4.13平方差公式和完全平方公式复习
- 格式:ppt
- 大小:524.00 KB
- 文档页数:26
完全平方公式与平方差公式
1. 完全平方公式:
完全平方公式是一个用于计算平方数的公式,它的形式为:
(a + b)²= a²+ 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出一个由两个实数a和b相加的数的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相加。
接着,你需要计算2ab,这个2ab的意思是a和b的乘积的两倍。
最后,将这些结果相加就得到了(a + b)²的值。
2. 平方差公式:
平方差公式是一个用于计算两个实数之差的平方的公式,它的形式为:
(a - b)²= a²- 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出两个实数a和b之间的差的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相减。
接着,你需要计算-2ab,这个-2ab的意思是a和b的乘积的两倍的相反数。
最后,将这些结果相加就得到了(a - b)²的值。
这两个公式在数学中非常有用,它们可以帮助我们在计算中快速求出平方数和差的平方。
了解它们的含义和用法可以帮助我们更好地理解数学的基本概念。
平方差公式:两个数的和乘两个数的差的乘积,等于这两个数的平方差 例1:(X+2)(X-2) (2x+21y) (2x-21y) (a+b-c)(a-b+c)(-3x-2y )(3x-2y) (2x+y-z+10)(2x-y+z+10)练习:1、计算(x-2y )(-2y-x)-(3x+4y)(-3x+4y) (x-2)(16+x 4)(2+x)(4+x 2)(2a+b-c-3d)(2a-b-c+3d) (m+n+p+q )(m-n-p-q )例2: 98×102 982(用平方差公式)练习:103×97 118×122 1032例3:(1+xy2)(1-xy2)(-1-x2y4) (x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8. y=8练习:11、(1-2a)(1+2a)(1+4a2)(1+16a4),其中a=-22、(x-y)(x2+y2)(x4+y4)¨¨¨¨(x16+y16)3、(22+1)(24+1)(28+1)(216+1)完全平方公式:1、两个数和的平方,等于这两个数的平方和,加上这两个数积的2倍。
2、两个数差的平方,等于这两个数的平方和,减去这两个数积的2倍。
例4:(2a+3b)2 598 2 (-m-4n)2 (a-2b)2练习:102289.82 (-2a-b)2例5:()?, 2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa++=+-=+=-+=+练习:1、已知x+y=7,xy=2,求:①2x2+2y2的值;②(x-y)2的值.2、如果x+y=6, xy=7, 那么x2+y2=,(x-y)2=。
3、(09深圳)用配方法将代数式a2+4a-5变形,结果正确的是()A.(a+2)2-1B.(a+2)2-5C.(a+2)2+4D.(a+2)2-94、已知x-1÷x=3,求x2-1÷x25、已知x 2 – 4=0,求代数式x(x+1)2 –x(x 2+x)-x-7的值一、科学记数法:1、绝对值大于10的数:na 10⨯ (1≤a 〈10 ,n 是原数的整数位数减1〉 2、绝对值小于1的数:n a -⨯10 (1≤a 〈10,n 是有效数字前0的个数)1米=1000000微米=100万微米 1米=100000000010亿纳米例6:(1)用科学记数法表示下列各数: 696000000 300000000 0.146 -0.000000017例7:人体内的某种细胞中,每个细胞的面积约为1.9×10-12平方米,在一平方厘米的面积内,一层这样的细胞大约有多少万个? 练习:1、100张100元的新版人民币约0.9 cm 厚,则每张新版100元人民币的厚度为________cm(用科学记数法表示).2、人体内一种细胞的直径为 4.3微米,用科学记数法表示这种细胞的直径为 米。
平方差公式和完全平方差公式
1、公式不同
完全平方差公式:(a-b)²=a²-2ab+b²。
平方差公式:a²-b²=(a+b)(a-b)。
2、计算具体数据结果不同(若a=2,b=1)
完全平方差公式:(a-b)²=a²-2ab+b²=1。
平方差公式:a²-b²=(a+b)(a-b)=3。
3、表达意思不同
完全平方差公式:两数差的平方,等于它们的平方和减去它们的积的2倍。
平方差公式:指两个数的和与这两个数差的积,等于这两个数的平方差。
完全平方公式口诀:
首平方,尾平方,首尾相乘放中间。
或首平方,尾平方,两数二倍在中央。
也可以是:首平方,尾平方,积的二倍放中央。
(a±b)²=a²±2ab+b²
同号加、异号减,负号添在异号前。
1
即(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²
注意:后面一定是加号。
2。
第03讲平方差和完全平方公式1.掌握平方差和完全平方公式结构特征,并能从广义上理解公式中字母的含义;2.学会运用平方差和完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3.能灵活地运用运算律与乘法公式简化运算.4.能用平方差和完全平方公式的逆运算解决问题知识点1:平方差公式平方差公式:22()()a b a b a b+-=-语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差.注意:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2=x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2知识点3:完全平方公式完全平方公式:()2222a b a ab b+=++2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab=-+()()224a b a b ab+=-+知识点4:拓展、补充公式2222222a b c ab ac bc=+++++(a+b+c)222112a a a±=+±(a )2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=± ;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++.【题型1平方差公式运算】【典例1】(2023春•渭南期中)计算(3a +2)(3a ﹣2)=9a 2﹣4.【答案】9a 2﹣4.【解答】解:(3a +2)(3a ﹣2)=9a 2﹣4.故答案为:9a 2﹣4.【变式1-1】(2023春•蕉城区校级月考)若a +b =1,a ﹣b =2022,则a 2﹣b 2=2022.【答案】2022.【解答】解:∵a +b =1,a ﹣b =2022,∴(a+b)(a﹣b)=a2﹣b2=1×2022=2022.故答案为:2022.【变式1-2】(2023春•双峰县期末)(4a+b)(﹣b+4a)=16a2﹣b2.【答案】16a2﹣b2.【解答】解:原式=(4a)2﹣b2=16a2﹣b2.故答案为:16a2﹣b2.【变式1-3】(2023春•埇桥区期末)计算:(2x﹣3y)(3y+2x)=4x2﹣9y2.【答案】4x2﹣9y2.【解答】解:(2x﹣3y)(3y+2x)=(2x)2﹣(3y)2=4x2﹣9y2.故答案为:4x2﹣9y2.【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【答案】﹣3995.【解答】解:原式=(2000﹣1)2﹣(2000﹣2)×(2000+2)=20002﹣4000+1﹣20002+4=﹣3995.【变式2-1】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.【答案】4.【解答】解:20222﹣2020×2024=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣4)=20222﹣20222+4=4.【变式2-2】(2023春•安乡县期中)计算:20222﹣2021×2023.【答案】1.【解答】解:20222﹣2021×2023.=20222﹣(2022﹣1)×(2022+1)=20222﹣20222+1=1.【变式2-3】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【答案】810000.【解答】解:899×901+1=(900﹣1)×(900+1)+1=9002﹣1+1=810000.【题型2平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是3.【答案】3.【解答】解:∵x+2y=13,x2﹣4y2=39,∴x2﹣4y2=(x+2y)(x﹣2y)=39,∴x﹣2y=3.故答案为:3.【变式3-1】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于﹣2.【答案】﹣2.【解答】解:∵(m+n)(m﹣n)=m2﹣n2,∴m﹣n=(m2﹣n2)÷(m+n)=6÷3=2,∴n﹣m=﹣2,故答案为:﹣2.【变式3-2】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为10.【答案】10.【解答】解:∵a2﹣b2=40,∴(a+b)(a﹣b)=40,∵a﹣b=4,∴a+b=10.故答案为:10.【变式3-3】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=1.【答案】1.【解答】解:∵m2﹣n2=6,m+n=3,∴(m﹣n)(m+n)=6,则m﹣n的值是2,∴=1.故答案为:1.【题型3平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:B.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【答案】(1)B;(2)a﹣b=4;(3).【解答】解:(1)第一个图形面积为a2﹣b2,第二个图形的面积为(a+b)(a ﹣b),∴可以验证的等式是:a2﹣b2=(a+b)(a﹣b),故答案为:B;(2)∵a+b=7,a2﹣b2=28,∴(a+b)(a﹣b)=28,即7(a﹣b)=28,∴a﹣b=4;(3)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×...×(1﹣)×(1+)=××××××...××=×=.【变式4-1】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是D.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=2;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【答案】(1)D;(2)2;(3)①1;②332.【解答】解:(1)如图,图1中阴影面积为a2﹣b2,图2的阴影面积为(a+b)(a﹣b),∴图1到图2的操作能验证的等式是a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)∵4m2=12+n2,∴4m2﹣n2=12即(2m+n)(2m﹣n)=12,∵2m+n=6,∴2m﹣n=2,故答案为:2;(3)①20232﹣2022×2024=20232﹣(2023﹣1)×(2023+1)=20232﹣20232+1=1;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)+1=(38﹣1)×(38+1)×(316+1)+1=(316﹣1)×(316+1)+1=332﹣1+1=332.【变式4-2】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:C(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【答案】(1)C;(2)①﹣1,2128.=a2﹣b2.根据图2知:S阴影=(a+b)(a 【解答】解:(1)根据图1知:S阴影﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:C.(2)①原式=(2023﹣1)(2023+1)﹣20232=20232﹣12﹣20232=﹣1.②原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(264+1)+1=(24﹣1)(24+1)(28+1)…(264+1)+1=(2128﹣1)+1=2128.【变式4-3】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【答案】(1)(a+b)(a﹣b)=a2﹣b2;(2)①4;②4m2+4mn+n2﹣p2.【解答】解:(1)两个图形中阴影部分面积一致,大小正方形面积之差等于等腰梯形的面积,且等腰梯形的高为大小正方形边长差,故;故答案为:(a+b)(a﹣b)=a2﹣b2;(2)①1002﹣98×102=1002﹣(100﹣2)(100+2)=1002﹣(1002﹣22)=1002﹣1002+22=4②(2m+n﹣p)(2m+n+p)=(2m+n)2﹣p2=4m2+4mn+n2﹣p2.【题型4完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=8x+16.【答案】8x+16.【解答】解:(x+4)2﹣x2=x2+8x+16﹣x2=8x+16,故答案为:8x+16.【变式5-1】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=6.【答案】见试题解答内容【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.【变式5-2】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为±12.【答案】±12.【解答】解:∵(2x﹣m)2=4x2﹣4mx+m2,∴m2=9,∴m=±3,∴n=﹣4m=±12.故答案为:±12.【变式5-3】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【答案】3x+6.【解答】解:原式=x2+4x+4+2+x﹣2x﹣x2=3x+6.【题型5完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:=(m﹣n)2;方法一:S小正方形=(m+n)2﹣4mn;方法二:S小正方形(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为(m+n)2=(m﹣n)2+4mn;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【答案】(1)(m﹣n)2,(m+n)2﹣4mn;(2)(m+n)2=(m﹣n)2+4mn;(3)①1;②5.【解答】解:(1)方法1:;方法2:,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)∵(m+n)2=m2+2mn+n2,(m﹣n)2+4mn=m2﹣2mn+n2+4mn=m2+2mn+n2,∴(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)①a﹣b=5,ab=﹣6,∴(a+b)2=(a﹣b)2+4ab,=52+4×(﹣6)=25+(﹣24)=1;②=12+4=1+4=5.【变式6-1】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x﹣y.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x﹣y)2;方法2:(x+y)2﹣4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(x+y)2=(x﹣y)2+4xy(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=4.【答案】见试题解答内容【解答】解:(1)图②中的阴影部分的小正方形的边长=x﹣y;故答案为:(x﹣y);(2)方法①(x﹣y)2;方法②(x+y)2﹣4xy;故答案为:(x﹣y)2,(x+y)2﹣4xy;(3)(x+y)2=(x﹣y)2+4xy;故答案为:(x+y)2=(x﹣y)2+4xy;(4)(x﹣y)2=(x+y)2﹣4xy=42﹣12=4故答案为:4.【变式6-2】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:(m+n)2﹣4mn;方法二:(m﹣n)2.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b =6,ab=5,求a﹣b的值.【答案】(1)(m+n)2﹣4mn,(m﹣n)2;(2)代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)±4.【解答】解:(1)由题意得,图②中阴影部分的面积为(m+n)2﹣4mn或(m﹣n)2,故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由(1)题可得,(m+n)2﹣4mn=(m﹣n)2,∴代数式(m+n)2,(m﹣n)2,mn之间的等量关系可表示为:(m+n)2﹣4mn=(m﹣n)2;(3)由(2)题结果可得,(a+b)2﹣4ab=(a﹣b)2,∴a﹣b=±,∴当a+b=6,ab=5时,a﹣b=±=±==±4.【变式6-3】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH 和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【答案】(1)﹣;(2)384.【解答】解:(1)设2021﹣x=a,x﹣2008=b.则a+b=3,而(2021﹣x)2+(x﹣2018)2=2020=a2+b2,∴(2020﹣x)(x﹣2018)=ab===﹣;(2)由AB=20,BC=12,BE=DF=x,则CE=12﹣x,CF=20﹣x,∵矩形CEPF的面积为160平方单位,∴(12﹣x)(20﹣x)=160,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分设12﹣x=m,20﹣x=n,则mn=160,m﹣n=﹣8,∴S=CE2+FC2=(12﹣x)2+(20﹣x)2,阴影部分=m2+n2=(m﹣n)2+2mn=64+320=384,即阴影部分的面积为384.【题型6完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【答案】(1);(2)2;(3).【解答】解:(1)∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,∵a2+b2=3,∴3+2ab=4,∴ab=;(2)(a﹣b)2=(a+b)2﹣4ab=4﹣4×=2;(3)a4+b4=(a2+b2)2﹣2a2b2=(a2+b2)2﹣2(ab)2=32﹣2×()2=9﹣=.【变式7-1】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【答案】(1)13;(2)42.【解答】解:(1)因为m+n=6,mn=﹣3,所以(m+2)(n+2)=mn+2m+2n+4=mn+2(m+n)+4=﹣3+2×6+4=13.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.【变式7-2】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【答案】见试题解答内容【解答】解:(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.【变式7-3】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.【答案】(1)44;(2)﹣12.【解答】解:(1)因为m﹣n=6,mn=4,所以m2+n2=(m﹣n)2+2mn=62+2×4=36+8=44;(2)因为m﹣n=6,mn=4,所以(m+2)(n﹣2)=mn﹣2m+2n﹣4=mn﹣2(m﹣n)﹣4=4﹣2×6﹣4=﹣12.1.(2023•深圳)下列运算正确的是()A.a3•a2=a6B.4ab﹣ab=4C.(a+1)2=a2+1D.(﹣a3)2=a6【答案】D【解答】解:A,a3•a2=a3+2=a5,故A选项错误,不合题意;B,4ab﹣ab=3ab,合并同类项结果错误,故B选项错误,不合题意;C,(a+1)2=a2+2a+1,故C选项错误,不合题意;D,(﹣a3)2=a3×2=a6,故D选项正确,符合题意;故选:D.2.(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【答案】A【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.3.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【答案】A【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.4.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【答案】A【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.5.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是±2.【答案】±2.【解答】解:∵y2﹣my+1是完全平方式,y2﹣2y+1=(y﹣1)2,y2﹣(﹣2)y+1=(y+1)2,∴﹣m=﹣2或﹣m=2,∴m=±2.故答案为:±2.6.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为2.【答案】2.【解答】解:∵a+b=2,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=2×1=2.故答案为:2.7.(2023•江西)化简:(a+1)2﹣a2=2a+1.【答案】2a+1.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+1.8.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【答案】8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.9.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=4.【答案】4.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.10.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为或﹣..【答案】见试题解答内容【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t=或t=.故答案为:或﹣.11.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为90.【答案】90.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.12.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=4.【答案】4.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:413.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).【答案】x2﹣3y.【解答】解:原式=x2﹣4y2﹣(3y﹣4y2)=x2﹣4y2﹣3y+4y2=x2﹣3y.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积a2﹣M;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.【答案】(1)a2﹣M;(2)50.【解答】解:(1)A中能使用的面积=大正方形的面积﹣不能使用的面积,即a2﹣M,故答案为:a2﹣M;(2)A比B多出的使用面积为:(a2﹣M)﹣(b2﹣M)=a2﹣b2=(a+b)(a﹣b)=10×5=50,答:A比B多出的使用面积为50.1.(2023春•市南区校级期中)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)【答案】D【解答】解:∵(2a+b)(2b﹣a)不符合平方差公式的特点,∴选项A不符合题意;∵(x+1)(﹣x﹣1)=﹣(x+1)2,∴选项B不符合题意;∵(3x﹣y)(﹣3x+y)=﹣(3x﹣y)2,∴选项C不符合题意;∵(﹣m+n)(﹣m﹣n)=(﹣m)2﹣n2,∴选项D符合题意;故选:D.2.(2022秋•睢阳区期末)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2 C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【答案】D【解答】解:∵图1中的阴影部分面积为:a2﹣b2,图2中阴影部分面积为:(2b+2a)(a﹣b),∴a2﹣b2=(2b+2a)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:D.3.(2022秋•嵩县期末)已知x+y=8,xy=12,则x2﹣xy+y2的值为()A.42B.28C.54D.66【答案】B【解答】解:∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=82﹣3×12=64﹣36=28.故选:B.4.(2022秋•海口期末)等式(﹣a﹣1)()=a2﹣1中,括号内应填入.A.a+1B.﹣1﹣a C.1﹣a D.a﹣1【答案】C【解答】解:结合题意,可知相同项是﹣a,相反项是1和﹣1,∴空格中应填:1﹣a.故选:C.5.(2022秋•离石区期末)若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±4【答案】D【解答】解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选:D.6.(2023春•攸县期末)若x2﹣y2=3,则(x+y)2(x﹣y)2的值是()A.3B.6C.9D.18【答案】C【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,∴原式=32=9,故选:C.7.(2022秋•邹城市校级期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣2【答案】B【解答】解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.8.(2022秋•渝北区校级期末)化简:(x+2y)2﹣(x+y)(3x﹣y).【答案】﹣2x2+2xy+5y2.【解答】解:原式=x2+4xy+4y2﹣(3x2﹣xy+3xy﹣y2)=x2+4xy+4y2﹣3x2+xy﹣3xy+y2=﹣2x2+2xy+5y2.9.(2023春•渭滨区期中)请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.【答案】(1)998001;(2)1.【解答】解:(1)原式=(1000﹣1)2=10002﹣2×1000×1+1=1000000﹣2000+1=998001;(2)20222﹣(2022﹣1)×(2022+1)=20222﹣20222﹣+1=1.10.(2022秋•龙湖区期末)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14.求:①a+b的值;②a2﹣b2的值.【答案】见试题解答内容【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2,(a+b)2﹣2ab,(2)a2+b2=(a+b)2﹣2ab,(3)①∵a2+b2=53,ab=14,∴(a+b)2=a2+b2+2ab=53+2×14=81,∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵(a﹣b)2=a2+b2﹣2ab=53﹣2×14=25∴a﹣b=±5又∵a>b>0,∴a﹣b=5∴a2﹣b2=(a+b)(a﹣b)=9×5=45.11.(2022秋•高安市期末)已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.【答案】(1)53.(2)57.【解答】解:(1)∵a+b=7,ab=﹣2,∴(a+b)2=a2+b2+2ab=a2+b2+(﹣4)=49.∴a2+b2=53.(2)∵a+b=7,ab=﹣2,∴(a﹣b)2=a2+b2﹣2ab=a2+b2﹣(﹣4)=53+4=57.12.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.【答案】(1)5;(2)47.【解答】解:(1)∵=,∴===﹣4x•=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.13.(2022秋•阳城县期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是C;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.【答案】(1)C;(2);(3).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y),得:x﹣2y=3,联立,①+②,得2x=7,解得:x=;②=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)==×=.14.(2023春•威海期中)利用简便方法计算:(1)501×499+1;(2)0.125×104×8×104.【答案】见试题解答内容【解答】解:(1)原式=(500+1)×(500﹣1)+1=5002﹣1+1=5002=250000;(2)原式=(0.125×8)×(104×104)=108.15.(2022秋•南昌期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(4)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.【答案】答:(1)4a﹣4b;(2)(a﹣b)2=(a﹣b)2+4ab;(3)m+n=±2;=.(4)S阴影【解答】解:(1)阴影部分的正方形边长为a﹣b,故周长为4(a﹣b)=4a﹣4b,故答案为:4a﹣4b;(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab+(a ﹣b)2,大正方形边长为a+b,故面积也可以表达为:(a+b)2,因此(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)可知:(m+n)2=(m﹣n)2+4mn,已知m﹣n=4,mn=﹣3,所以(m+n)2=16+4×(﹣3)=4,所以m+n=±2;故m+n的值为±2;(4)设AC=a,BC=b,因为AB=8,S1+S2=26,所以a+b=8,a2+b2=26,因为(a+b)2=a2+b2+2ab,所以64=26+2ab,解得ab=19,由题意:∠ACF=90°,=ab=.所以S阴影16.(2022秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac =38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).【答案】见试题解答内容【解答】解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45.(3)如图所示。
平方差公式与完全平方公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平方差公式与完全平方公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平方差公式与完全平方公式的全部内容。
文案大全文案大全平方差公式与完全平方公式(a+b )2 = a 2+2ab+b 2(a -b)2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平方差公式的应用:例1、利用平方差公式进行计算: (1)(5+6x)(5-6x ) (2)(x +2y )(x -2y) (3)(-m +n)(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-)(2)(-m -n )(m -n )(3)(m +n )(n -m)+3m 2(4)(x+y )(x -y)(x 2-y 2) 解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平方公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2 (3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平方公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:文案大全试一试:计算:123456789×123456787-1234567882=_______________应用3、乘法公式的综合应用: 例6、计算: (1)(x+5)2-(x+2)(x -2) (2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解:例7、(1)若4ax x 412++是完全平方式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平方式,则M=_______________例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a1a 22=+ (3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222----(2))12()12)(12)(12)(12(32842+++++解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。
完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。
例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。
例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。
6.已知a+1a=5,则=4221a a a ++=_____。
7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。
这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。
例 1.已知a b 2 , ab 1,求a2b2的值。
例 2.已知a b 8, ab2,求 (a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。
解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。
例1.已知2=+b a ,1=ab ,求22b a +的值。
例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。
(1)()()c a b a -+ ((2)()()x y y x +-+(3)()()ab x x ab ---33 ((4)()()n m n m +--2.2.判断:判断:判断:(1)()()22422b a a b b a -=-+ ( )) (2)1211211212-=÷øöçèæ-÷øöçèæ+x x x ( )) 平方差与完全平方式一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。
1、即:(、即:(a+b a+b a+b))(a-b) = (a-b) = 相同符号项的平方相同符号项的平方相同符号项的平方 - - - 相反符号项的平方相反符号项的平方相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
3 3、能否运用平方差公式的判定、能否运用平方差公式的判定、能否运用平方差公式的判定①有两数和与两数差的积①有两数和与两数差的积①有两数和与两数差的积 即:(即:(即:(a+b a+b a+b))(a-b)(a-b)或(或(或(a+b a+b a+b))(b-a) ②有两数和的②有两数和的②有两数和的相反数相反数与两数差的积与两数差的积 即:(即:(即:(-a-b -a-b -a-b))(a-b)(a-b)或(或(或(a+b a+b a+b))(b-a)③有两数的平方差③有两数的平方差③有两数的平方差 即:即:即:a a 22-b 2 2 或-b 22+a 22二、完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
倍。
1 1、、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 2、能否运用完全平方式的判定、能否运用完全平方式的判定①有两数和(或差)的平方①有两数和(或差)的平方①有两数和(或差)的平方即:即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。