有限差分法在时谐场中的应用
- 格式:pdf
- 大小:336.04 KB
- 文档页数:3
时域有限差分法分析混晌室中场的均匀性黄华;牛中奇;白冰【摘要】针对目前仿真分析混响室内的场分布过程中计算量大、耗费时间长和对计算机配置要求高的现状,用在一定的约束条件下随机分布于球面上的一组等效源辐射的平面电磁波叠加而成的一维推进的重叠平面渡模拟搅拌器搅拌过程中混响室内的电磁波,并采用时域有限差分法(FDTD)法对基于上述模型的混响室内的场分布进行了仿真计算,得出了使混响室内场分布达到不同均匀度要求时所需的最佳重叠入射平面波的数目.结果表明:采用的方法不仅可以有效缩短混响室设计中必须首先进行仿真分析的仿真计算时间,而且可针对预设场分布的均匀度要求,有目的地设置等效源的个数和位置,从而使整个仿真过程更加集约化.【期刊名称】《电波科学学报》【年(卷),期】2011(026)001【总页数】9页(P124-132)【关键词】混响室;时域有限差分法(FDTD);重叠平面波;场均匀性【作者】黄华;牛中奇;白冰【作者单位】西安电子科技大学电子工程学院,陕西,西安,710071;西安电子科技大学电子工程学院,陕西,西安,710071;西安电子科技大学电子工程学院,陕西,西安,710071【正文语种】中文【中图分类】TN981.引言从众多研究者的工作可知,混响室可采用多种数值方法进行仿真分析:矩量法(MOM)[1];时域有限差分法(FDTD)[2-6];有限元法(FEM)[7-8];FDTD与MOM混合法[9];FEM与FDTD混合法[10];平面波积分表示法[11];传输线矩阵法(TLM)[12]等。
在经典的仿真分析中,建立的混响室模型一般由混响室的内部空间、搅拌器及天线三部分组成[13]。
图1所示即为混响室测试示意图。
图1 混响室测试示意图通常,仿真计算中耗费的时间与混响室的体积、六个壁面所用导体的电导率、电磁波的频率范围以及受试设备自身的特性有关,然而这会使得计算量很大,因而十分耗时,有时要用微机实现仿真几乎是不可能的。
数值分析方法在电磁场计算中的应用电磁场是物理学中最重要的一部分之一,它广泛应用于现代工业、交通、通信、能源和医疗设备等领域。
因此,研究电磁场的行为对于建立新技术和改进现有技术非常重要。
不过由于电磁场是一个非线性的动态系统,因此分析它的行为非常困难。
为了解决这个问题,我们需要数值分析方法来帮助我们更好地理解电磁场的行为。
电磁场的计算方法有很多种,常见的有有限元法、有限差分法等等。
本文将着重介绍有限差分法在电磁场计算中的应用。
有限差分法是经典的数值计算方法,它是一种数值求解偏微分方程的方法。
它的基本原理是将要求解的偏微分方程转化为差分方程,然后利用计算机来求解这个差分方程。
有限差分法的求解过程是离散化的,因此它更便于计算机的处理,同时它的数值误差也比较小。
有限差分法在电磁场计算中的应用非常广泛。
我们可以利用有限差分法来计算电磁场的强度、分布、辐射等参数。
下面我们将介绍一些在电磁场计算中使用有限差分法的实例。
首先,我们来看一个简单的电磁场问题:平面电容器之间的电场强度。
在这个问题中,我们需要求解电场的分布情况。
我们可以利用有限差分法来求解这个问题。
将计算区域离散化成若干个网格点,然后利用电场的高斯定理,将它的积分式子转化为差分式子,最后用差分方程来求解电场值。
在电磁场计算中,还有一些需要注意的问题。
首先是边界条件的处理。
由于有限差分法是一种离散的方法,因此我们需要在计算区域的外部放置边界条件。
这些边界条件包括电场的值、电势的值、电荷密度等等。
其次是计算精度的问题。
由于有限差分法是一种数值方法,因此它的计算精度有时会受到误差的影响。
我们可以通过适当地选择网格点的数量和大小来提高计算精度。
总体来说,有限差分法在电磁场计算中的应用非常广泛,并且具有很好的计算效果。
在实际应用中,我们需要根据具体问题选择合适的数值计算方法,并且在计算时注意处理边界条件和计算精度的问题。
一、 设计任务采用FDTD 数值计算的方法来分析理想谐振腔中的场,谐振腔尺寸为25*12.5*60mm 填充空气,采用直角坐标系下的场分量迭代公式,激励源采用高斯脉冲源,源的参数根据谐振腔的尺寸来确定。
分析时间和空间离散度以及采样点数对分析结果的影响。
二、 方案设计(1)学习FDTD 理论,并推导直角坐标系下maxwell 方程的差分方程;(2)理论学习并推导理想矩形谐振腔中的时谐场,并分析其谐振频率分布; (3)激励源采用高斯脉冲源,导体采用PEC 边界,利用FDTD 编程求解谐振腔内的场分量;(4)对谐振腔内部分点处的采样数据进行频谱分析,提取其谐振频率分布,并与理论对比,并分析时间和空间离散度以及采样点数对分析结果的影响。
三、 设计原理3.1时域有限差分法FDTD(finite diference time domain)方法属于全波分析法, 它是Yee 在1966年所提出的数值方法“ ,其原理是将麦克斯韦方程式中两个微分形式的旋度方程式以中心差分式做离散化。
求解过程由递推完成,尤其适合计算机编程实现。
3.1.1有限差分法有限差分法是用变量离散的、含有有限个未知数的差分方程近似的代替连续变量的微分方程,即构造合理的差分格式,使其解能保持原问题的主要性质,并有相当高的精确度。
假设f(x),为x 的连续函数,在x 轴上每隔h 距离取一点,其中任意某一点用x i 表示,则叫做f(x)在x i 点的中心差分。
在时域有限差分法中正是用中心差商代替微商,同时用Max-well 方程组建立差分方程。
3.1.2 Yee ’s 差分算法H E, 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理tt ∂∂=∂∂=⨯∇ED H εt t ∂∂-=∂∂-=⨯∇HB E μ--(1)如图3-1所示,Yee 单元有以下特点:(1)E 与H 分量在空间交叉放置,相互垂直;(i ,(i ,j+1,k+1)(i+1,(i+1,j+1,k+1)E yE x(2)每一坐标平面上的E分量四周由H分量环绕,H分量的四周由E分量环绕;(3)每一场分量自身相距一个空间步长,E和H相距半个空间步长(4)电场取n时刻的值,磁场取n+0.5时刻的值;(5)电场n+1时刻的值由 n 时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n+1时刻的旋度对应(n+1)+0.5时刻的磁场值,磁场n+0.5时刻的旋度对应 (n+0.5)+0.5时刻的电场值;(6)3个空间方向上的时间步长相等,以保证均匀介质中场量的空间变量与时间变量完全对称。
偏微分方程的有限差分法及地球物理应用有限差分法是一种常用的数值求解偏微分方程的方法。
它将连续的偏微分方程转化为离散的差分方程,通过近似求解差分方程,得到偏微分方程的数值解。
这种方法在地球物理学中有着广泛的应用,如地震波传播模拟、电磁场分布计算等领域。
首先,假设我们要研究地震波在地下介质中的传播,可以采用波动方程来描述地震波的传播过程。
波动方程可以写成:∂^2u/∂t^2 = c^2∇^2u其中,u是地震波场,c是地下介质中的波速。
为了用有限差分法求解波动方程,我们需要将连续的空间和时间离散化。
假设我们将空间离散化为网格点(i,j,k),其中i,j,k分别代表空间的x,y,z方向,将时间离散化为时间步长Δt。
对波动方程进行近似,我们可以得到:(u(i,j,k,t+Δt) - 2u(i,j,k,t) + u(i,j,k,t-Δt))/Δt^2 = c^2(u(i+1,j,k,t) + u(i-1,j,k,t) + u(i,j+1,k,t) + u(i,j-1,k,t) +u(i,j,k+1,t) + u(i,j,k-1,t) - 6u(i,j,k,t))/Δx^2将此差分方程应用于地震波传播模拟,我们可以得到地震波场在空间和时间上的离散解。
有限差分法在地球物理中有着广泛的应用。
例如,它可以用于模拟地震波在地下介质中的传播,帮助研究地震灾害的发生机制和地下构造的特征。
通过调整网格的大小和时间步长,可以模拟不同频率的地震波传播过程,从而了解地震波在不同介质中的传播规律。
此外,有限差分法还可以应用于电磁场的计算。
例如,在电磁勘探中,可以利用有限差分法求解麦克斯韦方程,计算电磁场在地下介质中的传播和散射过程。
通过模拟电磁场的分布情况,可以帮助研究地下矿产资源的寻找和勘探。
需要注意的是,有限差分法在应用过程中还需要考虑边界条件的处理。
通常情况下,边界条件是已知的,例如地震波在地表的边界条件可以假设为自由表面,电磁场计算中的边界条件可以假设为电场和磁场的边界条件等。
有限差分法的原理及应用1. 前言有限差分法(Finite Difference Method)是一种常见的数值计算方法,用于求解偏微分方程(Partial Differential Equations,简称PDE)。
它通过在求解域中采用离散点来逼近微分算子,将连续的微分方程转换为离散的代数方程,从而实现对PDE的数值求解。
有限差分法具有简单易懂、易于实现的优点,被广泛应用于科学计算、工程分析等领域。
2. 原理有限差分法的原理基于以下两个基本思想: - 寻找定义域上的离散点,并通过这些离散点来近似表示原方程中的未知函数。
- 使用差分格式来近似微分算子,从而将偏微分方程转化为代数方程组。
具体而言,有限差分法将定义域按照均匀的网格划分为一个个网格点,这些点被称为节点。
同时,有限差分法还使用网格点上的函数值来近似表示原方程中的未知函数。
通过将对原方程中的微商用差商来近似表示,然后将差商带入到原方程中,得到离散的代数方程。
3. 应用有限差分法广泛应用于各个科学领域和工程领域中的数值计算问题。
以下列举几个常见的应用领域:3.1 流体力学在流体力学中,有限差分法被用来模拟流体的运动。
通过将流体领域离散化,将流体的速度、压力等参数表示为离散点上的函数值,可以使用有限差分法求解Navier-Stokes方程,从而得到流体的流动行为。
3.2 热传导有限差分法可以用于求解热传导方程。
通过将传热领域离散化,并将温度表示为离散点上的函数值,可以使用有限差分法求解热传导方程,从而得到材料内的温度分布。
3.3 结构力学有限差分法也被广泛用于求解结构力学中的问题。
例如,在弹性力学中,可以通过将结构域离散化,并将结构的位移、应力等参数表示为离散点上的函数值,使用有限差分法求解相应的弹性方程,从而得到结构的应力分布和变形情况。
3.4 电磁场分析在电磁场分析中,有限差分法被用来求解麦克斯韦方程组。
通过将电磁场的定义域离散化,并将电场、磁场等参数表示为离散点上的函数值,可以使用有限差分法求解麦克斯韦方程组,从而得到电磁场的分布情况。
多物理场耦合模拟的数值方法在多物理场耦合模拟中,数值方法是一种非常重要的工具。
它可以帮助我们解决复杂的物理问题,并得出准确的结果。
本文将介绍一些常见的多物理场耦合模拟数值方法,并讨论它们的优缺点以及应用领域。
1. 有限差分法(Finite Difference Method)有限差分法是一种最为基础的数值方法。
它将连续的物理问题转化为离散的差分方程,并利用数值逼近的方法求解。
在多物理场耦合模拟中,有限差分法可以用于求解偏微分方程,如热传导方程、流体力学方程等。
它的优点是简单易懂,适用于各种不规则几何形状的模型。
然而,有限差分法的精度受到网格划分的限制,对边界条件的处理也相对复杂。
2. 有限元法(Finite Element Method)有限元法是一种广泛应用于多物理场耦合模拟的数值方法。
它将连续的物理问题转化为离散的有限元模型,通过对模型进行适当的近似和离散,得到一组代数方程,并通过求解这组方程得到数值解。
有限元法可以应用于各种各样的物理场耦合问题,如结构与温度耦合、流固耦合等。
相比于有限差分法,有限元法的精度更高,模型逼真度更高,但也相对复杂。
3. 边界元法(Boundary Element Method)边界元法是一种有效的数值方法,特别适用于具有无穷域区域边界的问题。
边界元法将问题转化为边界积分方程,并通过数值近似求解。
相比于有限元法,边界元法不需要离散整个区域,只需要离散边界,大大简化了计算过程。
在多物理场耦合模拟中,边界元法可以用于求解电磁场、声场等问题,具有较高的计算效率。
4. 间接耦合法(Monolithic Approach)间接耦合法是一种常见的多物理场耦合数值方法。
它通过联立多个物理场的方程,构建一个大规模的线性方程组,并通过求解这个方程组得到耦合解。
间接耦合法可以应用于各种不同的物理场问题,如流固耦合、热电耦合等。
它的优点是灵活性强,适用于各种不同的耦合问题,但也要求高效的求解方法来解决大规模方程组的求解问题。
计算电磁场理论中的有限差分法与有限元法电磁场理论是电磁学的重要组成部分,研究电磁场的分布和变化规律对于解决实际问题具有重要意义。
在计算电磁场中,有限差分法和有限元法是两种常用的数值计算方法。
本文将从理论原理、应用范围和优缺点等方面对这两种方法进行探讨。
有限差分法是一种将连续问题离散化的方法,通过将连续的电磁场分割成网格,然后在每个网格上进行离散计算。
这种方法的基本思想是将微分方程转化为差分方程,然后利用差分方程进行求解。
有限差分法的优点是简单易懂,计算过程直观,适用于各种电磁场问题的求解。
然而,由于差分法中的网格离散化会引入一定的误差,所以在计算精度上存在一定的限制。
与有限差分法相比,有限元法是一种更加精确的数值计算方法。
有限元法将电磁场问题的求解区域划分为有限个小单元,然后在每个小单元上建立适当的插值函数,通过求解代数方程组得到电磁场的近似解。
有限元法的优点是可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题。
然而,有限元法的计算过程相对较为复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题,计算量也较大。
在实际应用中,根据具体问题的特点和求解要求,选择合适的数值计算方法是十分重要的。
对于简单的电磁场问题,如一维导线的电流分布,可以选择有限差分法进行求解。
而对于复杂的电磁场问题,如三维空间中的电磁波传播,有限元法更适合。
此外,有限差分法和有限元法还可以结合使用,通过将两种方法的优点相结合,提高计算精度和效率。
除了理论原理和应用范围,有限差分法和有限元法的优缺点也值得关注。
有限差分法的优点是简单易懂,计算过程直观,而且对于一些简单问题可以得到较为准确的结果。
然而,由于差分法中的网格离散化会引入一定的误差,对于复杂问题的求解精度有限。
相比之下,有限元法可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题,计算精度较高。
然而,有限元法的计算过程相对复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题计算量较大。