空间向量方法的应用(一)
- 格式:ppt
- 大小:772.00 KB
- 文档页数:26
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量的应用认识空间向量的应用和几何解题方法空间向量的应用及认识空间向量的应用在数学中,空间向量是指具有大小和方向的向量,也称为三维向量。
空间向量在几何学和物理学中有广泛的应用,它们可以用于解决各种几何问题和实际应用中的物理问题。
本文将介绍空间向量及其应用,并讨论几种常见的解题方法。
一、空间向量的定义与性质空间向量是指由三个有序实数组成的有向线段。
假设有两点A和B,空间向量AB可以表示为→AB,它的大小等于线段AB的长度,方向则与线段AB的方向一致。
空间向量具有以下性质:1. 加法性质:如果有两个空间向量→AB和→BC,它们的和为→AC,即→AC = →AB + →BC。
2. 数乘性质:对于任意实数k,空间向量→AB乘以k的结果为k→AB,即k→AB = →BA。
3. 数量积性质:空间向量→AB和→AC的数量积为它们的模的乘积与它们夹角的余弦的乘积,即→AB·→AC = |→AB| × |→AC| × cosθ。
二、空间向量的应用1. 几何问题中的位置关系:空间向量可以用于判断点的位置关系。
例如,已知三个点A、B和C,可以通过向量→AB和→AC的数量积来判断它们的位置关系。
若→AB·→AC = 0,则表示点C在向量→AB 的延长线上;若→AB·→AC > 0,则表示点C在向量→AB的同侧;若→AB·→AC < 0,则表示点C在向量→AB的异侧。
2. 几何问题中的求解:空间向量可用于求解几何问题,如线段的中点坐标、平行四边形的面积等。
通过定义空间向量→AB = (x2-x1, y2-y1, z2-z1),可以得到线段AB的中点坐标为[(x1+x2)/2, (y1+y2)/2,(z1+z2)/2];平行四边形的面积可以通过向量的叉积来计算,即以两个边向量的叉积的模作为平行四边形的面积。
3. 物理学中的应用:空间向量在物理学中也有广泛的应用。
高中数学空间向量之--平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。
平面α的法向量共有两大类(从方向上分),无数条。
2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。
由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。
方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。
0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。
其法向量),,(C B A n =→;若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++czb y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。
方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→→⨯b a 为一长度等于θsin ||||→→b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。
通常我们采取「右手定则」,也就是右手四指由 的方向转为的方向时,大拇指所指的方向规定为→→⨯b a 的方向,→→→→⨯-=⨯a b b a 。
:),,,(),,,(222111则设z y x b z y x a ==→→⎝⎛=⨯→→21y y b a ,21z z 21x x - ,21z z 21x x⎪⎪⎭⎫21y y (注:1、二阶行列式:c a M =cb ad db-=;2、适合右手定则。
) 例1、 已知,)1,2,1(),0,1,2(-==→→b a , 试求(1):;→→⨯b a (2):.→→⨯a bKey: (1) )5,2,1(-=⨯→→b a ;)5,2,1()2(-=⨯→→a b例2、如图1-1,在棱长为2的正方体1111ABCD A BC D -中,求平面AEF 的一个法向量n 。
第4讲空间向量的应用知识梳理1.空间中任意一条直线l的位置可以由l上一个定点以及一个向量确定,这个向量叫做直线的方向向量.2.若直线l垂直于平面α,取直线l的方向向量a,则a⊥α,则a叫做平面α的法向量.3.(1)线线垂直:设直线l,m的方向向量分别为a,b,则l⊥m⇔a⊥b⇔a·b=0.(2)线面垂直:设直线l的方向向量为a,平面α的法向量为u,则l⊥α⇔a∥u⇔a=k u,k∈R.(3)面面垂直:若平面α的法向量为u,平面β的法向量为ν,则α⊥β⇔u⊥ν⇔u·ν=0.4.设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|a·b||a||b|.5.设直线l与平面α所成的角为θ,直线l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|.6.设二面角α-l-β的平面角为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|n1·n2| |n1||n2|.考点题型知识点1 直线的方向向量与平面的法向量【例1-1】(焦作期末)若点,在直线l上,则直线l的一个方向向量为A. B. C. D.【例1-2】(广州期末)设是直线l的方向向量,是平面的法向量,则A. B. C. 或 D. 或【变式训练1-1】(沙坪坝区校级模拟)若直线l的方向向量为,平面的法向量为,则能使的是A. B.C. D.【变式训练1-2】(东阳市模拟)已知,,分别是平面,,的法向量,则,,三个平面中互相垂直的有A. 3对B. 2对C. 1对D. 0对知识点2 用空间向量研究直线、平面的平行关系【例2-1】(浙江模拟)已知在正四棱柱中,,,点E为的中点,点F为的中点.求证:.【例2-2】(柯城区校级模拟)如图,在底面为平行四边形的四棱锥中,,平面ABCD,且,点E是PD的中点.求证:平面AEC.【例2-3】(金华期末)如图,已知棱长为4的正方体中,M,N,E,F分别是棱,,,的中点,求证:平面平面EFBD.【变式训练2-1】(宿迁期末)如图,在长方体中,,,,点P在棱上,且,点S在棱上,且,点Q、R分别是棱、AE的中点.求证:.【变式训练2-2】(朝阳区期末)已知正方体的棱长为2,E,F分别是,的中点,求证:平面ADE;平面平面F.知识点3 用空间向量研究直线、平面的垂直关系【例3-1】(扬州期末)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,且,M为PC的中点.求证:【例3-2】(上城区校级模拟)如图所示,在正方体中,E,F分别是,DC的中点,求证:平面F.【例3-3】(点军区校级月考)如图,在五面体ABCDEF中,平面ABCD,,,M为EC的中点,求证:平面平面CDE.【变式训练3-1】(三明模拟)已知空间四边形ABCD中,,,求证:.【变式训练3-2】(镇海区校级模拟)如图,在四棱锥中,底面ABCD是矩形且,,底面ABCD,E是AD的中点,F在PC上.F在何处时,平面PBC?【变式训练3-3】(未央区校级月考)在四面体ABCD中,平面BCD,,,,E,F分别是AC,AD的中点,求证:平面平面ABC.知识点4 用空间向量研究空间中的距离问题【例4-1】(海淀区校级期末)如图,已知正方形ABCD的边长为1,平面ABCD,且,E,F分别为AB,BC的中点.求点D到平面PEF的距离;求直线AC到平面PEF的距离.(房山区期末)如图,在四棱锥中,平面ABCD,,【变式训练4-1】,,.求点D到平面PBC的距离;求点A到平面PBC的距离.知识点5 用空间向量研究空间中的夹角问题【例5-1】(宝山区校级期末)如图,ABCD为矩形,AB=2,AD=4,P A⊥面ABCD,P A=3,求异面直线PB与AC所成角的余弦值.【例5-2】(常州期末)已知在正三棱柱ABC-A1B1C1中,侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.【例5-3】(漳州三模)已知,P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A-PB-C的余弦值.【变式训练5-1】(沭阳县期中)如图,在正四棱柱中,,,点M是BC 的中点.求异面直线与DM所成角的余弦值求直线与平面所成角的正弦值求平面与平面ABCD所成角的正弦值.A组-[应知应会]1.(杨浦区校级期中)若直线l的方向向量为0,,平面的法向量为0,,则A. B. C. D. l与斜交2. (安徽模拟)已知,,,则向量与向量的夹角为A. B. C. D.3. (闵行区校级模拟)已知四边形ABCD是直角梯形,,平面ABCD,,则SC与平面ABCD所成的角的余弦值为A. B. C. D.4. (贵阳模拟)在正方体中,棱长为a,M,N分别为和AC上的点,,则MN与平面的位置关系是A. 垂直B. 相交C. 平行D. 不能确定5.(温州期末)如图,在长方体中,,E为CD的中点,点P在棱上,且平面,则AP的长为A.B.C. 1D. 与AB的长有关6.(鼓楼区校级模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,,则该二面角的大小为A. B. C. D.7.(和平区校级二模)如图所示,在正方体中,点P是棱AB上的动点点可以运动到端点A和B,设在运动过程中,平面与平面所成的最小角为,则A.B.C.D.8. (多选)(东阳市模拟)已知点P是平行四边形ABCD所在的平面外一点,如果,2,,2,,下列结论正确的有A. B.C. 是平面ABCD的一个法向量D.9.(江苏模拟)已知,,若,,且平面ABC,则y,等于________.10.(南通模拟)已知正三棱柱的各条棱长都相等,M是侧棱的中点,则向量与所成角的大小是.11.(清江浦区校级模拟)在四棱锥中,底面ABCD,底面ABCD是正方形,且,G为的重心,则PG与底面ABCD所成角的正弦值为.12.(沭阳县期中)在四棱锥中,底面ABCD为矩形,侧棱底面ABCD,,E为PD的中点,点N在面PAC内,且平面PAC,则点N到AB的距离为__________13.(滨海新区模拟)如图,在四棱锥中,底面ABCD为平行四边形,,,底面ABCD,,则二面角的余弦值为________.14.(浦东新区校级月考)如图,在正方体中,E为的中点,求异面直线CE 与BD所成的角.15.(江宁区校级月考)如图,四边形ABCD是正方形,平面ABCD,,,,F为PD的中点.求证:;求证:平面PEC.16.(临泉县校级月考)正方体中,E,F分别是,CD的中点.求证:平面平面;在AE上求一点M,使得平面DAE.17. (兴宁区校级期末)如图,在四棱锥中,底面ABCD为直角梯形,,且,平面ABCD.求直线PB与平面PCD所成角的正弦值;在棱PD上是否存在一点E使得?若存在,求AE的长;若不存在,请说明理由.18. (沙坪坝区校级期末)如图,正三棱柱的底面边长是2,侧棱长是,D是AC的中点.求二面角的大小.在线段上是否存在一点E,使得平面平面若存在,求出AE的长若不存在,说明理由.1.(齐齐哈尔期末)如图,在圆锥SO中,A,B是上的动点,是的直径,M,N是SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是A. B. C. D.2.(如皋市期末)如图,在长方体中,E是的中点,点F是AD上一点,,,,动点P在上底面上,且满足三棱锥的体积等于1,则直线CP与所成角的正切值的最小值为________.。
立体几何中的向量方法(一)【高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算. 2.能用向量方法证明直线和平面位置关系的一些定理. 3.利用空间向量求空间距离. 【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3); ②λa =(λa 1,λa 2,λa 3); ③a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB→平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.(2)用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. (3)用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化: (1)以原点为起点的向量,其终点坐标即向量坐标; (2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题. 三种方法主要利用直线的方向向量和平面的法向量解决下列问题:(1)平行⎩⎨⎧直线与直线平行直线与平面平行平面与平面平行(2)垂直⎩⎨⎧直线与直线垂直直线与平面垂直平面与平面垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( ).A .平行B .相交C .垂直D .不确定 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 A2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4) 解析 ∵n =(6,-3,6)是平面α的法向量,∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0. 答案 A3.已知点A ,B ,C ∈平面α,点P ∉α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC→=0的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 由⎩⎪⎨⎪⎧AP →·AB →=0AP →·AC →=0,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →=0,反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0⇒AP →·AB →=AP →·AC →,未必等于0.答案 A4.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ).A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对 解析 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c ,又a·b =-2×2+(-3)×0+1×4=0,∴a ⊥b . 答案 C5.已知AB→=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎨⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎪⎨⎪⎧x =12,y =-1,∴n =⎝ ⎛⎭⎪⎫12,-1,1,∴平面ABC 的单位法向量为±n |n|=±⎝ ⎛⎭⎪⎫13,-23,23. 答案 ±⎝ ⎛⎭⎪⎫13,-23,23考向一 利用空间向量证明平行问题【例1】如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .[审题视点] 直接用线面平行定理不易证明,考虑用向量方法证明.证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN→=⎝ ⎛⎭⎪⎫12,0,12, 设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n ,又MN ⊄平面A 1BD ,∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C → =12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.【训练1】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB→=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB→=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →,又∵FE→与FG →不共线,∴PB →、FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .考向二 利用空间向量证明垂直问题【例2】如图所示,在棱长为1的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤1,以O 为原点建立空间直角坐标系O -xyz .(1)求证A 1F ⊥C 1E ;(2)若A 1,E ,F ,C 1四点共面求证:A 1F →=12A 1C 1→+A 1E →.[审题视点] 本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标. 证明 (1)由已知条件A 1(1,0,1),F (1-x,1,0),C 1(0,1,1),E (1,x,0), A 1F →=(-x,1,-1),C 1E →=(1,x -1,-1), 则A 1F →·C 1E →=-x +(x -1)+1=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .(2)A 1F →=(-x,1,-1),A 1C 1→=(-1,1,0),A 1E →=(0,x ,-1), 设A 1F →=λA 1C 1→+μA 1E →,⎩⎨⎧-x =-λ,1=λ+μx ,-1=-μ,解得λ=12,μ=1. ∴A 1F →=12A 1C 1→+A 1E →.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.【训练2】 如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明 AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1). (1)∵∠ABC =60°,△ABC 为正三角形. ∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12.设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝⎛⎭⎪⎫0,233,0, ∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD→=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一 ∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1. 又AE →·PD →=34×233+12×(-1)=0, ∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB →=0,∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB . 法二 AB→=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝⎛⎭⎪⎫0,233,-1,显然PD→=33n . ∵PD→∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .考向三 利用向量求空间距离【例3】在三棱锥SABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离. [审题视点] 考虑用向量法求距离,距离公式不要记错. 解 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC ,∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,∴SO ⊥BO .如图所示,建立空间直角坐标系O -xyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM→=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0,MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB→||n |=423.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |, 所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.【训练3】如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥ 平面BCD ,AB =2 3. (1)求点A 到平面MBC 的距离; (2)求平面ACM 与平面BCD 所成二面角的正弦值.解 取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴,建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23).(1)设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0),BM →=(0,3,3),由n ⊥BC→得x +3y =0;由n ⊥BM →得3y +3z =0. 取n =(3,-1,1),BA→=(0,0,23),则d =|BA →·n ||n |=235=2155.(2)CM→=(-1,0,3),CA →=(-1,-3,23). 设平面ACM 的法向量为n 1=(x ,y ,z ),由n 1⊥CM →,n 1⊥CA →得⎩⎨⎧-x +3z =0,-x -3y +23z =0,解得x =3z ,y =z ,取n 1=(3,1,1). 又平面BCD 的法向量为n 2=(0,0,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=15. 设所求二面角为θ,则sin θ=255.规范解答15——立体几何中的探索性问题【问题研究】高考中立体几何部分在对有关的点、线、面位置关系考查的同时,往往也会考查一些探索性问题,主要是对一些点的位置、线段的长度,空间角的范围和体积的范围的探究,对条件和结论不完备的开放性问题的探究,这类题目往往难度都比较大,设问的方式一般是“是否存在?存在给出证明,不存在说明理由.”【解决方案】解决存在与否类的探索性问题一般有两个思路:一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或是计算,如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,就说明其不存在.【示例】(本小题满分14分) (2011·福建)如图,四棱锥P ABCD中,P A⊥底面ABCD.四边形ABCD中,AB⊥AD,AB+AD=4,CD=2,∠CDA=45°.(1)求证:平面P AB⊥平面P AD;(2)设AB=AP.(ⅰ)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ⅱ)在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.(1)可先根据线线垂直,证明线面垂直,即可证得面面垂直.(2)由于题中PB与平面PCD所成的角不好作出,因此用向量法求解.至于第2小问,可先假设点G存在,然后推理得出矛盾或列出方程无解,从而否定假设.[解答示范](1)因为P A⊥平面ABCD,AB⊂平面ABCD,所以P A⊥AB.又AB⊥AD,P A∩AD=A,所以AB⊥平面P AD.又AB⊂平面P AB,所以平面P AB⊥平面P AD.(4分)(2)以A为坐标原点,建立空间直角坐标系Axyz(如图).在平面ABCD内,作CE∥AB交AD于点E,则CE⊥AD.在Rt△CDE中,DE=CD·cos 45°=1,CE=CD·sin 45°=1.设AB=AP=t,则B(t,0,0),P(0,0,t).由AB+AD=4得,AD=4-t,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).(6分) (ⅰ)设平面PCD 的法向量为n =(x ,y ,z ), 由n ⊥C D →,n ⊥P D →,得⎩⎨⎧-x +y =0,(4-t )y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+(4-t )2·2t 2=12,解得t =45或t =4(舍去),因为AD =4-t >0,所以AB =45.(9分)(ⅱ)法一 假设在线段AD 上存在一个点G ,使得点G 到P ,B ,C ,D 的距离都相等, 设G (0,m,0)(其中0≤m ≤4-t ),则G C →=(1,3-t -m,0),G D →=(0,4-t -m,0),G P →=(0,-m ,t ). 由|G C →|=|G D →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;(1)由|G D →|=|G P →|得(4-t -m )2=m 2+t 2.(2)由(1)、(2)消去t ,化简得m 2-3m +4=0.(3)(12分)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等.(14分)法二 (1)同法一.(2)(ⅰ)以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t ,则B (t,0,0),P (0,0,t ), 由AB +AD =4得AD =4-t .所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎨⎧-x +y =0,(4-t )y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+(4-t )2·2t2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),所以 AB =45.法二 假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,从而∠CGD =90°,即CG ⊥AD ,所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ,(11分)在Rt △ABG 中,GB =AB 2+AG 2=λ2+(3-λ)2=2⎝ ⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.(14分)[解答示范] ∵函数y =c x 在R 上单调递减,∴0<c <1.(2分)即p :0<c <1.∵c >0且c ≠1,∴非p :c >1.(3分)又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数, ∴c ≤12.即q :0<c ≤12.∵c >0且c ≠1,∴非q :c >12且c ≠1.(6分)又∵“p ∨q ”为真,“p ∧q ”为假,∴p 真q 假或p 假q 真.(7分)①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1;(9分)②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.(11分) 综上所述,实数c的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1.(12分)探索性问题只要根据设问把问题确定下来就变为了普通问题,解题的关键是如何把要探索的问题确定下来,如本题第(2)问,法一是先设出G 点,由条件列出方程无解知G 点不存在.法二是由已知先确定G 点,然后推理得出矛盾,故G 点不存在.。
空间向量的应用随着科技的发展,空间向量的应用越来越广泛。
从物理学到计算机科学,从工程技术到地理测量,空间向量在各个领域都发挥着重要作用。
本文将讨论空间向量的基本概念和其在不同领域中的应用。
一、空间向量的基本概念在三维几何学中,我们将三维空间中的点表示为向量。
一个空间向量由其起点和终点决定,可以表示为一个有向线段。
空间向量具有长度和方向两个重要属性,可以进行加减法运算,也可以与数乘相乘。
空间向量的加法运算是指将两个向量的对应分量相加,得到一个新的向量。
例如,设有两个空间向量a和b,a = (a1, a2, a3),b = (b1, b2, b3),则它们的加法运算为:a + b = (a1 + b1, a2 + b2, a3 + b3)。
空间向量的数乘运算是指将一个向量的每个分量与一个常数相乘,得到一个新的向量。
例如,设有一个空间向量a = (a1, a2, a3)和一个常数k,则它们的数乘运算为:k * a = (ka1, ka2, ka3)。
二、空间向量在物理学中的应用在物理学中,空间向量被广泛应用于描述物体的运动和力学问题。
利用空间向量的概念,我们可以方便地描述物体在三维空间中的位置和速度。
例如,在力学中,我们可以使用位移向量来表示物体从起点到终点的移动情况。
同时,利用速度向量和加速度向量,我们可以描述物体在空间中的运动状态。
另外,在电磁学中,空间向量也有重要应用。
电场和磁场可以用向量来表示,通过分析场向量的大小和方向,我们可以推导出电磁场的性质和相互作用规律。
三、空间向量在计算机科学中的应用在计算机科学中,空间向量被广泛应用于图形学和计算机视觉领域。
通过使用向量表示空间中的点、线和面,我们可以高效地进行图形渲染和图像处理。
例如,在三维图形学中,我们可以使用向量来描述三维物体的形状和位置。
利用空间向量的加法和数乘运算,我们可以实现物体的平移、旋转和缩放等操作。
另外,在计算机视觉中,空间向量的应用也非常广泛。
1.4.1 空间向量应用(一)考法一 平面的法向量【例1】(2020年广东潮州)如图已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系. (1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【答案】见解析【解析】以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (0,1,0),C (1,1,0),D ⎝⎛⎭⎫12,0,0,S (0,0,1). (1)∵SA ⊥平面ABCD ,∴AS →=(0,0,1)是平面ABCD 的一个法向量.(2)∵AD ⊥AB ,AD ⊥SA ,∴AD ⊥平面SAB ,∴AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. (3)在平面SCD 中,DC →=⎝⎛⎭⎫12,1,0,SC →=(1,1,-1).设平面SCD 的法向量是n =(x ,y ,z ), 则n ⊥DC →,n ⊥SC →,所以⎩⎪⎨⎪⎧ n ·DC →=0,n ·SC →=0,得方程组⎩⎪⎨⎪⎧12x +y =0,x +y -z =0,∴⎩⎪⎨⎪⎧x =-2y ,z =-y ,令y=-1,得x=2,z=1,∴n=(2,-1,1).【一隅三反】1.(2020年广东惠州)正方体ABCDA1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图所示的空间直角坐标系中,求:(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【答案】见解析【解析】设正方体ABCD A 1B 1C 1D 1的棱长为2,则D (0,0,0),B (2,2,0),A (2,0,0),C (0,2,0),E (1,0,2). (1)连接AC (图略),因为AC ⊥平面BDD 1B 1,所以AC →=(-2,2,0)为平面BDD 1B 1的一个法向量. (2)DB →=(2,2,0),DE →=(1,0,2).设平面BDEF 的一个法向量为n =(x ,y ,z ).∴⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,∴⎩⎪⎨⎪⎧2x +2y =0,x +2z =0,∴⎩⎪⎨⎪⎧y =-x ,z =-12x . 令x =2,得y =-2,z =-1.∴n =(2,-2,-1)即为平面BDEF 的一个法向量.2.(2019·涟水县第一中学高二月考)四棱锥P ABCD -中,PA ⊥底面ABCD ,,AC BD 为正方形ABCD 的对角线,给出下列命题:①BC 为平面P AD 的法向量; ②BD 为平面P AC 的法向量; ③CD 为直线AB 的方向向量;④直线BC 的方向向量一定是平面P AB 的法向量. 其中正确命题的序号是______________ 【答案】②,③,④【解析】①因为底面ABCD 是正方形,所以//BC AD ,由AD ⊂平面P AD 知BC 不是平面P AD 的法向量; ②由底面ABCD 是正方形知BD AC ⊥,因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥,又PA AC A =,PA ⊂平面P AC ,AC ⊂平面P AC ,所以BD ⊥平面P AC ,BD 为平面P AC 的法向量,②正确;③因为底面ABCD 是正方形,所以//AB CD ,则CD 为直线AB 的方向向量,③正确; ④易知BC AB ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,又PA AB A =,PA ⊂平面P AB ,AB平面P AB ,所以BC ⊥平面P AB ,故④正确.故答案为:②,③,④考点二 空间向量证明平行【例2】(2019年广东湛江二中周测)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.(1)求证:PB ∥平面EFG . (2)证明平面EFG ∥平面PBC 【答案】见解析 【解析】证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0), D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG . (2)证明 ∵EF →=(0,1,0),BC →=(0,2,0),∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC .又EF ∩GF =F ,EF ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .【一隅三反】1.在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 【答案】见解析【解析】 法一 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝⎛⎭⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD . 法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA →-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD .2.(2020·上海杨浦.复旦附中高二期中)已知平面α的一个法向量为(1,2,2),(2,1,0)n AB ==-,则直线AB 与平面α的位置关系为_______.【答案】直线AB 在平面α上或直线AB 与平面α平行【解析】由()12+21+200n AB ⋅=⨯-⨯⨯=,所以n AB ⊥.又向量n 为平面α的一个法向量. 所以直线AB 在平面α上或直线AB 与平面α平行. 故答案为:直线AB 在平面α上或直线AB 与平面α平行.3.(2019·江苏海陵.泰州中学高二月考)已知直线//l 平面α,且l 的一个方向向量为()2,,1a m =,平面α的一个法向量为11,,22n ⎛⎫= ⎪⎝⎭,则m =______. 【答案】8-【解析】由题意,知a n ⊥,∴0a n ⋅=,即()12,,11,,202m ⎛⎫⋅= ⎪⎝⎭,∴8m =-. 故答案为:8-考法三 空间向量证垂直【例3】(2020.广东.田家炳中学)如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .【答案】见解析【解析】方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO . 因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系, 如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的一个法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .【一隅三反】1.(2018·浙江高三其他)已知平面α的法向量为(2,2,4)n =-,(1,1,2)AB =--,则直线AB 与平面α的位置关系为( ) A .AB α⊥ B .AB α⊂C .AB 与α相交但不垂直D .//AB α【答案】A 【解析】()()1,1,2,2,2,4,2,//,AB n n AB n AB AB α=--=-∴=-∴∴⊥.本题选择A 选项.2.(2020·安徽池州。
1.4.1 空间向量应用(一)【题组一 平面法向量的求解】1.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC 法向量的是( )A .(-1,1,1)B .(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D .⎝ ⎛⎭⎪⎫33,33,-33 【答案】C【解析】设n =(x ,y ,z)为平面ABC 的法向量,AB →=(-1,1,0),AC →=(-1,0,1),则⎩⎪⎨⎪⎧ n·AB →=0,n·AC →=0,化简得⎩⎨⎧-x +y =0,-x +z =0,∴x =y =z.故选 C. 2.(2018·浙江高三其他)平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,则下列命题正确的是( )A .α、β平行B .α、β垂直C .α、β重合D .α、β不垂直【答案】B【解析】平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,因为2420u v =-+=,所以两个平面垂直.故选:B .3.(2019·山东历下.济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-,且a 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义 【答案】C 【解析】由题得,(1,1,0)AB =,(1,1,2)AC =--,又a 为平面ABCD 的法向量,则有00a AB a AC ⎧⋅=⎨⋅=⎩,即10120y y z -+=⎧⎨-+=⎩,则1y =,那么21y =.故选:C【题组二 空间向量证平行】1.(2019·安徽埇桥,北大附宿州实验学校高二期末(理))已知平面α的法向量是()2,31-,,平面β的法向量是()4,2λ-,,若α//β ,则λ的值是( ) A .310-B .-6C .6D .103 【答案】C【解析】因为α//β,故可得法向量()2,31-,与向量()4,2λ-,共线, 故可得23142λ==--,解得6λ=.故选:C. 2(2019·乐清市知临中学高二期末)已知平面α的一个法向量是(2,1,1)-,//αβ,则下列向量可作为平面β的一个法向量的是( )A .()4,22-,B .()2,0,4C .()215--,,D .()42,2-,【答案】D【解析】平面α的一个法向量是(2,1,1)-,//αβ,设平面β的法向量为(),,x y z ,则()(2,1,1),,,0x y z λλ=≠-,对比四个选项可知,只有D 符合要求,故选:D.3.(2020.广东.华侨中学)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 【答案】 C【解析】设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM⊂平面ACEF ,平面ACEF∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E(0,0,1),F(2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.4.如图所示,在正方体ABCD -A1B1C1D1中,棱长为a ,M ,N 分别为A1B 和AC 上的点,A1M =AN =2a3,则MN 与平面BB1C1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB1C1C 内【答案】 B【解析】以点C1为坐标原点,分别以C1B1,C1D1,C1C 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,由于A1M =AN =2a 3,则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a 3,a ,MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C1D1⊥平面BB1C1C ,所以C1D1→=(0,a ,0)为平面BB1C1C 的一个法向量.因为MN →·C1D1→=0,所以MN →⊥C1D1→,又MN⊂平面BB1C1C ,所以MN ∥平面BB1C1C.【题组三 空间向量证明垂直】1.(2019·湖北孝感.高二期中(理))已知向量(2,4,)AB x =,平面α的一个法向量(1,,3)n y =,若AB α⊥,则( )A .6x =,2y =B .2x =,6y =C .3420x y ++=D .4320x y ++=【答案】A 【解析】因为AB α⊥,所以AB n ∥,由2413x y ==,得6x =,2y =.故选A2.(2020·宜昌市人文艺术高中(宜昌市第二中学)高二月考)已知直线l 的一个方向向量()2,3,5d =,平面α的一个法向量()4,,u m n =-,若l α⊥,则m n +=______.【答案】16- 【解析】l α⊥,//d u ∴,且()2,3,5d =,()4,,u m n =-,4235m n -∴==,解得6m =-,10n =-.因此,16m n +=-.故答案为:16-.3.(2020·陕西富平.期末(理))若直线l 的方向向量为(1,0,2)a =-,平面α的法向量为(2,0,4)n =-,则直线l 与平面α的位置关系是( )A .l αB .l α⊥C .l α≠⊄D .l 与α斜交【答案】B【解析】由题得,2n a =,则//n a ,又n 是平面α的法向量,a 是直线l 的方向向量,可得l α⊥. 故选:B4. 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,⊂ACD 为等边三角形,AD =DE =2AB.求证:平面BCE ⊥平面CDE.【答案】【解析】设AD =DE =2AB =2a ,以A 为原点,分别以AC ,AB 所在直线为x 轴,z 轴,以过点A 垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系Axyz ,则A(0,0,0),C(2a ,0,0),B(0,0,a),D(a ,3a ,0), E(a ,3a ,2a).所以BE →=(a ,3a ,a),BC →=(2a ,0,-a),CD →=(-a ,3a ,0),ED →=(0,0,-2a).设平面BCE 的法向量为n1=(x1,y1,z1),由n1·BE →=0,n1·BC →=0可得⎩⎨⎧ ax1+3ay1+az1=0,2ax1-az1=0,即⎩⎨⎧x1+3y1+z1=0,2x1-z1=0.令z1=2,可得n1=(1,-3,2). 设平面CDE 的法向量为n2=(x2,y2,z2),由n2·CD →=0,n2·ED →=0可得 ⎩⎨⎧ -ax2+3ay2=0,-2az2=0,即⎩⎨⎧-x2+3y2=0,z2=0.令y2=1,可得n2=(3,1,0).因为n1·n2=1×3+1×(-3)+2×0=0.所以n1⊥n2,所以平面BCE ⊥平面CDE.5.如图所示,已知四棱锥P—ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD.证明:(1)PA ⊥BD ;(2)平面PAD ⊥平面PAB.【答案】见解析【解析】 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,⊂PBC 为等边三角形,平面PBC∩底面ABCD =BC ,PO⊂平面PBC , ∴PO ⊥底面ABCD.以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,3),∴BD →=(-2,-1,0),PA →=(1,-2,-3).∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴PA →⊥BD →,∴PA ⊥BD.(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB.∵DM →·PA →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥PA →,即DM ⊥PA. 又∵PA∩PB =P ,PA ,PB⊂平面PAB ,∴DM ⊥平面PAB.∵DM⊂平面PAD ,∴平面PAD ⊥平面PAB.6.(2019·林州模拟)如图,在四棱锥P—ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.【答案】见解析【解析】(1)证明 如图,以D 为原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D(0,0,0),A(a ,0,0),B(a ,a ,0),C(0,a ,0),E ⎝⎛⎭⎫a ,a 2,0,P(0,0,a),F ⎝⎛⎭⎫a 2,a 2,a 2. EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD.(2)解 设G(x ,0,z),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a) =a22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 为AD 的中点.。