﹣4=6.∵点E是AC的中点,∴AE=AC,∵点F是BD的中点,∴BF=BD,∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB﹣(AE+BF)=10﹣3=7.故选:B.11.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.12.解:如图1,∵AC=BD=1.5,AB=7,∴CD=AB﹣AC﹣BD=4;如图2,CD=AC+AB﹣BD=1.5+7﹣1.5=7;如图3,CD=AB﹣AC+BD=7,如图4,CD=AC+AB+BD=1.5+7+1.5=10,综上所述,CD的长为4或7或10,故答案为:4或7或10.13.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.15.解:对C点的位置分情况讨论如下:①C点在A点的左边,∵AC:CB=1:2,BD:AB=2:3,假设AC=3k,则AB=3k,BD=2k,∴CD=3k+3k+2k=8k,∵CD=12,∴k=1.5,∴AB=4.5;②C点在线段AB上,∵AC:CB=1:2,BD:AB=2:3,假设AC=k,则CB=2k,BD=2k,∴CD=CB+BD=4k,∵CD=12,∴k=3,∴AB=AC+CB=3k=9;③C点在B点后,不符合题意,舍去;∴综上所述,AB=4.5或9.16.解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.17.解:∵D为BC中点,∴BC=2CD,∵CD=18mm,∴BC=2×18=36(mm),∵AB=48mm,∴AC=AB﹣BC=48﹣36=12(mm),∴AD=AC+CD=12+18=30(mm).18.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。
2021-2022学年人教版七年级数学上册《4.2直线、射线、线段》期末复习自主提升训练(附答案)1.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.若平面内有三个点A、B、C,过其中任意两点画直线,那么画出的直线条数可能是()A.0,1,2B.1,2,3C.1,3D.0,1,2,3 4.把一根绳子对折成一条线段AB,在线段AB取一点P,使AP=PB,从P处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm,则绳子的原长为()A.32cm B.64cmC.32cm或64cm D.64cm或128cm5.若平面内有点A、B、C、D,过其中任意两点画直线,可以画条直线.6.下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点之间,线段最短”来解释的现象有.(填序号)7.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是(填序号).8.如图所示,图中共有条直线,条射线,条线段.9.如图,把弯曲的河道改直,能够缩短航程,这样做的根据是.10.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为同学的说法是正确的.11.如图,一根绳子对折以后用线段AB表示,在线段AB的三等分点处将绳子剪短,若所得三段绳长的最大长度为8cm,则这根绳子原长为cm.12.如图所示,在P、Q处把绳子AB剪断,且AP:PQ:QB=2:3:4,若剪断的各段绳子中最长的一段为16cm,则绳子的原长为.13.已知线段AB=8,在直线AB上取一点P,恰好使AP=3PB,点Q为线段PB的中点,则AQ的长为.14.线段AB=6,在直线AB上截取线段BC=3AB,D为线段AB的中点,E为线段BC的中点,那么线段DE的长为.15.已知点A、B、C在同一直线上,AB=12cm,BC=AC.若点P为AB的中点,点Q 为BC的中点,则PQ=cm.16.若点C为线段AB上一点,AB=6,AC=4,点D为直线AB上一点,M、N分别是AB、CD的中点,若MN=5,则线段AD的长为.17.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=cm.18.已知线段AB上有两点C、D,使得AC:CD:DB=1:2:3,M是线段AC的中点,点N是线段AB上的点,且满足DN=DB,AB=24.求MN的长.19.如图,点C是线段AB上的一点,M是AB的中点,N是CB的中点.(1)若AB=13,CB=5,求MN的长度;(2)若AC=6,求MN的长度.20.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.21.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.22.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC =2AD.(1)求线段CD的长;(2)若Q为AB的中点,P为线段CD上一点,且BP=BC,求线段PQ的长.23.如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”(填“是”或“不是”).(2)【深入研究】如图2,点A表示数﹣10,点B表示数20.若点M从点B的位置开始.以每秒3cm的速度向点A运动,当点M到达点A时停止运动.设运动的时间为t秒.①点M在运动的过程中表示的数为(用含t的代数式表示).②求t为何值时,点M是线段AB的“二倍点”.③同时点N从点A的位置开始.以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.24.直线l上的三个点A、B、C,若满足BC=AB,则称点C是点A关于点B的“半距点”.如图1,BC=AB,此时点C就是点A关于点B的一个“半距点”.若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.(1)MP=cm;(2)若点G也是直线m上一点,且点G是线段MP的中点,求线段GN的长度.25.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.26.如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.27.【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A 运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.28.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.29.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BC=2cm.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AD上,且EA=3cm,求BE的长.30.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.31.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.参考答案1.解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选:B.2.解:A、根据两点确定一条直线,故本选项不符合题意;B、根据两点确定一条直线,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.解:如图,可以画3条直线或1条直线,故选:C.4.解:如图,∵AP=PB,∴2AP=PB<PB,①若绳子是关于A点对折,∵2AP<PB,∴剪断后的三段绳子中最长的一段为PB=24cm,∴绳子全长=2PB+2AP=24×2+×24=64(cm),②若绳子是关于B点对折,∵AP<2PB,∴剪断后的三段绳子中最长的一段为2PB=24cm,∴PB=12 cm,∴AP=PB=12×=4(cm),∴绳子全长=2PB+2AP=12×2+4×2=32(cm),综上所述,绳子的原长为32cm或64cm.故选:C.二.填空题(共13小题)5.解:如图,故平面内有点A、B、C、D,过其中任意两点画直线,可以画1条或4条或6条直线,故答案为:1或4或6.6.解:①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故此项不符合;②把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故此项符合;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故此项不符合;④从A地到B地架设电线,总是尽可能沿着线段AB架设.是利用了“两点之间,线段最短”,故此项符合.故答案为:②④.7.解:图①利用垂线段最短;图②利用两点之间线段最短;图③利用两点确定一条直线;故答案为:②.8.解:图中共有2条直线,即直线AB、BC;13条射线,即射线AC、CA、BC、CB、DC、AB、DB,还有6条不可以表示的;6条线段,即线段AB、AD、BD、AC、DC、BC.故答案为:2,13,6.9.解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.10.解:在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,应该是两点确定一条直线,而不是两点之间线段最短.故答案为:甲.11.解:①在点P处将绳子剪断,根据题意可知:PB=P′B=4,AP=A′P′=2,∴AP+A′P′+BP+BP′=12,所以绳子的原长为12cm,②在点Q处将绳子剪断,根据题意可知:BQ=BQ′=4,AQ=A′Q′=8,∴AQ+QB+BQ′+Q′A′=24,所以绳子的原长为24cm,故答案为12或24.12.解:根据题意,可得:QB=16cm,∵AP:PQ:QB=2:3:4,∴QB=AB=AB,∴AB=16÷=36(cm),即绳子的原长为36cm.故答案为:36cm.13.解:当点P在线段AB上时,如图所示:∵AB=8,AP=3PB,∴AP=6,BP=2,∵点Q为线段PB的中点,故PQ=BP=1,故AQ=AP+PQ=7,当点P在线段AB的延长线上时,如图所示:∵AB=8,AP=3PB,∴BP=4,∵点Q为线段PB的中点,故BQ=BP=2,故AQ=AB+BQ=8+2=10当点P在线段AB的反向延长线上时,不成立故AQ=7或10.故答案为:7或10.14.解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BE+BD=9+3=12;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BE﹣BD=9﹣3=6.故线段DE的长为6或12.故答案为:6或12.15.解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=AB=6cm,QB=CB=1.5cm,∴PQ=BP﹣BQ=6﹣1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC﹣BC,BC=AC,∴AB=3BC﹣BC=2BC又∵AB=12cm,∴BC=6cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=AB=6cm,QB=CB=3cm,∴PQ=BP+BQ=6+3=9cm;故答案为:4.5或9.16.解:①如图,点D在AB的延长线上,∵AB=6,AC=4,∴BC=AB﹣AC=2.∵M是AB的中点,∴AM=BM=AB=3,∴MC=1,又MN=MC+BC+BN=1+2+BN=5,∴BN=2,又点N是CD的中点,∴DN=CN=BD+BN=4,∴AD=AC+CN+ND=4+4+4=12.②如图,点D在线段BA的延长线上∵AB=6,AC=4,∴BC=AB﹣AC=2.∵M是AB的中点,∴AM=BM=AB=3,又MN=AN+AM=5,∴AN=2,又点N是CD的中点,∴DN=CN=AN+AC=2+4=6,∴AD=ND+AN=6+2=8.综上所述,AD的长为12或8.故答案是:12或8.17.解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB﹣AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm.故答案为:.18.解:设AC=x,则CD=2x,DB=3x,∵AB=24,∴x+2x+3x=24,解得x=4,∴AC=4,CD=8,DB=12,CB=20.∵点M是线段AC的中点,∴MC=AC=2.∵DB=12,DN=DB,∴DN=×12=3,分以下两种情况:①当点N在线段CD上时,MN=MC+CD﹣DN=2+8﹣3=7;②当点N在线段DB上时,MN=MC+CD+DN=2+8+3=13.综上所述,线段MN的长度为7或13.19.解:(1)∵M是AB的中点,AB=13,∴BM=AB=13=6.5,∵N是CB的中点,CB=5,∴BN=CB=5=2.5;∴MN=BM﹣BN=4;(2)∵M是AB的中点,N是CB的中点,∴BM=AB,BN=CB,∵AC=6,∴MN=BM﹣BN=AB﹣BC=(AB﹣BC)=AC=6=3.20.解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.21.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.22.解:(1)∵AB=4,AB=2BC,∴BC=2,∴AC=AB+BC=6,∵AC=2AD,∴AD=3,∴CD=AC+AD=6+3=9;(2)∵Q为AB中点,∴BQ=AB=2,∵BP=BC,∴BP=1,当点P在B、C之间时,PQ=BP+BQ=2+1=3;当点P在A、B之间时,PQ=BQ﹣BP=2﹣1=1.即PQ的长为1或3.23.解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点两侧的小线段的长,所以一条线段的中点是这条线段的二倍点.故答案为:是.(2)①点M向左运动,运动的路程为3t,表示的数为20﹣3t,故答案为:20﹣3t;②当AM=2BM时,30﹣3t=2×3t,解得:t=;当AB=2AM时,30=2×(30﹣3t),解得:t=5;当BM=2AM时,3t=2×(30﹣3t),解得:t=;答:t为或5或时,点M是线段AB的二倍点;③当AN=2MN时,2t=2[2t﹣(30﹣3t)],解得:t=;当AM=2NM时,30﹣3t=2[2t﹣(30﹣3t)],解得:t=;当MN=2AM时,2t﹣(30﹣3t)=2(30﹣3t),解得:t=;答:t为或或时,点M是线段AN的二倍点.24.解:(1)如图所示:∵点P是点M关于点N的“半距点”,∴PN=MN,①∵MN=6cm.P1N=MN=3cm,∴MP1=MN﹣P1N=3cm;②∵MN=6cm.P2N=MN=3cm,∴MP2=MN+P2N=9cm;∴MP=3cm或9cm;故答案为:3cm或9;(2)如图所示:①点G1是线段MP1的中点,∴MG1=MP1=cm,∴G1N=MN﹣MG1=6﹣=(cm);②点G2是线段MP2的中点,∴MG2=MP2=cm,∴G2N=MN﹣MG2=6﹣=(cm).∴线段GN的长度为cm或cm.25.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8c∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∵BD=1cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.26.解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm ∵AP=8cm,AB=12cm∴PB=AB﹣AP=4cm∴CD=CP+PB﹣DB=2+4﹣3=3cm②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB﹣CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所示:∴AD=AB﹣DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9cm或11cm27.解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M在运动过程中表示的数为20﹣3t(0≤t≤10),故答案为:20﹣3t(0≤t≤10);(3)当AM=2BM时,30﹣3t=2×3t,解得:t=;当AB=2AM时,30=2×(30﹣3t),解得:t=5;当BM=2AM时,3t=2×(30﹣3t),解得:t=;答:t为或5或时,点M是线段AB的“二倍点”;(4)当AN=2MN时,2t=2[2t﹣(30﹣3t)],解得:t=;当AM=2NM时,30﹣3t=2[2t﹣(30﹣3t)],解得:t=;当MN=2AM时,2t﹣(30﹣3t)=2(30﹣3t),解得:t=;答:t为或或时,点M是线段AN的“二倍点”.28.解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC===,又∵AE=AC+CE,∴AE=+=14,∵点D为线段AE的中点,∴DE=AE==7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC===10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.29.解:(1)n(n﹣1)=×4×3=6,故答案为6;(2)∵点B为CD的中点,∴BC=CD,∵AD=9cm,BC=2cm,∴AC=AD﹣BC﹣CD=9﹣2﹣2=5cm;(3)分两种情况讨论:①点E在线段AD上,BE=AD﹣AE﹣BD=9﹣3﹣2=4cm;②点E在线段DA延长线上,BE=AE+AB=3+9﹣2=10cm.30.解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=4,NP=BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=8,NP=BP=2,∴MN=MP﹣NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>﹣6且a≠3).当﹣6<a<3时(如图1),AP=a+6,BP=3﹣a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),NP=BP=(3﹣a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a﹣3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),NP=BP=(a﹣3),∴MN=MP﹣NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.31.解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
数学人教新版七年级上册实用资料4.2直线、射线、线段知识点一:直线、射线、线段1.手电筒射出的光线,给我们的形象是(B)A.直线B.射线C.线段D.折线2.下列各组图中的直线、射线或线段能相交的是(B)知识点二:直线的性质3.在开会前,工作人员进行会场布置,在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是(B)A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线知识点三:线段的作法及比较4.在跳绳比赛中,要在两条绳子中挑出较长的一条用于比赛,选择的方法是(A)A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合观察另一端的情况D.没有办法挑选知识点四:线段中点、线段等分点5.如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC=6cm.知识点五:线段的性质6.平面上A,B两点间的距离是指(D)A.直线ABB.射线ABC.线段ABD.线段AB的长度拓展点一:直线性质的应用1.在一条笔直的公路两旁种树时,先定下两棵树的位置,然后其他树的位置就确定下来,这说明了两点确定一条直线.拓展点二:线段性质的应用2.(1)如图1所示,把原来弯曲的河道改直,A,B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.解(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.拓展点三:与线段有关的计算3.如图,延长线段AB到点C,使BC=AB,D为AC的中点,DC=2,求AB的长.解设AB=x,则BC=AB=x,所以AC=AB+BC=x.又因为D为线段AC的中点且DC=2,所以DC=x=2,解得x=,所以AB的长为.拓展点四:与直线、线段有关的规律探究4.导学号19054122为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…把上述探究的结果进行整理,列表如下:直线条数把平面分成部分数写成和的形式121+1241+1+2371+1+2+34111+1+2+3+4………(1)当直线条数为5时,把平面最多分成部分,写成和的形式为;(2)当直线条数为10时,把平面最多分成部分;(3)当直线条数为n时,把平面最多分成几部分?解(1)161+1+2+3+4+5=16;(2)56;(3)当直线条数为n时,设最多把平面分成m部分,则有以下规律:n m11+1=1+21+1+2=1+31+1+2+3=1+︙︙n m=1+1+2+…+n=+1所以当直线条数为n时,可把平面最多分成部分.1.(2016·黑龙江尚志市期末)下列说法正确的是(C)A.延长射线OAB.延长直线ABC.延长线段ABD.作直线AB=CD2.(2016·山东威海期末)下列图形中的线段和射线能够相交的是(D)3.(2016·内蒙古宁城县期末)下列说法正确的是(B)A.经过一点只能作一条直线B.射线、线段都是直线的一部分C.延长线段AB到点C使AC=BCD.画直线AB=5 cm4.(2016·广西柳州)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条5.(2016·山东荣成市期中)如图,点A、点B、点C在直线l上,则直线、线段、射线的条数分别为(C)A.3,3,3B.1,2,3C.1,3,6D.3,2,66.导学号19054123(2016·广西博白县一模)如图,C,D是线段AB上的两点,且D是线段AC 的中点,若AB=10 cm,BC=4 cm,则AD的长为(B)A.2 cmB.3 cmC.4 cmD.6 cm7.(2016·广东广州一模)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是(D)A.AC=CBB.AC=ABC.AB=2BCD.AC+CB=AB8.(2016·北京昌平区期末)小莉在办黑板报时,需要画一条直的隔线,由于尺子不够长,于是她和一名同学找来一根线绳,给线绳涂上彩色粉笔末,两人拉紧线绳各按住一头,把绳子从中间拉起再松手便完成了,请写出他们这样做根据的数学事实为两点确定一条直线.9.(2016·内蒙古乌拉特前旗期末)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=1.10.(2016·河北模拟)3个篮球队进行单循环比赛,总的比赛场次是多少?4个球队呢?5个球队呢?解用直线上的点代表球队,进行单循环比赛可用线段来表示.3个球队共比赛用线段AB,BC,AC表示,共有3场;4个球队比赛用线段AB,AC,AD,BC,BD,CD表示,共有6场;5个球队比赛用线段AB,AC,AD,AE,BC,BD,BE,CD,CE,DE表示,共有10场.11.导学号19054124(2016·山东滨州模拟)已知线段AB,延长线段AB到点C,使BC=AB,且BC比AB大1,D是线段AB的中点,如图所示.(1)求线段CD的长.(2)线段AC的长是线段DB的几倍?(3)线段AD的长是线段BC的几分之几?解(1)因为BC=AB,所以BC∶AB=3∶2.设BC=3x,则AB=2x.因为BC比AB大1,所以3x-2x=1,即x=1,所以BC=3x=3,AB=2x=2.又因为D是线段AB的中点,所以AD=DB=1,所以CD=BC+BD=3+1=4.(2)因为AC=AB+BC=2+3=5,所以AC=5DB,即线段AC的长是线段DB的5倍.(3)因为AD=1,BC=3,即3AD=BC,所以AD=BC,即线段AD的长是线段BC的三分之一.12.导学号19054125如图所示,某公司有三个住宅区可看作一点,A,B,C各区分别住有职工30人、15人、10人,且这三个住宅区在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(A)A.点AB.点BC.A,B之间D.B,C之间13.导学号19054126如图,已知点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?请用一句话表述你发现的规律.解(1)因为线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点,所以MC=AC=×6=3(厘米),CN=BC=×4=2(厘米),MN=MC+CN=3+2=5(厘米).(2)MN=a.规律:一个点将一条线段分成两条线段,则这两条线段中点之间的距离等于原线段长的一半.。
4.2 直线、射线、线段课后训练(基础巩固+能力提升)基础巩固1.如图所示,下列说法正确的是( ).A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.下列说法正确的是( ).A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是( ).A.AM+BM=AB B.AM=BMC.AB=2BM D.AM=12 AB4.A,B两点的距离是( ).A.连接A,B两点的线段B.连接A,B两点的线段的长度C.过A,B两点的直线D.过A,B两点的线段5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是( ).A.4 cm B.16 cmC.4 cm或16 cm D.不能确定6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是( ).A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短能力提升7.如图所示,AB=CD,则AC与BD的大小关系是( ).A.AC>BD B.AC<BDC.AC=BD D.无法确定8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是( ).A.CD=AC-BD B.CD=12AB-BDC.CD=AD-BC D.CD=12 BC9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D为中点的线段是__________.11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.13.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB 的中点,且NB=14厘米,求PM的长.参考答案1答案:A 点拨:射线只有端点相同,在同一条线上才相同,因此B、C、D都不正确.故选A.2答案:D 点拨:过一点可以作无数条直线正确,故选D.3答案:A 点拨:A不能判定,并且A中点M的位置都不确定.4答案:B 点拨:距离是线段的长度,不是线段,所以B正确,故选B.5答案:B 点拨:因为点B在线段AC上,所以只有一点,AC=AB+BC=16(cm).故选B.6答案:D7答案:C 点拨:因为AB=CD,所以AB+BC=CD+BC,即AC=BD.8答案:D 点拨:如图所示:CD=BC-BD=AC-BD=12AB-BD,CD=AD-AC=AD-BC,所以A、B、C都正确,因为D不是BC的中点,所以CD≠12 BC,故选D.9答案:3 点拨:B恰好是DC的中点,D是AB的中点,所以AD=DB,DB=BC,所以AD=DB=BC=12AB=1(cm),所以AC=3 cm.10答案:DB,CE AB,CE点拨:AD=2AC,只要是2段基本线段的和的线段都与AD的长度相等.11答案:6 cm或8 cm 点拨:两种情况如图:AC=AB-BC=7-1=6(cm);AC=AB+BC=7+1=8(cm).12解:如图:过点A,B作线段AB,与直线l的交点P为所求的点,因为两点之间,线段最短.点拨:由“两点之间,线段最短”可知,到A,B两村的路程最短的点在AB 上任一点都可,这点还要在直线l上,所以就是AB与l的交点.13解:∵N是BP中点,M是AB中点,∴PB=2NB=2×14=28(厘米),∵AM=MB=12AB=12×80=40(厘米),∴MP=MB-PB=40-28=12(厘米).答:PM的长为12厘米.点拨:根据NB=14厘米,N为PB的中点,求出PB,再根据AB=80厘米,M 为AB的中点,求出MB,由MP=MB-PB,求出PM.。
4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。
人教版七年级数学 4.2 直线、射线、线段针对训练一、选择题1. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定2. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB3. 下列说法正确的是()A.画一条长3 cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到点C4. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm5. 下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6. 如图,对于直线AB,线段CD,射线EF,其中能相交的是()7. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B8. 下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么M是线段AB的中点C.因为点A,M,B(互不重合)在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以M是线段AB的中点9. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b10. 如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点表示的数分别为-5和6,E为BD的中点,则下列选项中,离线段BD的中点E最近的整数是()A.-1B.0C.-2D.3二、填空题11. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.12. 线段AB被依次分成2∶3∶4的三部分,第一部分和第三部分的中点的距离为4.2 cm,则最长的一部分的长为cm.13. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.14. 如图,已知三点A,B,C.(1)画出直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于点B,C),画线段AD;(3)数数看,此时图中共有条线段.命题点3点与直线、直线与直线的位置关系15. 图中可用字母表示出的射线有条.三、解答题16. 如图,一条直线上依次有A,B,C,D四点,C为AD的中点,BC-AB=AD,求BC是AB的多少倍.17. 如图9所示,A,B,C是一条笔直公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现要在A,B之间建一个车站P,设P,C 之间的路程为x km.(1)用含x的式子表示车站到三个村庄的路程之和;(2)若路程之和为102 km,则车站应设在何处?(3)若要使车站到三个村庄的路程之和最小,则车站应设在何处?最小值是多少?18. (1)观察思考:如图,线段AB上有C,D两点,计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),那么这条线段上以这m个点为端点的线段共有多少条?说明理由;(3)拓展应用:8名同学参加班级组织的象棋比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛?19. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).20. 已知M是线段AB上一点,点C在线段AM上,点D在线段BM上,C,D 两点分别同时从点M,B出发,以1 cm/s,3 cm/s的速度沿直线BA向左运动. (1)若AB=10 cm,当点C,D运动了2 s时,点C,D的位置如图0①所示,求AC+MD的值;(2)若点C,D在没有运动到点A和点M前,总有MD=3AC,试说明此时有AM=AB;(3)如图②,若AM=AB,N是直线AB上一点,且AN-BN=MN,求的值.人教版七年级数学 4.2 直线、射线、线段针对训练-答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】C[解析] A.画一条长3 cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到点C说法错误,直线可以向两个方向无限延伸.故选C.4. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.10. 【答案】D[解析] 因为AD=|6-(-5)|=11,2AB=BC=3CD,所以AB=1.5CD.所以1.5CD+3CD+CD=11.所以CD=2,所以AB=3.所以BD=8.所以ED=BD=4.所以点E所表示的数是6-4=2.所以离线段BD的中点E最近的整数是选项D中的3.二、填空题11. 【答案】两点确定一条直线12. 【答案】2.8[解析] 设第一部分的长为2x cm.由题意,得x+3x+2x=4.2,解得x=0.7,所以4x=2.8.13. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.14. 【答案】解:(1)(2)如图所示:(3)图中共有6条线段.故答案为6.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题16. 【答案】解:因为C为AD的中点,所以AC=AD,即AB+BC=AD.所以2AB+2BC=AD.又因为BC-AB=AD,所以4BC-4AB=AD.所以2AB+2BC=4BC-4AB,即BC=3AB.故BC是AB的3倍.17. 【答案】解:(1)若车站P在B,C之间,则路程之和为P A+PC+PB=PC+AC+PC+PB=PC+AB=(100+x)km;若车站P在A,C之间,则路程之和为P A+PB+PC=P A+PC+CB+PC=AB+PC=(100+x)km.故车站到三个村庄的路程之和为(100+x)km.(2)由题意得100+x=102,故x=2,即车站应设在C村左侧或右侧2 km的地方.(3)当x=0时,x+100=100,即车站建在C处时到三个村庄的路程之和最小,最小值为100 km.18. 【答案】解:(1)因为以点A为左端点的线段有线段AB,AC,AD,以点C为左端点的线段有线段CD,CB,以点D为左端点的线段有线段DB,所以共有3+2+1=6(条)线段.(2)有条.理由:线段上有m个点(包括线段的两个端点),每一个点都可以与其他点构成(m-1)条线段,一共能构成m(m-1)条,但由于线段端点的无序性,所有线段都被重复计算了一次,所以该条线段上以这m个点为端点的线段共有条.(3)把8名同学看作直线上的8个点,每两名同学之间的一场比赛看作一条线段,直线上以这8个点为端点所构成的线段条数就等于比赛的场数,因此一共要进行=28(场)比赛.19. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.20. 【答案】解:(1)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(2)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以当运动时间为t s时,BD=3t cm,CM=t cm.又因为MD=3AC,所以BD+MD=3t+3AC=3(CM+AC),即BM=3AM,所以AM=AB.(3)分以下两种情况讨论:①若点N在线段AB上,如图(a)所示:因为AN-BN=MN,且AN-AM=MN,所以BN=AM=AB.所以MN=AB,即=.②若点N在线段AB的延长线上,如图(b)所示:因为AN-BN=MN,AN-BN=AB,所以MN=AB,即=1.综上所述,的值为或1.。
4.2 线段、射线、直线一、选择题(共10小题;共50分)1. 如图所示,已知线段a,b,c(a>b+c),求作线段AB,使AB=a−b−c.下面利用尺规作图正确的是 ( )A. B.C. D.2. 如图,下列说法,正确说法的个数是 ( )①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A. 0B. 1C. 2D. 33. 如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置 ( )A. 线段BC的任意一点处B. 只能是A或D处C. 只能是线段BC的中点E处D. 线段AB或CD内的任意一点处4. 如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是 ( )BCA. CD=AC−BDB. CD=12AB−BD D. CD=AD−BCC. CD=125. 已知三边作三角形,用到的基本作图是( )A. 平分一个已知角B. 作一个角等于已知角C. 作一条线段等于已知线段D. 作已知直线的垂线6. 如图,已知线段AB,以下作图不可能的是 ( )A. 在AB上取一点C,使AC=BCB. 在AB的延长线上取一点C,使BC=ABC. 在BA的延长线上取一点C,使BC=ABD. 在BA的延长线上取一点C,使BC=2AB7. 用尺规作图,已知三边作三角形,用到的基本作图是 ( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线8. 如图所示,C是线段AB的中点,D是线段BC的中点,下面等式不正确的是 ( )A. CD=AD−BCB. CD=AC−DBC. CD=12AB−BD D. CD=13AB9. 如右图所示,B,C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是 ( ).A. 2(a−b)B. 2a−bC. a+bD. a−b10. 两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,⋯,那么六条直线最多有 ( )A. 21个交点B. 18个交点C. 15个交点D. 10个交点二、填空题(共10小题;共50分)11. 如图所示,共有直线条,射线条,线段条.12. 如图,点C、D是线段AB上的两点,如果AC=2,CD=3,DB=1,那么图中所有线段的长度之和是.13. 如图所示,C是线段AB的中点,CD=3BD,则BD:AB=.14. 如图,已知线段AB,C点分线段AB为5:7两部分,D点分线段AB为5:11两部分,若CD=1,则AB=.15. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.AB,D为AC中点,且DC=6 cm,则AB的长为 cm.16. 延长线段AB到C,使BC=13AB,点D是线段AC的中点,若线段BD=2 cm,则线17. 如图,延长线段AB到点C,使BC=12段AC的长为 cm.18. 直线AB外有C、D两个点,由点A、B、C、D可确定的直线条数是.19. 平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的n个点最多可确定15条直线,则n的值为.20. 已知直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:① 每次跳跃均尽可能最大;② 跳n次后必须回到第1个点;③ 这n次跳跃将每个点全部到达.设跳过的所有路程之和为S n,则S25=.三、解答题(共3小题;共39分)21. 阅读材料:已知:如图 1,线段AB=5.(1)如图 2,点C在射线AB上,BC=6,则AC=11;(2)如图3,点C在直线AB上,BC=6,则AC=11或1.操作探究:如图 4,点A、B分别是数轴上的两点,AB=5,点A距原点O有1个单位长度.Ⅰ点B所表示的数是;Ⅱ点C是线段OB的中点,则点C所表示的数是;线段AC=;Ⅲ点D是数轴上的点,点D距点B的距离为a,即线段BD=a,则点D所表示的数是.22. 如图所示,A,B,C,D,E为平面内的五个点,五个点中的任意三个点都不在同一条直线上,那么过其中的两点画直线,一共可画出几条直线?23. 如图,已知线段AB,请用尺规按下列要求作图:Ⅰ延长线段AB到C,使BC=AB;Ⅱ延长线段BA到D,使AD=AC.如果AB=2 cm,那么AC=,BD=,CD=.答案第一部分1. D2. C3. A4. B5. C6. C7. C8. D9. B 10. C第二部分11. 2;13;612. 2113. 1:414. 48515. 1607316. 917. 12 cm18. 6或419. 620. 312第三部分21. (1)4(2)2;3(3)4−a或4+a.22. 由两点确定一条直线可知点A与其他四点各确定一条直线,同理,过点B,C,D,E各确定四条直线,这样共有4×5=20(条)直线,而由点A到点C的直线和由点C到点A的直线是同一条,故每条直线都重复数了一次,=10(条).所以可画直线4×5223. (1)如图,点C即为所求,BC=AB.(2)如图,点D即为所求,AD=AC.AB=2 cm,那么AC=2AB=4( cm),BD=AD+AB=4+2=6( cm),CD=AD+AC= 4+4=8( cm).。
人教版七年级数学上册第四章几何图形初步《4.2 直线、射线、线段》课时练一、单选题1.下列三种现象中,可用“两点之间线段最短”来解释的现象是()(1)用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;(2)过马路时,行人选择横穿马路而不走人行天桥;(3)工人砌砖前需要固定两点,牵上线,才开始砌砖.A.(1)B.(2)C.(2)(3)D.都不可以2.如图,12AD CB=,则DB的长度AB=,C为AB的中点,点D在线段AC上,且:1:3为()A.4B.6C.8D.103.如图,经过刨平的木板上的A,B两点,只能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点之间,线段最短B.一条线段等于已知线段C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离4.为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法依据的几何知识应是()A.两点确定一条直线B.两点之间,线段最短C.射线只有一个端点D.两直线相交只有一个交点5.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB和线段BC的中点,则线段MN的长度是()A.8cm B.7cm C.5cm D.3cm6.图中,AB、AC是射线,图中共有()条线段.A .7B .8C .9D .117.图中的直线a 、射线b 、线段c 可以相交的是( )A .B .C .D .8.一条铁路上有10个站,则共需要制( )种火车票.A .45B .55C .90D .1109.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.( )A .1个B .2个C .3个D .4个10.已知:①AB =2AM ;①BM =12AB ;①AM =BM ;①AM +BM =AB ,其中能够得到M 是线段AB 的中点的有( )个.A .0B .1C .2D .311.下列语句正确的是( )A .画直线AB =5cmB .过任意三点A 、B 、C 画直线AB C .两点之间,直线最短D .画线段AB =3cm12.七年级共有14个班,要组织篮球单循环赛,共需要安排( )场比赛.A.182B.91C.28D.14等于()13.平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则m nA.12B.16C.20D.2214.如图,下列说法正确的是()A.点O在线段AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.图中共有3条线段15.一只小虫子欲从A点不重复经过图中的点或者线段,而最终到达目的地E,这只小虫子的不同走法共有()A.12种B.13种C.14种D.15种二、填空题16.如图,以图中的A,B,C,D,E为端点的线段共有__________条.17.如图是小刚家与学校附近的主要街道分布示意图,小刚上学放学一般都走①号路线,用几何知识解释其道理应是:________.18.如图,点P在直线AB______;点Q在直线AB______,也在射线AB______,但在线段AB的______上.19.如图,点A、B在直线l上,点C是直线l外一点,可知CA CB AB+>,其依据是______.20.已知:线段a,作一条线段AB,使AB=_______作法:(1)用直尺画射线AC.(2)用圆规在射线AC上截取.① 线段AB为所求.三、解答题21.如图,在四边形ABCD内找一点O、使它到四边形四个顶点的距离的和OA OB OC OD+++最小,并说出你的理由.由本题你得到什么数学结论?举例说明它在实际中的应用.22.分别比较图(1)(2)(3)中各条线段的长短:23.在一张零件图中,已知76mm,70mm,19mm AD BD CD ===,求AB 和BC 的长.参考答案1.B2.D 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A11.D12.B 13.B 14.D 15.C 16.1017.两点之间,线段最短18.外 上 上 延长线19.两点之间,线段最短.20.a21.当点O 是四边形对角线的交点时,数学结论:四边形对角线交点到四个顶点的距离之和最小,见解析 OA OB OC OD +++AC BD ≥+,根据“两点的所有连线中,线段最短”的性质,当,,A O C 和,,B O D 共线时,即当点O 是四边形对角线的交点时,它到四个顶点的距离之和最小.数学结论:四边形对角线交点到四个顶点的距离之和最小.应用举例,,,,A B C D 分别为四个村庄,在村庄附近修建一个车站,要求所选地点到每个村庄的距离和最小,则修建地点应该选在四边形对角线的交点位置.22.(1)线段AB 比CD 短;(2)线段AB 比CD 短;(3)从短到长依次为线段CD 、线段AD 、线段BC 、线段AB解:根据度量法,用刻度尺量得:(1)<AB CD ,线段AB 比CD 短;(2)<AB CD ,线段AB 比CD 短;(3)CD AD BC AB <<<,从短到长依次为线段CD 、线段AD 、线段BC 、线段AB ; 23.6mm,51mm AB BC ==76706AB AD BD =-=-=(mm ).701951BC BD CD =-=-=(mm ).。
4.2 直线、射线、线段 【提升训练】 一、单选题1.如图,点C 是线段AB 上一点,点M 是线段AB 的中点,点N 是线段AC 的中点.若线段MN 的长为4,则线段BC 的长度是( )A .4B .6C .8D .10【答案】C 【分析】 根据中点的定义表示出AM AN 、,再根据MN 的长为4,求AB AC -即可. 【详解】∵点M 是线段AB 的中点,点N 是线段AC 的中点, ∵12AM AB =,12AN AC =, ∵4MN AM AN =-=,∵11422AB AC -=, ∵8AB AC -=,即8BC =,故选:C .【点睛】本题考查了线段的中点和线段的和差,解题关键是准确识图,熟练运用线段中点和线段和差进行计算. 2.下列说法正确的个数为( )∵用一个平面去截一个圆锥,截面的形状可能是一个三角形;∵若2AB=AC,则点B是AC的中点;∵连接两点的线段叫做这两点之间的距离;∵在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.A.1个B.2个C.3个D.4个【答案】A【分析】根据立体图形知识、线段中点概念、两点间的距离定义、数轴等知识逐项判断即可.【详解】解:∵用一个平面去截一个圆锥,截面的形状可能是一个三角形;判断正确,故符合题意;∵若2AB=AC,则点B∵∵∵是AC的中点;判断错误,故不合题意;∵连接两点的线段的长度叫做这两点之间的距离;判断错误,故不符合题意;∵在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离B到原点的距离大;判断错误,故不符合题意.故选:A.【点睛】本题考查了立体图形、线段中点定义,两点间距离定义,数轴等知识,熟知相关知识是解题关键.3.下列说法正确的有()∵绝对值等于本身的数是正数;∵近似数4.60与4.6的精确度相同;∵连接两点的线段的长度就是两点间的距离;,则点C就是线段AB的中点.∵若AC BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点之间的距离,数轴上两点间的距离的求解,线段的中点的定义,近似数对各小题分析判断即可得解.【详解】解:∵绝对值等于本身的数是非负数,故错误;∵近似数4.60精确到百分位,4.6精确到十分位,故近似数4.60与4.6的精确度不相同所以∵说法错误;∵连接两点的线段的长度就是两点间的距离;故正确;∵若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选:A.【点睛】本题考查两点间距离、线段的长度等知识,解题的关键是熟练掌握基本概念.4.如果A、B、C三点在线段AB上,且线段AB=10cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.3cm B.7cm C.5cm或1cm D.7cm或3cm【答案】D【分析】根据题意分情况讨论,∵当点C在线段AB之外时,根据题意可列式计算,∵当点C在线段AB之内时,根据题意可列式计算,即可得出答案.【详解】解:如图1,∵M,N分别为AB,BC的中点,∵BM =12AB =11052⨯=,BN =11422BC ⨯=⨯=2, ∵MN =BM +BN =5+2=7;如图2,∵M ,N 分别为AB ,BC 的中点,∵BM =12AB =11052⨯=,BN =11422BC ⨯=⨯=2, ∵MN =BM ﹣BN =5﹣2=3.∵M ,N 两点之间的距离为7或3.故选:D .【点睛】本题考查了两点之间的距离,熟练掌握两点之间距离的计算方法是解决本题的关键.5.己知A 、B 、C 三点,6cm AB =,2cm BC =,则AC =( )A .8cmB .4cmC .8cm 或4cmD .无法确定【答案】D【分析】根据点B 在线段AC 上和在线段AC 外两种情况进行解答即可.【详解】解:如图1,当点B 在线段AC 上时,∵AB=6cm,BC=2cm,∵AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∵AC=6-2=4cm.当A、B、C三点不在同一直线上时,A、C两点间的距离无法确定,故选:D.【点睛】本题考查了两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.6.如图,B为线段AC上一点,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:∵MN HC=;∵1()2MH AH HB=-;∵1()2MN AC HB=+;∵1()2HN HC HB=+,其中正确的是()A.∵∵B.∵∵∵C.∵∵∵∵D.∵∵∵【答案】D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∵AH=CH=12AC,AM=BM=12AB,BN=CN=12BC,∵MN=MB+BN=12(AB+BC )=12AC , ∵MN=HC ,∵正确;12(AH ﹣HB )=12(AB ﹣BH ﹣BH )=MB ﹣HB=MH ,∵正确; MN=12AC<1()2AC HB +,∵错误; 12(HC+HB )=12(BC+HB+HB )=BN+HB=HN ,∵正确, 故选择:D .【点睛】 本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念. 7.线段AB 的长为2cm ,延长AB 到C ,使3AC AB =,再延长BA 到D ,使2BD BC =,则线段CD 的长为( )A .10cmB .8cmC .6cmD .12cm【答案】D【分析】根据已知分别得出BC ,AD 的长,即可得出线段CD 的长.【详解】解:∵线段AB=2cm ,延长AB 到C ,使AC=3AB ,再延长BA 至D ,使BD=2BC ,∵BC=2AB ,BD=4AB∵BC=4cm ,AD=BD -AB=3AB=6cm ,∵CD=AD+AB+BC=6+2+4=12(cm ).故选:D . 【点睛】此题主要考查了线段长度求法,根据已知得出BC 与AD 的长是解题关键.8.下列说法中,正确的个数为( )∵单项式223x y π-的系数是23-;∵0是最小的有理数;∵2t 不是整式;∵33x y -的次数是4;∵4ab 与4xy 是同类项;∵1y是单项式;∵连接两点的线段叫两点间的距离;∵若点C 是线段AB 的中点,则AC BC =. A .2个B .3个C .4个D .5个 【答案】A【分析】由单项式的系数的概念判断∵,由有理数与绝对值的含义判断∵,由整式的概念判断∵,由单项式的次数的概念判断∵。
由同类项的概念判断∵,由单项式的概念判断∵,由两点间的距离的概念判断∵,由线段中点的含义判断∵.【详解】解:单项式223x y π-的系数是23π-,故∵不符合题意; 0是绝对值最小的有理数,故∵不符合题意;2t 是整式中的单项式,故∵不符合题意; 33x y -的次数是4,故∵符合题意;4ab 与4xy 不是同类项,故∵不符合题意;1y是不单项式,故∵不符合题意; 连接两点的线段的长度叫这两点间的距离;故∵不符合题意;若点C 是线段AB 的中点,则AC BC =,故∵符合题意;故选:.A 【点睛】本题考查的是单项式的系数与系数的含义,单项式的概念,整式的概念,线段的中点的含义,同类项的概念,两点之间的距离的概念,掌握以上知识是解题的关键.9.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 【答案】C【分析】先根据CB =5cm ,AB =13cm 求出A C 的长,再根据D 是AC 的中点即可得出DC 的长,即可求出BD .【详解】解:∵CB =5cm ,AB =13cm , ∵AC=AB -CB=13-5=8cm ∵D 是AC 的中点,∵AC =2CD =8cm .∵CD=4 cm∵DB =CB+CD =5+4=9cm ,故选:C . 【点睛】 本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 10.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18【答案】C 【分析】由于点C 的位置不能确定,故应分点C 在线段AB 外和点C 在线段AB 之间两种情况进行解答. 【详解】解:当A 、B 、C 的位置如图1所示时,∵线段AB=10,线段BC=8,点M 是线段AB 的中点, ∵BM=12AB=12×10=5, ∵MC=BM+BC=5+8=13;当A 、B 、C 的位置如图2所示时,∵线段AB=10,线段BC=8,点M 是线段AB 的中点,∵BM=12AB=12×10=5, ∵MC= BC -BM =8-5=3.综上所述,线段MC 的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解. 11.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm 【答案】B【分析】根据题意设MC=5x ,CN=4x ,根据线段之间的计算得出等量关系,列方程求解即可解答.【详解】解:根据题意,设MC=5x ,CN=4x ,则MN=MC+CN=9x ,∵点P 是MN 的中点,∵PN= 12MN= 92x , ∵PC=PN ﹣CN=12x=2, 解得:x=4,∵MN=9×4=36cm,故选:B.【点睛】本题考查线段的计算,由题目中的比例关系设未知数是常见做题技巧,根据线段之间关系列方程求解是解答的关键.12.若线段AB=12cm,点C是线段AB的中点,点D是线段AC的三等分点,则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm【答案】D【分析】根据线段中点的定义和线段三等分点的定义即可得到结论.【详解】解:∵C是线段AB的中点,AB=12cm,∵AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点,∵当AD=13AC时,如图,BD=BC+CD=BC+23AC=6+4=10(cm);∵当AD=23AC时,如图,BD=BC+CD′=BC+13AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论的思想的运用是解题的关键;13.下列说法不正确的是()A.两点确定一条直线B.两点间线段最短C.两点间的线段叫做两点间的距离D.正多边形的各边相等,各角相等【答案】C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质∵正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.14.数轴上,点A对应的数是6-,点B对应的数是2-,点O对应的数是0.动点P、Q从A、B同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =【答案】A 【分析】 设运动时间为t 秒,根据题意可知AP=3t ,BQ=t ,AB=2,然后分类讨论:∵当动点P 、Q 在点O 左侧运动时,∵当动点P 、Q 运动到点O 右侧时,利用各线段之间的和、差关系即可解答. 【详解】解:设运动时间为t 秒,由题意可知: AP=3t , BQ=t ,AB=|-6-(-2)|=4,BO=|-2-0|=2,∵当动点P 、Q 在点O 左侧运动时,PQ=AB -AP+BQ=4-3t+t=2(2-t),∵OQ= BO - BQ=2-t ,∵PQ= 2OQ ;∵当动点P 、Q 运动到点O 右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∵PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.15.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF =8,CD =4,则AB的长为()A.10B.12C.16D.18【答案】B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∵AE=EC,BF=DF∵AE+FB=EC+FD=4,∵AB=AE+FB+EF=4+8=12.故选:B . 【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.16.如图,点C ,点D 在线段AB 上,若3AC BC =,点D 是AC 的中点,则( )A .23AD BC =B .35AD BD =C .3AC BD DC += D .2AC BC DC -=【答案】A 【分析】 先利用中点的定义得出AC=2CD=2AD ,再利用3AC BC =以及线段的和差分别表示出各线段的关系,即可得出结论. 【详解】解:∵3AC BC =,点D 是AC 的中点,∵AC=2CD=2AD=3BC ,∵2AD=3BC ,A 选项正确,符合题意;∵2CD=2AD=3BC , ∵CD=AD=32BC ,3AD=92BC , ∵BD=BC+CD= BC+32BC=52BC ,5BD=252BC , ∵35AD BD ≠,B 选项错误,不符合题意;∵AC+ BD=3BC+52BC=112BC ,3DC=3AD=92BC ,∵3AC BD DC +≠,C 选项错误,不符合题意;∵AC - BC=3BC - BC=2 BC ,2CD= AC =3BC ,∵2AC BC DC -≠,D 选项错误,不符合题意;故选:A .【点睛】本题主要考查了中点的定义,线段的计算,得出AC=2CD=2AD=3BC 是解题的关键.17.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC ,且AB=10,BC=4,∵AC=6,∵D 是线段AC 的中点,∵AD=DC=12AC=3,∵BD=BC+CD=4+3=7,故选B.【点睛】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.18.如图,把长方形沿虚线剪去一个角,得到一个五边形,则这个五边形的周长______原来长方形的周长,理由是______,横线上依次填入()A.大于:经过两点有一条直线,并且只有一条直线B.大于:两点之间的所有连线中,线段最短C.小于:经过两点有一条直线,并且只有一条直线D.小于:两点之间的所有连线中,线段最短【答案】D【分析】根据两点之间线段最短的定理进行判断即可;【详解】如图所示:原长方形的周长=AE+BE+BF+FC+DC+AD五边形的周长=AE+EF+FC+DC+AD;∵两点之间线段最短,∵ BE+BF>EF,∵ AE+BE+BF+FC+DC+AD>AE+EF+FC+DC+AD,故选:D .【点睛】 本题考查了两点之间线段最短的定理,正确理解定理是解题的关键.19.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ PQ PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+ 【答案】B【分析】根据线段中点定义先求出P 1Q 1的长度,再由P 1Q 1的长度求出P 2Q 2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP 和AQ 的中点P 1,Q 1,∵P 1Q 1=AP 1-AQ 1=12AP -12AQ2=12PQ =12×10 =5.∵线段AP 1和AQ 1的中点P 2,Q 2;∵P 2Q 2=AP 2-AQ 2=12AP 1-12AQ 1 =12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n×10 ∵P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212)112=10-11102 故选:B .【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度.20.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( )A .1B .5C .3或5D .1或5 【答案】D【分析】根据题意,画出图形,此题分两种情况:∵点A ,B 在点O 同侧时;∵点A ,B 在点O 两侧时两种情况.【详解】解:分情况讨论:∵点A ,B 在点O 同侧时,由线段OA=4,线段OB=6,∵E ,F 分别是OA ,OB 的中点,∵OE =12OA =2,OF=12OB=3, ∵EF=OF -OE=3-2=1;∵点A ,B 在点O 两侧时,如图,由线段OA=4,线段OB=6,∵E ,F 分别是OA ,OB 的中点,∵OE=12OA=2,OF=12OB=3, ∵EF=OE+OF=2+3=5,∵线段EF 的长度为1或5.故选D . 【点睛】本题考查线段中点的定义及线段长的求法.利用中点性质转化线段之间的倍分关系是解题的关键. 21.如图,在线段AD 上有两点B ,C ,则图中共有_____条线段,若在车站A 、D 之间的线路中再设两个站点B 、C ,则应该共印刷_____种车票.A .3, 3B .3, 6C .6, 6D .6, 12【答案】D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2倍.【详解】从A 开始的线段有AB ,AC ,AD 三条;从B 开始的线段有BC ,BD 二条; 从C 开始的线段有CD 一条;所以共有6条线段;车票从A 到B 和从B 到A 是不同的,所以车票数恰好是线段条数的2倍,所以需要12种车票, 故选D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的2倍是解题的关键.22.如图,把一根绳子对折成线段AB ,从点P 处把绳子剪断,已知2PB PA ,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cm B.60cm C.120cm D.60cm或120cm【答案】D【分析】设AP=xcm,则BP=2xcm,分为两种情况:∵当含有线段AP的绳子最长时,得出方程x+x=40,∵当含有线段BP的绳子最长时,得出方程2x+2x=40,求出每个方程的解,代入2(x+2x)求出即可.【详解】解:设AP=xcm,则BP=2xcm,∵当含有线段AP的绳子最长时,x+x=40,解得:x=20,即绳子的原长是2(x+2x)=6x=120(cm);∵当含有线段BP的绳子最长时,2x+2x=40,解得:x=10,即绳子的原长是2(x+2x)=6x=60(cm);故绳长为60cm或120cm.故选:D.【点睛】本题考查了线段的和、差、倍、分相关计算以及一元一次方程的应用,解答此题时要注意进行分类讨论,不要漏解.23.两条长度分别为20cm和24cm的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm【答案】C 【分析】设较长的线段为AB ,较短的线段为BC ,根据中点定义求出BM 、BN 的长度,然后分∵BC 不在AB 上时,MN =BM +BN ,∵BC 在AB 上时,MN =BM−BN ,分别代入数据进行计算即可得解. 【详解】解:如图,设较长的线段为AB =24cm ,较短的线段为BC =20cm ,∵M 、N 分别为AB 、BC 的中点,∵BM =12cm ,BN =10cm ,∵∵如图1,BC 不在AB 上时,MN =BM +BN =12+10=22cm ,∵如图2,BC 在AB 上时,MN =BM−BN =12−10=2cm ,综上所述,两条线段的中点间的距离是2cm 或22cm ;故选:C . 【点睛】 本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观. 24.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( )A .P 点一定在直线AB 上 B .P 点一定在直线AB 外C .P 点一定在线段AB 上D .P 点一定在线段AB 外【答案】D 【分析】 根据P 点在线段AB 上时,AP+BP=AB ,进行判断即可. 【详解】解:A. P 点在线段AB 上时,AP+BP=AB ,此时点P 在直线AB 上,故错误;B. P 点在线段AB 延长线上时,AP BP AB +>,故错误;C. P 点在线段AB 上时,AP+BP=AB ,故错误;D. P 点在线段AB 上时,AP+BP=AB ,P 点一定在线段AB 外时,AP BP AB +>,故正确;故选:D . 【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P 点在线段AB 上时,AP+BP=AB 这一结论,进行判断.25.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .212【答案】B 【分析】 根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论. 【详解】由题意可知:如图写出线段的长,A1A2=2,A2是A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∵线段A n A n+1=2n-1(n为正整数)∵线段A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.DC ,则线段AB的26.如图,点D把线段AB从左至右依次分成1:2两部分,点C是AB的中点,若2长是()A.16B.14C.12D.10【答案】C【分析】根据已知条件得到AD=13AB,由点C是线段AB的中点,得到AC=12AB,根据线段的和差,可得关于AB的方程,根据解方程,可得到结论.【详解】解:设AB=x,∵点D把线段AB从左至右依次分成1:2两部分,∵AD=13AB=13x,∵点C是AB的中点,∵AC=12AB=12x,由线段的和差,得DC=AC-AD,即12x-13x=2,解得x=12,即AB=12,故选:C.【点睛】本题主要考查了两点间的距离,也考查了同学们的准确识图能力,是基础题.27.若线段AB=13cm,MA+MB=17cm,则下列说法正确的是()A.点M在线段AB上B.点M在直线AB上,也有可能在直线AB外C.点M在直线AB外D.点M在直线AB上【答案】B【分析】此题要分多种可能情况讨论:当M点在直线外时,根据两点之间线段最短,能出现MA+MB=17;当M点在线段AB延长线上,也可能出现MA+MB=17;由此解答即可.【详解】(1)当M点在直线外时,M,A,B构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M点在线段AB延长线上,也可能出现MA+MB=17.故选:B.【点睛】此题考查比较线段的长短,正确认识直线、线段,注意对各个情况的分类,讨论可能出现的情况.28.已知线段AB=6cm,在直线AB上取一点C,使BC=2cm,则线段AB的中点M与AC的中点N的距离为()A.1cm B.3cm C.2cm或3cm D.1cm或3cm【答案】A【分析】分情况讨论,点C在线段AB上,或点C在直线AB上,根据线段中点的性质求出线段长.【详解】解:∵如图,点C 在线段AB 上,∵6AB cm =,2BC cm =,∵624AC AB BC cm =-=-=,∵M 是AB 的中点, ∵132AM AB cm ==, ∵N 是AC 的中点,∵122AN AC cm ==, ∵321MN AM AN cm =-=-=;∵如图,点C 在直线AB 上,∵6AB cm =,2BC cm =,∵628AC AB BC cm =+=+=,∵M 是AB 的中点,∵132AM AB cm ==, ∵N 是AC 的中点,∵142AN AC cm ==, ∵431MN AN AM cm =-=-=.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.29.已知:线段a,b,求作:线段AB,使得AB=2a+b,小明给出了四个步骤(如图):∵作-条射线AE;∵则线段AB=2a+b;∵在射线AE上作线段AC=a,再在射线CE上作线段CD=a;∵在射线DE上作线段DB=b;你认为顺序正确的是()A.∵∵∵∵B.∵∵∵∵C.∵∵∵∵D.∵∵∵∵【答案】B【分析】先作射线AE,然后在射线AE上作线段AC=a,再在射线CE上作线段CD=a,最后在射线DE上作线段DB=b,则线段AB=2a+b.【详解】解:由题意知,正确的画图步骤为:∵作一条射线AE;∵在射线AE上作线段AC=a,再在射线CE上作线段CD=a;∵在射线DE上作线段DB=b;∵则线段AB=2a+b;故选:B.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.CD ,若线段AB的长度是一个正整数,则图中以A,B,C,D 30.如图,线段CD在线段AB上,且3这四点中任意两点为端点的所有线段长度之和可能是()A .28B .29C .30D .不能确定 【答案】C 【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB -CD )=3(AB+1),从而确定这个结果是3的倍数,即可求解. 【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD ,∵CD=3,∵所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD )=12+3(AB -CD )=12+3(AB -3)=3AB+3=3(AB+1),∵AB 是正整数,∵所有线段之和是3的倍数,故选:C . 【点睛】 本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键. 二、填空题31.已知线段20AB =,14AM BM =,点P 、Q 分别是AM 、AB 的中点.(1)如图,当点M 在线段AB 上时,则PQ 的长为___________.(2)当点M 在直线AB 上时,则PQ 的长为__________.【答案】8 8或403 【分析】(1)根据AB 的长度以及AM 、BM 之间的关系,可得出AM 和BM 的长度,再由P 、Q 分别为AM 、AB 的中点,即可得出AP 、AQ 的长,再利用PQ=AQ -AP 即可得出答案;(2)由(1)可得当M 在线段AB 上时PQ 的值,当M 在线段AB 外时,根据AM 和BM 的关系可得出两者的长度,再由P 、Q 分别为AM 、AB 的中点,即可得出AP 、AQ 的长,再利用PQ=AQ+AP 即可得出答案.【详解】解:(1)如图,当点M 在线段AB 上时20AB =,14AM BM =, 145AM AB ∴==,4165BM AB ==, 点P 、Q 分别是AM 、AB 的中点,122AP AM ∴==,1102AQ AB ==, 1028PQ AQ AP ∴=-=-=,故答案为:8.(2)由(1)得:当点M 在线段AB 上时,8PQ =;当点M 在线段AB 外时,如图:20AB =,14AM BM =, 132044AB BM AM BM BM BM ∴=-=-==, 803BM ∴=,203AM = 点P 、Q 分别是AM 、AB 的中点,11023AP AM ∴==,1102AQ AB ==, 10401033PQ AQ AP ∴=+=+=, 故答案为:8,403. 【点睛】本题考查线段长度的计算以及中点的应用,解题时注意“数形结合”数学思想的应用,考虑多种情况分析. 32.已知A 、B 、C 三点在一条直线上,6cm AB =,且2BC AC =,则线段BC 的长为____________cm .【答案】4或12【分析】分点C 在线段AB 之间和点B 在BA 的延长线上两种情况讨论求解即可.【详解】解:若点C 在线段AB 之间,如下图:∵6cm AB =,且2BC AC =,∵236AB AC BC AC AC AC cm =+=+==,∵2,4AC cm BC cm ==;若点C 在线段BA 的延长线上,如下图:∵6cm AB =,且2BC AC =,∵26AB BC AB AC AC AC cm =-=-==,∵12BC AC AB cm =+=;故答案为:4或12. 【点睛】 本题考查线段的和差.能分类讨论画出图形是解题关键.33.已知点A 、B 、C 在同一直线上,若AB =10cm ,AC =16cm ,点M 、N 分别是线段AB 、AC 中点,则线段MN 的长是________.【答案】13cm 或3cm 【分析】根据题意,根据线段和差性质,分点C 在点A 左侧、点C 在点A 右侧两种情况分析,即可得到答案. 【详解】如下图,当点C 在点A 左侧时∵点M 、N 分别是线段AB 、AC 中点 ∵152AM AB ==cm ,182AN AC ==cm ∵13MN AM AN =+=cm如下图,当点C 在点A 右侧时∵点M 、N 分别是线段AB 、AC 中点∵152AM AB ==cm ,182AN AC ==cm ∵853MN AN AM =-=-=cm故答案为:13cm 或3cm .【点睛】本题考查了线段的知识;解题的关键是熟练掌握线段中点、线段和差的性质,从而完成求解.34.如图,线段AB =5.C ,D ,E 分别为线段AB (端点A ,B 除外)上顺次三个不同的点,图中所有的线段和等于26,则CE =_____.【答案】3【分析】此题可把所有线段相加,根据已知AB =5,图中所有线段的和等于26,于是解方程得到结论.【详解】解:由已知得:AC +AD +AE +AB +CD +CE +CB +DE +DB +EB =26,即(AC +CB )+(AD +DB )+(AE +EB )+AB +(CD +DE )+CE =AB +AB +AB +AB +CE +CE =4AB +2CE =26,∵AB =5,∵4×5+2CE =26,∵CE =3,故答案为:3. 【点睛】本题考查两点间的距离,关键是表示出图中所有线段的和,根据线段间的关系转化为线段AB 的长与线段CE 的长,解关于CE 的一元一次方程.35.已知线段10AB =cm ,点C 在直线AB 上,且3AC =cm ,则线段BC 的长为____________.【答案】7cm 或13cm 【分析】当点C 在直线上时共有两种情况,点在线段上时答案为两条线段的差7cm ,点在线段的延长线上时,答案为两条线段的和13cm . 【详解】 解:共有以下两种情况:如图1,当C 点在线段AB 上时,()1037BC AB AC cm =-=-=,如图2,当C 点在BA 的延长线上时,()10313BC AB AC cm =+=+=,综上:BC 的长为7cm 或13cm .故答案为:7cm 或13cm .【点睛】本题涉及到了分情况讨论的思想,学生在思考时可以借助图形帮助自己理解,该题考查了线段之间的加减运算,要求学生能正确分析出线段之间的关系,并且考虑全面,不漏解最关键.三、解答题36.如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB、射线DC、直线AD;;(2)画CDB(3)找一点P,使P既在直线AD上,又在直线BC上.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)连接AB可得线段AB,连接DC,并向DC方向延长可得射线DC;连接AD,并向两边无限延长可得直线AD;(2)作射线DB,可得∵CDB;(3)作直线BC,与直线AD的交点即为点P.【详解】(1)如图,线段AB,射线DC,直线AD为所作;(2)如图,CDB ∠为所作;(3)如图,点P 为所作.【点睛】本题考查直线、线段、射线的概念,射线有一个端点,可以向一方无限延伸;直线没有端点,可以向两方无限延伸;线段有两个端点;熟练掌握概念是解题关键.37.如图,90PAQ ∠=︒,点B 、点C 分别在边PA 、QA 上,且12cm BA =,6cm CA =,动点M 沿AP 边从点A 出发,向点B 以2cm /s 的速度运动;动点N 沿QA 边从点C 出发,向点A 以1cm /s 的速度运动;若M 、N 同时运动,用(s)t 表示移动的时间.(1)当AM AN =时,求t 的值;(2)∵当t 为何值时,点M 恰好在AB 的13处? ∵在∵的前提下,AM AN +等于BA CA +的13吗? 【答案】(1)2t =;(2)∵2t =或4t =;∵不等于.【分析】(1)先根据“路程=速度⨯时间”可得,AM CN 的长,再根据线段的和差可得AN 的长,然后根据AM AN =建立方程,解方程即可得;(2)∵分13AM AB =和23AM AB =两种情况,由此建立方程,解方程即可得; ∵根据∵的结果,分别求出AM AN +和BA CA +的值即可得出结论.【详解】解:(1)由题意得:2cm,cm AM t CN t ==,6cm CA =,(6)cm AN CA CN t ∴=-=-,当AM AN =时,则26t t =-,解得2t =;(2)∵当13AM AB =时,即12123t =⨯,解得2t =, 当23AM AB =时,即22123t =⨯,解得4t =, 综上,当2t =或4t =时,点M 恰好在AB 的13处; ∵当2t =时,24(cm)AM t ==,64(cm)AN t =-=,则8(cm)AM AN +=,12618(cm)BA CA +=+=,此时181863≠⨯=; 当4t =时,28(cm)AM t ==,62(cm)AN t =-=,则10(cm)AM AN +=,此时1101863≠⨯=;综上,在∵的前提下,AM AN +不等于BA CA +的13. 【点睛】本题考查了线段的和差等知识点,较难的是题(2)∵,注意分两种情况讨论是解题关键.38.如图,已知AB =10cm ,点E 、C 、D 在线段AB 上,且AC =6cm ,点E 是线段AC 的中点,点D 是线段BC 的中点.(1)求BD 的长;(2)求DE 的长.【答案】(1)2cm ;(2)5cm【分析】(1)先求BC 的长,再用线段的中点求解即可;(2)先求EC ,再运用线段的和计算即可.【详解】解:(1)∵AB =10cm ,且AC =6cm .∵BC =AB ﹣AC =4cm .∵点D 是线段BC 的中点.∵BD =CD =12BC =2cm . (2)∵点E 是线段AC 的中点.∵EC =12AC =3cm .。