陕西省西北农林科技大学附属中学2015-2016学年高二英语上学期第一次月考试题
- 格式:doc
- 大小:158.00 KB
- 文档页数:11
2015-2016学年上学期第一次月考高二英语试题【新课标】120分钟满分150分第一部分听力(共两节,满分30分)第一节(共5小题,每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. How much did the foundation actually give to the university?A. $20000B. $30000C. $40000.2. What is the woman's suggestion to the man?A. He should ask the instructor about it.B. He should read the instruction book.C. He should have the table installed.3. What does the man really want to do?A. Edit an advertisement.B. Work as an editor.C. Find a job.4. Why did Katie look unhappy?A. Because she just lost her job.B. Because she failed to find a job.C. Because she was sick and felt terrible.5. What does the woman imply?A. She can't help the man carry the computer.B. She is feeling too dizzy to go downstairs.C. She thinks the man can carry the computer himself.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
2015-2016学年陕西省咸阳市西北农林科大附中高二(上)第二次月考数学试卷(理科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是()A.p且q B.p或q C.非p D.以上都不对2.与命题“若m∈M,则n∉M”等价的命题()A.若m∉M,则n∉M B.若n∉M,则m∈M C.若m∉M,则n∈M D.若n∈M,则m∉M 3.命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<04.在空间中,已知动点P(x,y,z)满足z=0,则动点P的轨迹是()A.平面 B.直线C.不是平面,也不是直线 D.以上都不对5.已知i,j,k是空间直角坐标系O﹣xyz的单位正交基底,并且=﹣i+j﹣k,则B点的坐标为()A.(﹣1,1,﹣1)B.(﹣i,j,﹣k)C.(1,﹣1,﹣1)D.不确定6.若平面α、β的法向量分别为=(2,﹣3,5),=(﹣3,1,﹣4),则()A.α∥β B.α⊥βC.α、β相交但不垂直D.以上均不正确7.设函数f(x)=x2+mx(x∈R),则下列命题中的真命题是()A.任意m∈R,使Y=f(x)都是奇函数B.存在m∈R,使y=f(x)是奇函数C.任意m∈R,使y=f(x)都是偶函数D.存在m∈R,使y=f(x)是偶函数8.若=(0,1,﹣1),=(1,1,0),且(+λ)⊥,则实数λ的值为()A.﹣1 B.0 C.1 D.﹣29.已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°10.已知E,F分别是正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.△ABC中,“A>B”是“sinA>sinB”的条件.12.若命题“∃x∈R,x2+ax+1<0”是真命题,则实数a的取值范围是.13.在下列四个命题中,真命题的个数是①∀x∈R,x2+x+3>0;②∀x∈Q,x2+x+1是有理数;③∃α,β∈R,使sin(α+β)=sinα+sinβ;④∃x0,y0∈Z,使3x0﹣2y0=10.14.若空间三点A(1,5,﹣2),B(2,4,1),C(p,3,q+2)共线,则p=,q=.15.在空间平移△ABC到△A1B1C1(使△A1B1C1与△ABC不共面),连接对应顶点,设=,=,=,M是BC1的中点,N是B1C1的中点,用基底{,,}表示向量+的结果是.三、解答题(本大题共4小题,共45分,16、17、18题各10分,19题15分)16.写出命题,则x=2且y=一1”的逆命题、否命题、逆否命题,并判断它们的真假.17.设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足;(1)若a=1且p∧q为真,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.18.用向量证明:若平面内的一条直线垂直于平面外的一条直线在该平面上的投影,则这两条直线垂直.19.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E 的长.2015-2016学年陕西省咸阳市西北农林科大附中高二(上)第二次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是()A.p且q B.p或q C.非p D.以上都不对【考点】复合命题的真假.【分析】先判断出命题p与q的真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:0是偶数,是真命题;命题q:2是3的约数,是假命题.则下列命题中为真的是p或q,故选:B.2.与命题“若m∈M,则n∉M”等价的命题()A.若m∉M,则n∉M B.若n∉M,则m∈M C.若m∉M,则n∈M D.若n∈M,则m∉M 【考点】四种命题间的逆否关系.【分析】根据原命题与它的逆否命题是等价命题,写出它的逆否命题即可.【解答】解:命题“若m∈M,则n∉M”的逆否命题是“若n∈M,则m∉M”,所以与命题“若m∈M,则n∉M”等价的命题是“若n∈M,则m∉M”.故选:D.3.命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0【考点】命题的否定;全称命题.【分析】根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选A.4.在空间中,已知动点P(x,y,z)满足z=0,则动点P的轨迹是()A.平面 B.直线C.不是平面,也不是直线 D.以上都不对【考点】轨迹方程.【分析】由题意画出图形得答案.【解答】解:如图,在空间中,已知动点P(x,y,z)满足z=0,则动点P的轨迹是坐标平面xOy面.故选:A.5.已知i,j,k是空间直角坐标系O﹣xyz的单位正交基底,并且=﹣i+j﹣k,则B点的坐标为()A.(﹣1,1,﹣1)B.(﹣i,j,﹣k)C.(1,﹣1,﹣1)D.不确定【考点】空间中的点的坐标.【分析】利用空间向量知识直接求解.【解答】解:∵i,j,k是空间直角坐标系O﹣xyz的单位正交基底,并且=﹣i+j﹣k,A点坐标不确定,∴B点的坐标也不确定.故选:D.6.若平面α、β的法向量分别为=(2,﹣3,5),=(﹣3,1,﹣4),则()A.α∥β B.α⊥βC.α、β相交但不垂直D.以上均不正确【考点】平面的法向量.【分析】由≠0,可得两个平面不垂直;又与不共线,可得α与β不平行.即可得出.【解答】解:∵=﹣6﹣3﹣20≠0,∴与不垂直,∴两个平面不垂直;又∵与不共线,∴α与β不平行.∴α、β相交但不垂直.故选;C.7.设函数f(x)=x2+mx(x∈R),则下列命题中的真命题是()A.任意m∈R,使Y=f(x)都是奇函数B.存在m∈R,使y=f(x)是奇函数C.任意m∈R,使y=f(x)都是偶函数D.存在m∈R,使y=f(x)是偶函数【考点】二次函数的性质.【分析】从函数的奇偶性的定义进行判断,对于f(x)=x2+mx,不论m为何值时,定义域总是R,故而只需求出f(﹣x)和﹣f(x),即f(﹣x)=(﹣x)2+m(﹣x)=x2﹣mx,﹣f (x),若函数为奇函数,则f(﹣x)=﹣f(x),即x2﹣mx=﹣x2﹣mx恒成立,而x2﹣mx=﹣x2﹣mx恒成立是不可能,故不论m为何值均不能使f(x)为奇函数;若函数为偶函数,则f(﹣x)=f(x),即x2+mx=x2﹣mx恒成立,故只需要m为0时即可【解答】解:由题意知函数的定义域均为R若函数为奇函数则f(﹣x)=﹣f(x),即x2﹣mx=﹣x2﹣mx恒成立,而x2﹣mx=﹣x2﹣mx只有在x=0时才成立,而题中给出的x是一切实数,故x2﹣mx=﹣x2﹣mx恒成立是不可能,故不论m为何值均不能使f(x)为奇函数;若函数为偶函数,则f(﹣x)=f(x),即x2+mx=x2﹣mx恒成立,故只需要m为0时即可故选D8.若=(0,1,﹣1),=(1,1,0),且(+λ)⊥,则实数λ的值为()A.﹣1 B.0 C.1 D.﹣2【考点】空间向量的数量积运算.【分析】利用向量垂直与数量积的关系即可得出.【解答】解:∵(+λ)⊥,∴(+λ)•=+=+λ×(0+1+0)=0,解得λ=﹣2.故选:D.9.已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°【考点】空间向量的夹角与距离求解公式.【分析】由题意可得:,进而得到与||,||,再由cos<,>=可得答案.【解答】解:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以,所以═0×(﹣1)+3×1+3×0=3,并且||=3,||=,所以cos<,>==,∴的夹角为60°故选C.10.已知E,F分别是正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是()A.B.C.D.【考点】与二面角有关的立体几何综合题.【分析】因为D1D⊥面ABCD,故可由三垂线定理法作出二面角的平面角,再求解.【解答】解:因为D1D⊥面ABCD,过D做DH⊥AE与H,连接D1H,则∠D1HD即为截面AEFD1与底面ABCD所成二面角的平面角,设正方体ABCD﹣A1B1C1D1的棱长为1,在△D1HD中,D1D=1,因为△DAH~△ABE,所以DH=所以D1H=,所以sin∠D1HD=故选C二、填空题(本大题共5小题,每小题5分,共25分)11.△ABC中,“A>B”是“sinA>sinB”的充要条件.【考点】必要条件、充分条件与充要条件的判断.【分析】由正弦定理知asinA=bsinB,由sinA>sinB,知a>b,所以A>B,反之亦然,故可得结论.【解答】解:由正弦定理知,若sinA>sinB成立,则a>b,所以A>B.反之,若A>B成立,则有a>b,∵a=2RsinA,b=2RsinB,∴sinA>sinB,所以,“A>B”是“sinA>sinB”的充要条件故答案为:充要.12.若命题“∃x∈R,x2+ax+1<0”是真命题,则实数a的取值范围是(﹣∞,﹣2)∪(2,+∞).【考点】特称命题.【分析】根据所给的特称命题的否定任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.【解答】解:∵命题“存在实数x,使x2+ax+1<0”的否定是任意实数x,使x2+ax+1≥0,命题否定是假命题,∴△=a2﹣4>0∴a<﹣2或a>2故答案为:(﹣∞,﹣2)∪(2,+∞).13.在下列四个命题中,真命题的个数是①②③④①∀x∈R,x2+x+3>0;②∀x∈Q,x2+x+1是有理数;③∃α,β∈R,使sin(α+β)=sinα+sinβ;④∃x0,y0∈Z,使3x0﹣2y0=10.【考点】命题的真假判断与应用.【分析】①∀x∈R,x2+x+3=>0,可知正确;②∀x∈Q,x2+x+1是有理数,可知正确;③取α=2kπ(k∈Z),则sin(α+β)=sinα+sinβ成立;④取x0=10,y0=10,则使3x0﹣2y0=10成立.【解答】解:①∀x∈R,x2+x+3=>0,正确;②∀x∈Q,x2+x+1是有理数,正确;③取α=2kπ(k∈Z),则sin(α+β)=sinα+sinβ成立,正确;④取x0=10,y0=10,则使3x0﹣2y0=10成立,因此∃x0,y0∈Z,使3x0﹣2y0=10成立,故正确.综上可得:①②③④都是真命题.故答案为:①②③④.14.若空间三点A(1,5,﹣2),B(2,4,1),C(p,3,q+2)共线,则p=3,q=2.【考点】共线向量与共面向量.【分析】将三点共线,转化为向量共线,再利用向量共线的条件,即可得到结论.【解答】解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2)∴,∵空间三点共线∴∴p=3,q=2故答案为:3,215.在空间平移△ABC到△A1B1C1(使△A1B1C1与△ABC不共面),连接对应顶点,设=,=,=,M是BC1的中点,N是B1C1的中点,用基底{,,}表示向量+的结果是.【考点】平面向量的基本定理及其意义.【分析】可画出图形,并连接AB1,AC1,这样根据向量加法的平行四边形法则即可用表示出,然后进行向量数乘运算即可用基底表示出向量.【解答】解:如图,连接AB1,AC1,M,N分别为BC1,B1C1的中点;∴====.故答案为:.三、解答题(本大题共4小题,共45分,16、17、18题各10分,19题15分)16.写出命题,则x=2且y=一1”的逆命题、否命题、逆否命题,并判断它们的真假.【考点】四种命题的真假关系.【分析】将原命题中的条件、结论互换得到逆命题;将原命题的条件、结论同时否定得到否命题、将原命题的条件、结论否定再交换得到逆否命题.【解答】解:逆命题:若x=2且y=﹣1,则;真命题否命题:若,则x≠2或y≠﹣1;真命题逆否命题:若x≠2或y≠﹣l,则;真命题17.设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x 满足;(1)若a=1且p∧q为真,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.【考点】复合命题的真假;必要条件、充分条件与充要条件的判断.【分析】(1)p∧q为真,则p真且q真.分别求出p,q为真命题时x的范围,两者取交集即可.(2)q是p的充分不必要条件,即q⇒p,反之不成立.,设A={x|2<x<3},B={x|a<x<3a},则A⊊B,转化为集合关系.【解答】解:由x2﹣4ax+3a2<0,(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a….由满足;得2<x≤3,即q为真时,实数x的取值范围是2<x≤3,…..….(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3…(Ⅱ)q是p的充分不必要条件,即q⇒p,反之不成立.,设A={x|2<x<3},B={x|a<x<3a},则A⊊B,则0<a≤2,且3a>3所以实数a的取值范围是1<a≤2…18.用向量证明:若平面内的一条直线垂直于平面外的一条直线在该平面上的投影,则这两条直线垂直.【考点】直线与平面垂直的性质.【分析】画出图形,根据条件,只需把直线表示出向量,利用向量的数量积为0,证明垂直.【解答】证明:如图,PA、PO分别是平面α的垂线、斜线,AO是PA在平面α内的射影,设直线a上非零向量,要证a⊥OA⇒a⊥PA,即证•=0⇒•=0.∵a⊂α,•=0,∵•=•(+)=•+•=0+0=0.∴a⊥PA.19.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面所成的角.【分析】(Ⅰ)以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,通过平面ABCD的一个法向量与的数量积为0,即得结论;(Ⅱ)通过计算平面ACD1的法向量与平面ACB1的法向量的夹角的余弦值及平方关系即得结论;(Ⅲ)通过设=λ,利用平面ABCD的一个法向量与的夹角的余弦值为,计算即可.【解答】(Ⅰ)证明:如图,以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z 轴建系,则A(0,0,0),B(0,1,0),C(2,0,0),D(1,﹣2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,﹣2,2),又∵M、N分别为B1C、D1D的中点,∴M(1,,1),N(1,﹣2,1).由题可知:=(0,0,1)是平面ABCD的一个法向量,=(0,﹣,0),∵•=0,MN⊄平面ABCD,∴MN∥平面ABCD;(Ⅱ)解:由(I)可知:=(1,﹣2,2),=(2,0,0),=(0,1,2),设=(x,y,z)是平面ACD1的法向量,由,得,取z=1,得=(0,1,1),设=(x,y,z)是平面ACB1的法向量,由,得,取z=1,得=(0,﹣2,1),∵cos<,>==﹣,∴sin<,>==,∴二面角D1﹣AC﹣B1的正弦值为;(Ⅲ)解:由题意可设=λ,其中λ∈[0,1],∴E=(0,λ,2),=(﹣1,λ+2,1),又∵=(0,0,1)是平面ABCD的一个法向量,∴cos<,>===,整理,得λ2+4λ﹣3=0,解得λ=﹣2或﹣2﹣(舍),∴线段A1E的长为﹣2.2016年5月3日。
2015-2016学年陕西省咸阳市西北农林科大附中高二(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列,的一个通项公式是()A.B.C.D.2.在△ABC中,A=30°,B=60°,C=90°,那么三边之比a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::13.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>β B.α=βC.α+β=90°D.α+β=180°4.在△ABC中,a2+b2﹣c2=ab,则cosC=()A.B.C. D.5.在等差数列{a n}中,已知a6+a9+a13+a16=20,则S21等于()A.100 B.105 C.200 D.06.在等比数列{a n}中,a3+a4=a1+a2,则公比为()A.1 B.1或﹣1 C.或D.2或﹣27.在△ABC中,若a=3,cosA=,则△ABC的外接圆半径为()A.2 B.4C.D.8.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是()A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形9.在△ABC中,若∠B=30°,AB=2,AC=2,则△ABC的面积为()A.B.2或C.2或D.210.在数列{x n}中,x1=8,x4=2,且满足x n+2+x n=2x n+1,n∈N+.则x10=()A.﹣10 B.10 C.﹣20 D.20二、填空题(每小题5分,共20分)11.设一个等差数列,由三个数组成,三个数之和为9,三个数的平方和为35,则公差d=.12.已知数列{a n}的前n项和,则数列{a n}的通项公式为.13.海上有A、B两岛相距10海里,从A岛望B岛和C岛成60°的视角,从B岛望C岛和A岛成30°视角,则B、C之间的距离是海里.14.在△ABC中,若a=b=1,,则∠C=.三、解答题(共30分,解答应写出必要的文字说明,证明过程或演算步骤)15.已知等差数列{a n}满足a3•a7=﹣12,a4+a6=﹣4,求等差数列{a n}的通项公式.16.如图,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20m,求山高CD.17.在△ABC中,a,b,c分别是角A、B、C的对边,且a2+c2﹣b2+ac=0.(1)求角B的大小;(2)若,求△ABC的面积.附加题:(本题20分)18.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°19.已知数列{a n}中,a1=1,a n=3a n﹣1+4(n∈N*且n≥2),则数列{a n}通项公式a n=.20.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.2015-2016学年陕西省咸阳市西北农林科大附中高二(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列,的一个通项公式是()A.B.C.D.【考点】数列的概念及简单表示法.【专题】计算题.【分析】利用不完全归纳法来求,先把数列中的每一项变成相同形式,再找规律即可.【解答】解;∵数列,的第三项可写成,这样,每一项都是含根号的数,且每一个被开方数比前一项的被开方数多3,∴故选B【点评】本题考查了不完全归纳法求数列通项公式,做题时要认真观察,及时发现规律.2.在△ABC中,A=30°,B=60°,C=90°,那么三边之比a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::1【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】求出三角的正弦值,利用正弦定理求出三边的比.【解答】解:∴A=30°,B=60°C=90°,∴sinA=,sinB=,sinC=1,由正弦定理得:a:b:c=sinA:sinB:sinC=1::2.故选:C.【点评】本题主要考查了正弦定理在解三角形中的应用,考查了特殊角的三角函数值的应用,属于基础题.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为()A.α>β B.α=βC.α+β=90°D.α+β=180°【考点】直线的倾斜角.【分析】画草图分析可知两点之间的仰角和俯角相等.【解答】解:从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.仰角和俯角都是水平线与视线的夹角,故α=β.故选:B.【点评】本题考查仰角、俯角的概念,以及仰角与俯角的关系.4.在△ABC中,a2+b2﹣c2=ab,则cosC=()A.B.C. D.【考点】余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】利用已知条件通过余弦定理即可求出cosC.【解答】解:由a2+b2﹣c2=ab,余弦定理得:cosC===.故选:A.【点评】本题主要考查余弦定理的应用.余弦定理在解三角形中应用很广泛,很好的建立了三角形的边角关系,应熟练掌握,属于基础题.5.在等差数列{a n}中,已知a6+a9+a13+a16=20,则S21等于()A.100 B.105 C.200 D.0【考点】等差数列的前n项和.【专题】整体思想;综合法;等差数列与等比数列.【分析】由题意和等差数列的性质可得a1+a21,整体代入求和公式计算可得.【解答】解:∵在等差数列{a n}中,a6+a9+a13+a16=20,由等差数列的性质可得a1+a21=a6+a16=a9+a13,∴2(a1+a21)=20,解得a1+a21=10,∴S21=(a1+a21)=105,故选:B.【点评】本题考查等差数列的求和公式和等差数列的性质,属基础题.6.在等比数列{a n}中,a3+a4=a1+a2,则公比为()A.1 B.1或﹣1 C.或D.2或﹣2【考点】等比数列的通项公式.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】利用等比数列的通项公式求解.【解答】解:∵在等比数列{a n}中,a3+a4=a1+a2,∴q2(a1+a2)=a1+a2,∴q2=1,解得q=1或q=﹣1.故选:B.【点评】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.7.在△ABC中,若a=3,cosA=,则△ABC的外接圆半径为()A.2 B.4C.D.【考点】正弦定理的应用.【专题】计算题.【分析】利用正弦定理===2R(R为△ABC的外接圆半径)即可求得答案.【解答】解:∵在△ABC中,若a=3,cosA=,∴由sin2A+cos2A=1得:sinA=;设△ABC的外接圆半径为R,由正弦定理===2R得:==2R,∴R=.故选D.【点评】本题考查正弦定理,考查三角函数间的关系,属于基础题.8.在△ABC中,已知sinB=2cosCsinA,则△ABC的形状是()A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形【考点】余弦定理;正弦定理.【专题】计算题;方程思想;综合法;解三角形.【分析】利用sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,即可得出结论.【解答】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:C.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.9.在△ABC中,若∠B=30°,AB=2,AC=2,则△ABC的面积为()A.B.2或C.2或D.2【考点】三角形的面积公式.【专题】解三角形.【分析】利用正弦定理,求出C,从而可求A,利用△ABC的面积•AB•AC•sinA,即可得出结论【解答】解:∵△ABC中,B=30°,AB=2,AC=2,∴=,∴sinC=,∴C=60°或120°,∴A=90°或30°,∴△ABC的面积为•AB•AC•sinA=2或.故选:C.【点评】本题考查正弦定理的运用,考查三角形面积的计算,考查学生的计算能力,属于中档题.10.在数列{x n}中,x1=8,x4=2,且满足x n+2+x n=2x n+1,n∈N+.则x10=()A.﹣10 B.10 C.﹣20 D.20【考点】数列递推式.【专题】计算题;函数思想;数学模型法;等差数列与等比数列.【分析】由数列递推式可知数列{x n}是等差数列,由已知求得公差,代入等差数列的通项公式得答案.【解答】解:由足x n+2+x n=2x n+1,n∈N+.可知数列{x n}是等差数列,又x1=8,x4=2,则公差d=.∴x10=x1+9d=8+9×(﹣2)=﹣10.故选:A.【点评】本题考查数列递推式,考查了等差关系的确定,是基础题.二、填空题(每小题5分,共20分)11.设一个等差数列,由三个数组成,三个数之和为9,三个数的平方和为35,则公差d=±2.【考点】等差数列的性质.【专题】计算题.【分析】先设出这三个数,根据三个数之和为9,根据等差中项的性质求得a2,进而利用三个数的平方和,利用d表示出三个数建立等式求得d.【解答】解:设这三个数为a1,a2和a3,a1+a2+a3=3a2=9,∴a2=3∵a12+a22+a32=(3﹣d)2+32+(3+d)2=9﹣6d+d2+9+9+6d+d2=27+2d2=35∴d2=4∴d=2或d=﹣2故答案为:±2【点评】本题主要考查了等差数列的性质.灵活利用等差数列的等差中项的性质.注意等差数列项的设法a+d,a,a﹣d.12.已知数列{a n}的前n项和,则数列{a n}的通项公式为.【考点】数列的概念及简单表示法.【专题】等差数列与等比数列.【分析】利用当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1即可得出.【解答】解:当n=1时,a1=S1=1+3+1=5;当n≥2时,a n=S n﹣S n﹣1=n2+3n+1﹣[(n﹣1)2+3(n﹣1)+1]=2n+2.∴数列{a n}的通项公式为.故答案为.【点评】本题考查了利用“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”求数列的通项公式,属于基础题.13.海上有A、B两岛相距10海里,从A岛望B岛和C岛成60°的视角,从B岛望C岛和A岛成30°视角,则B、C之间的距离是5海里.【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】依题意,作出图形,利用正弦定理解决即可.【解答】解:依题意,作图如下:∵∠CAB=60°,∠ABC=30°,∴△ABC为直角三角形,∠C为直角,又|AB|=10海里,∴|BC|=|AB|sin60°=10×=5海里,故答案为:5.【点评】本题考查正弦定理的应用,考查作图与识图能力,属于中档题.14.在△ABC中,若a=b=1,,则∠C=.【考点】正弦定理;余弦定理.【专题】计算题.【分析】运用余弦定理,可以计算出角C的余弦值,再结合∠C∈(0,π),可得∠C=.【解答】解:根据余弦定理得:又因为C∈(0,π),所以∠C=故答案为:【点评】本题考查了正、余弦定理在解三角形中的应用,属于简单题.三、解答题(共30分,解答应写出必要的文字说明,证明过程或演算步骤)15.已知等差数列{a n}满足a3•a7=﹣12,a4+a6=﹣4,求等差数列{a n}的通项公式.【考点】等差数列的通项公式.【专题】计算题;方程思想;定义法;等差数列与等比数列.【分析】由已知得a3,a7是一元二次方程x2+4x﹣12=0的两个根,解方程x2+4x﹣12=0,得x1=﹣6,x2=2,从而得到a3=﹣6,a7=2或a3=2,a7=﹣6,由此能求出数列{a n}的通项公式.【解答】解:∵等差数列{a n}满足a3•a7=﹣12,a4+a6=a3+a7=﹣4,∴a3,a7是一元二次方程x2+4x﹣12=0,解方程x2+4x﹣12=0,得x1=﹣6,x2=2,当a3=﹣6,a7=2时,,解得a1=﹣10,d=2,a n=﹣10+(n﹣1)×2=2n﹣12;当a3=2,a7=﹣6时,,解得a1=6,d=﹣2,a n=6+(n﹣1)×(﹣2)=﹣2n+8.【点评】本题考查等差数列的通项公式,解题时要认真审题,注意等差数列的性质的合理运用,是基础题.16.如图,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20m,求山高CD.【考点】解三角形的实际应用.【专题】计算题;应用题.【分析】先根据三角形内角和求得∠BAC,进而根据正弦定理求得BC,最后在Rt△BCD 中,根据CD=BC•sin∠CBD求得答案.【解答】解:在△ABC中,∵∠ABC=30°,∠ACB=15°,∴∠BAC=135°.又AB=20,由正弦定理,得.∴在Rt△BCD中,.故山高为.【点评】本题主要考查了解三角形的实际应用.考查了考生综合运用所学知识的能力.17.在△ABC中,a,b,c分别是角A、B、C的对边,且a2+c2﹣b2+ac=0.(1)求角B的大小;(2)若,求△ABC的面积.【考点】余弦定理;正弦定理.【专题】函数思想;综合法;解三角形.【分析】(1)变形已知式子代入cosB=结合角的范围可得;(2)由余弦定理可得b2=a2+c2﹣2accosB,代入数据配方整体可得ac,代入面积公式可得.【解答】解:(1)∵a2+c2﹣b2+ac=0,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B∈(0,π),∴B=;(2)由余弦定理可得b2=a2+c2﹣2accosB,代入数据可得13=a2+c2+ac=(a+c)2﹣ac=16﹣ac,解得ac=3,∴【点评】本题考查解三角形,涉及正余弦定理和三角形的面积公式,属基础题.附加题:(本题20分)18.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°【考点】余弦定理.【专题】计算题.【分析】设长为7的边所对的角为θ,根据余弦定理可得cosθ的值,进而可得θ的大小,则由三角形内角和定理可得最大角与最小角的和是180°﹣θ,即可得答案.【解答】解:根据三角形角边关系可得,最大角与最小角所对的边的长分别为8与5,设长为7的边所对的角为θ,则最大角与最小角的和是180°﹣θ,有余弦定理可得,cosθ==,易得θ=60°,则最大角与最小角的和是180°﹣θ=120°,故选B.【点评】本题考查余弦定理的运用,解本题时注意与三角形内角和定理结合分析题意.19.已知数列{a n}中,a1=1,a n=3a n﹣1+4(n∈N*且n≥2),则数列{a n}通项公式a n=3n﹣2.【考点】数列递推式.【专题】转化思想;定义法;等差数列与等比数列.【分析】a1=1,a n=3a n﹣1+4(n∈N*且n≥2),变形为a n+2=3(a n﹣1+2),利用等比数列的通项公式即可得出.【解答】解:∵a1=1,a n=3a n﹣1+4(n∈N*且n≥2),变形为a n+2=3(a n﹣1+2),∴数列{a n}是等比数列,首项为3,公比为3.∴a n+2=3n,解得a n=3n﹣2.故答案为:3n﹣2.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.20.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【考点】等差数列的通项公式;等比数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,===.【点评】本题主要考查等差数列的通项公式和用错位相减法求和.。
陕西省西北农林科大附中2015-2016学年高二上学期第一次月考英语试卷考试时间:100分钟满分:120第Ⅰ卷第一部分听力(共两节,满分20分)第一节 (共5小题;每小题1分,共5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where is John probably now?A. In the hospital.B. At school.C. At home.2. What does the woman mean?A. She forgot lending the book.B. She lost her book.C. She finished her paper.3. Why was the man annoyed?A. A policeman stopped him.B. A speeding car ran past him.C. The driver attempted to overcharge.4. Where are the speakers?A. In the hotel.B. In the restaurant.C. In the supermarket.5. What does the woman want to do?A. Find the computer room.B. Find a bulletin board.C. Get a computer.第二节 (共15小题;每小题1分,共15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
听第6段材料,回答6、7题。
-------------------------密-------------------封-------------------线------------------------ 班级:_____________姓名:_____________考场:________学号:______________2015-2016学年度第二学期高二年级英语学科期末试卷命题人:王晓倩 审题人:杜鹃(注意:本试卷共八页,共六题,满分120分,时间100分钟)第I 卷第一部分 听力(共两节,满分20分)第一节(共5个小题:每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What’s the weather like in Boston now?A. Warm.B. Cold.C. Hot. 2. Where does this conversation probably take place?A. On a bus.B. At the airport.C. At a bus stop. 3. How does the man shop for groceries? A. By car.B. By bike.C. On foot. 4. What’s the woman going to do?A. Play soccer.B. Buy some medicine for the man.C. Pick up Sally’s children.5. What is true about the woman’s Chinese? A. She just began studying. B. She has studied it for almost two years.C. Chinese is her native language.第二节 (共15小题:每小题1分,满分15分)听下面5段对话或独白。
陕西省西北农林科大附中2015-2016学年高二上学期第一次月考英语试卷考试时间:100分钟满分:120第Ⅰ卷第一部分听力(共两节,满分20分)第一节 (共5小题;每小题1分,共5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where is John probably now?A. In the hospital.B. At school.C. At home.2. What does the woman mean?A. She forgot lending the book.B. She lost her book.C. She finished her paper.3. Why was the man annoyed?A. A policeman stopped him.B. A speeding car ran past him.C. The driver attempted to overcharge.4. Where are the speakers?A. In the hotel.B. In the restaurant.C. In the supermarket.5. What does the woman want to do?A. Find the computer room.B. Find a bulletin board.C. Get a computer.第二节 (共15小题;每小题1分,共15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
听第6段材料,回答6、7题。
陕西省西北农林科大附中2015-2016学年高二上学期第一次月考英语试卷考试时间:100分钟满分:120第Ⅰ卷第一部分听力(共两节,满分20分)第一节 (共5小题;每小题1分,共5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where is John probably now?A. In the hospital.B. At school.C. At home.2. What does the woman mean?A. She forgot lending the book.B. She lost her book.C. She finished her paper.3. Why was the man annoyed?A. A policeman stopped him.B. A speeding car ran past him.C. The driver attempted to overcharge.4. Where are the speakers?A. In the hotel.B. In the restaurant.C. In the supermarket.5. What does the woman want to do?A. Find the computer room.B. Find a bulletin board.C. Get a computer.第二节 (共15小题;每小题1分,共15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
听第6段材料,回答6、7题。
九年级英语第二次月考试卷时间:120分钟满分:120分第一卷客观试题听力部分(20分)Ⅰ情景反应。
根据从你所听到的句子选择相应的答语。
( ) 1. A. Thanks. B. No way! C. Yes, you do.( ) 2. A. I disagree. B. You are kind. C. That’s good.( ) 3. A. Never. B. No, I don’t. C. Sure.( ) 4. A. I have to do dishes. B. I sleep late. C. Ok, I do.( ) 5. A. Sounds good. B. I like it very much. C. That’s too bad!Ⅱ对话理解。
根据你所听到的对话及问题选择正确的答案。
( ) 6. How old is the boy?A. 14B. 16C. 40( ) 7. Where are the speakers?A. In the classroom.B. In the cinema.C. In the hospital.( ) 8. What does Jack's hair look like now?A. Short.B. Curly.C. Long.( ) 9. What are they talking about?A. Mother’s hugsB. Mother’s loveC. Mother’s warmth( ) 10. Who makes the decision for the girl at home?A. HerselfB. Her motherC. Her teacher听下面一段长对话回答11—12小题。
( ) 11. What color does Gina like?A. BlackB. YellowC. Brown( ) 12. How old is Gina?A. 18B. 14C.16听下面一段长对话回答13—15小题。
陕西省西北农林科大附中2015-2016学年高二上学期第一次月考数学试卷第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.数列 ,11,22,5,2的一个通项公式是( )A. n a =n a = C. n a = D. n a =2.在ABC ∆中,00090,60,30===C B A ,那么三边之比a ∶b ∶c 等于( )A. 1∶2∶3B. 3∶2∶1C. 1∶3∶2D. 2∶3∶13.从甲处望乙处的仰角为α,从乙处望甲处的俯角为β,则α与β的关系为A .βα>B . βα=C .︒=+90βαD .︒=+180βα4.在ABC ∆中,ab c b a =-+222,则=C cos ( ) A.21 B.22 C.21- D.23 5.在等差数列{}n a 中,已知 69131620a a a a +++=,则S 21等于( )A .100B .105C .200D .06.在等比数列{}n a 中,2143a a a a +=+,则公比为( )A.1B.1或-1C.21或21- D.2或-2 7.在ABC ∆中,若21cos ,3==A a ,则ABC ∆的外接圆半径为( ) A.32 B.34 C.23 D.3 8.在ABC ∆中,已知A C B sin cos 2sin =,则ABC ∆的形状是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.直角三角形9.在ABC ∆中,已知角B=300,AB=32,AC=2. 则ABC ∆的面积为( ) A.3 B. 3或32 C.32 D.34或3210.在数列{}n x 中2,841==x x ,且满足+++∈=+N n x x x n n n ,212.则=10x ( )A.10-B.10C.20-D.20第Ⅱ卷(共50分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.设一个等差数列,由三个数组成,三个数之和为9 ,三个数的平方和为35,则公差d = .12.已知数列{}n a 的前n 项和132++=n n S n ,求数列{}n a 的通项公式 .13.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成600的视角,从B 岛望C 岛和A 岛成300的视角,则B 、C 间的距离是___________________海里.14. 在△ABC 中,若1a b ==, c =,则C ∠= . 三、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题10分).已知等差数列{}n a 满足1273-=⋅a a ,464a a +=-,求数列{}n a 的通项公式.16.(本小题共10分)如图,在塔底B 测得山顶C 的仰角为600,在山顶C 测得塔顶A 的俯角为450,已知塔高为AB=20m ,求山高CD.17.(本小题共10分)在ABC ∆中,c b a ,,分别是角A 、B 、C 的对边,且.0222=+-+ac b c a(1)求角B 的大小;(2)若4,13=+=c a b ,求ABC ∆的面积.附加题:(本题20分)18. (本小题5分) 边长为5、7、8的三角形的最大角与最小角之和为( )A. 90°B. 120°C. 135°D. 150°19. (本小题5分)已知数列{}n a 中,111,34(*2)n n a a a n N n -==+∈≥且,则数列{}n a 通项公式n a =______________.20.(本小题10分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111==b a , 2153=+b a ,1335=+b a .(1)求数列{}n a 、{}n b 的通项公式;(2)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n S .:。
西大附中高二2015-2016学年第一学期期中检测英语试题第I卷第一部分:听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的ABC三个选项中选出最佳选项。
1.What did the girl think of the exam?A. It was too easy.B. It was very difficult.C. The time was not enough.2.When was Danny born?A. On March 6th,1994.B. On March 16th,1994.C. On March 6th,1993.3.What’s the weather like now?A. It’s hot.B. It’s sunny.C. It’s rainy.4.Where do you think the man is going?A. The sports centre.B. A supermarket.C. The school.5.What did the woman do after she sent her son to school?A.She cleaned her house.B.She visited the museum.C. She went downtown to do some shopping.第二节(共15小题;每小题1分,满分15分)听第6段材料,回答第6至8题。
6.What day is it today?A. Friday.B. Saturday.C. Sunday.7.What is the girl going to do first?A.Have a class.B. Go to the zoo.C. Go home.8.Where are they going to meet?A.At the school gate.B. At the zoo.C. At the cinema.听第7段材料,回答第9至11题。
陕西省西北农林科大附中2015-2016学年高二上学期第一次月考英语试卷考试时间:100分钟满分:120第Ⅰ卷第一部分听力(共两节,满分20分)第一节 (共5小题;每小题1分,共5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where is John probably now?A. In the hospital.B. At school.C. At home.2. What does the woman mean?A. She forgot lending the book.B. She lost her book.C. She finished her paper.3. Why was the man annoyed?A. A policeman stopped him.B. A speeding car ran past him.C. The driver attempted to overcharge.4. Where are the speakers?A. In the hotel.B. In the restaurant.C. In the supermarket.5. What does the woman want to do?A. Find the computer room.B. Find a bulletin board.C. Get a computer.第二节 (共15小题;每小题1分,共15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话读两遍。
听第6段材料,回答6、7题。
6. Where is the man?A. In a car.B. In the elevator.C. In the street.7. What d oes the woman tell the man to do?A. Call the police.B. Wait for the help.C. Press the buttons.听第7段材料,回答8、9题。
8. Who hold the party this time?A. Jane and Ted.B. The woman and Jane.C. The woman and Ted.9. What is the woman?A. A teacher.B. A driver.C. A saleswoman.听第8段材料,回答第10至12题。
10. Where is the woman just now?A. In the hotel.B. In the hospital.C. At school.11. Why was the woman pulled over?A. She ran through a red light.B. Her left tail light stopped working.C. She went over the maximum speed.12. What does the woman get this time?A. A warning.B. A ticket.C. A heavy fine.听第9段材料,回答第13至16题。
13. When does the conversation take place?A. At the beginning of the term.B. In the middle of the term.C. At the end of the term.14. What’s the man’s regret about?A. He didn’t finish his paper.B. He didn’t listen to his teacher.C. He didn’t choose the topic he liked.15. What does the woman have on Friday?A. A lecture.B. A meeting.C. A test.16. When will the speakers meet?A. At 4:00 pm on Saturday.B. At 10:00 am on Sunday.C. At 4:00 pm on Sunday.听第10段材料,回答第17至20题。
17. Who is Mr Jordan most probably?A. The speaker’s business partner.B. The speaker’s old friends.C. The speaker’s colleague.18. What stopped the speaker meeting Mr Jordan at first?A. His missing the appointment.B. His arriving late.C. His sickness.19. Why did the speaker give up making another appointment?A. H e couldn’t reach Mr Jordan’s office.B. H e didn’t want to see Mr Jordan any more.C. H e didn’t want to take the trouble making it.20. What did the speaker think of his trip?A. I t didn’t do any good to his health.B. It was enjoyable but not fruitful.C. It was a complete disappointment.第二部分阅读理解(共两节,满分30分)第一节(共10小题;每小题2分,共20分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AA Guide to the UniversityFoodThe TWU Cafeteria is open 7am to 8pm. It serves snacks (小吃), drinks, ice cream bars and meals. You can pay with cash or your ID cards. You can add meal money to your ID cards at the Front Desk. Even if you do not buy your food in the cafeteria, you can use the tables to eat your lunch, to have meetings and to study.If you are on campus in the evening or late at night, you can buy snacks, fast food, and drinks in the Lower Cafe located in the bottom level of the Douglas Centre. This area is often used for entertainment such as concerts, games or TV watching. RelaxationThe Globe, located in the bottom level of McMillan Hall, is available for relaxing, studying, cooking, and eating. Monthly activities are held here for all international students. Hours are 10 am to 10 pm, closed on Sundays.HealthLocated on the top floor of Douglas Hall, the Wellness Centre is committed to physical, emotional and social health. A doctor and nurse is available if you have health questions or need immediate medical help or personal advice. The cost of this is included in your medical insurance. Hours are Monday to Friday, 9 am to noon and 1:00 to 4:30pm.Academic SupportAll students have access to the Writing Centre on the upper floor of Douglas Hall. Here, qualified volunteers will work with you on written work, grammar, vocabulary, and other academic skills. You can sign up for an appointment on the sign-up sheet outside the door, two 30-minute appointments per week maximum. This service is free. TransportationThe TWU Express is a shuttle (班车) service. The shuttle transports students betweencampus and the shopping centre, leaving from the Mattson Centre. Operation hours are between 9 am and 3 pm. Saturdays only. Round trip fare is $1.21. What can you do in the TWU Cafeteria?A. Do homework and watch TV.B. Have meals and meet with friendsC. Buy drinks and enjoy concerts.D. Add money to your ID and play chess22. Where and when can you cook your own food?A.The McMillan Hall , Sunday.B.The Lower Cafe, Sunday.C.The TWU Cafeteria , Friday.D.The Globe, Friday.23. The Guide tells us that the Wellness Centre _________.A.is open six days a weekB.offers services free of chargeC.gives advice on mental healthD.trains students in medical care24. How can you seek help from the Writing Centre?A.By applying online.B.By filling in a sign-up form.C.By calling the centre.D.By going to the centre directly.25. What is the function of TWU Express?A.To carry students to the lecture halls.B.To provide students with campus tours.C.To transport students to and from the stores.D.To take students to the Mattson Centre.BOne morning, Ann’s neighbor Tracy found a lost dog wandering around the local elementary school. She asked Ann if she could keep an eye on the dog. Ann said that she could watch it only for the day.Tracy took photos of the dog and printed off 400 FOUND fliers(传单), and put them in mailboxes. Meanwhile, Ann went to the dollar store and bought some pet supplies, warning her two sons not to fall in love with the dog. At the time, Ann’s son Thomas was 10 years old, and Jack, who was recovering from a heart operation, was 21 years old.Four days later Ann was still looking after the dog, whom they had started to call Riley. When she arrived home from work, the dog threw itself against the screen door and barked madly at her. As soon as she opened the door, Riley dashed into the boys’ room where Ann found Jack suffering from a heart attack. Riley ran over to Jack, but as soon as Ann bent over to help him the dog went silent.“If it hadn’t come to get me, the doctor said Jack would have died,” Ann reported to a local newspaper. At this point, no one had called to claim the dog,so Ann decided to keep it.The next morning Tracy got a call. A man named Peter recognized his lost dog and called the number on the flier. Tracy started crying, and told him, “That dog saved my friend’s son.”Peter drove to Ann’s house to pick up his dog, and saw Thomas and J ack crying in the window. After a few moments Peter said, “Maybe Odie was supposed to find you, maybe you should keep it.”26. What did Tracy do after finding the dog?A.She bought some food for it.B.She gave it to Ann as a gift.C.She sold it to the dollar store.D.She looked for its owner.27. How did the dog help save Jack?A.By breaking the door for Ann.B.By dragging Jack out of the room.C.By leading Ann to Jack’s room.D.By attending Jack when Ann was out.28. What was Ann’s attitude to the dog according to Paragraph 4?A.GratefulB.DoubtfulC.TolerantD.Sympathetic29. For what purpose did Peter call Tracy?A.To help her friend’s son.B.To take back his dog.C.To interview Tracy.D.To return the flier to her.30. What can we infer about the dog from the last paragraph?A.It would be given to Odie.B.It would be returned to Peter.C.It would be kept by Ann’ family.D.It would be taken away by Tracy.第二节(共5小题;每小题2分,共10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。