2019年最新版初中数学模拟试卷 100题中考练习试卷959048
- 格式:doc
- 大小:640.00 KB
- 文档页数:15
2019年数学中考模拟试卷(数与式部分)姓名:一、选择题(本大题共9小题,共45.0分)1. 下列各数:-,,,0,-2π中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个2. 下列各组数中,互为相反数的一组是()A. -2与B. -2与C. 2与D. 与23. 如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A. (a-b)2=a2-2ab+b2B. (a+b)2=a2+2ab+b2C. (a+b)(a-b)=a2-b2D. a(a-b)=a2-ab4. 小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?()A. 向右移6个单位长度B. 向右移3个单位长度C. 向左移6个单位长度D. 向左移3个单位长度5. 下列二次根式中,不能与合并的是()A. B. C. - D.6. 今年国庆黄金周,南部山区农家乐共接待15.8万游客,把15.8万用科学记数法表示为()A. 1.58×105B. 1.58×l04C. 158×103D. 0.158×1067. 下列计算中,正确的是()A. +=B.C. ÷=4D. ×=68. 要使分式有意义,则x的取值范围是()A. x>2B. x<2C. x≠-2D. x≠2 9. 有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是()A. a>bB. a+b>0C. ab<0D. |a|<|b|二、填空题(本大题共7小题,共35.0分)10. 若|a-2|+(b-0.5)2=0,则a10•b10= ______ .11. 若x,y 满足+(2x+3y-13)2=0,则2x-y的值为______ .12. 绝对值不大于3的所有负整数的和是______ .13. 若|a|=|-|,则a= ______ .14. 单项式的系数是______ ,次数是______ .15. 某地一天早晨的气温为-3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是______ .16. n为正整数时,(-1)2n-(-1)2n+1= ______ .三、计算题(本大题共2小题,共20.0分)17. 先化简,再求值:(x+2)2-x(x+3),其中x=-2.18. (1)计算:|-2|+()-2+(-1)2017;(2)计算:1.四、解答题(本大题共5小题,共50.0分)19. 先化简,再求值:(a-b)(2a-b)-(a+b)2,其中a=,b=-1.20.计算:.21. (1)计算:|-|-+(π-4)0;(2)解不等式3-≤.22. 先化简,再求值:(a-)÷(),其中a满足a2-3a+2=0.23. 化简:.数与式模拟试卷【答案】1. B2. A3. B4. A5. A6. A7. B8. D9. C10. 111. 112. -613.14. -;615. -4℃16. 217. 解:原式=x2+4x+4-x2-3x=x+4,当x=-2时,原式=-2+4=2.18. 解:(1)原式=2+9-1=10;(2)原式=1-•=1-=-=.19. 解:原式=2a2-3ab+b2-(a2+2ab+b2)=2a2-3ab+b2-a2-2ab-b2=a2-5ab当a=,b=-1时,原式=2+5.20. 解:原式=2-+1+-2=1.21. 解:(1)原式==;(2)去分母,得:30-2(2-3x)≤5(1+x),去括号,得:30-4+6x≤5+5x,移项,得:6x-5x≤5+4-30,合并同类项,得:x≤-21.22. 解:(a-)÷()====a,由a2-3a+2=0,得a=1或a=2,∵当a=1时,a-1=0,使得原分式无意义,∴a=2,原式=2.23. 解:=-==x.【解析】1.解:无理数有,-2π,这2个,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.解:A、只有符号不同的两个数互为相反数,故A正确;B、都是-2,故B错误;C、被开方数是-4无意义,故C错误;D、符号相同不是相反数,故D错误;故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,利用只有符号不同的两个数互为相反数是解题关键.3.解:从整体计算正方形ABCD的面积:(a+b)2从局部计算正方形ABCD的面积:a2+ab+ab+b2∴(a+b)2=a2+2ab+b2故选(B)可从两种角度求正方形ABCD的面积本题考查完全平方公式的几何背景,涉及正方形的面积计算,属于基础题型.4.解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.故选A.先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.5.解:A、=3,不能与合并,故本选项正确;B、=,能与合并,故本选项错误;C、-=-2,能与合并,故本选项错误;D、=3,能与合并,故本选项错误.故选A.根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.6.解:15.8万=158000=1.58×105,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.解:A、与不能合并,所以A选项错误;B、原式=2-=,所以B选项正确;C、原式==2,所以C选项错误;D、原式==,所以D选项错误.故选B.根据二次根式的加减运算对A、B进行判断;根据二次根式的除法法则则对C进行判断;根据二次根式的乘法法则则对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.解:要使分式有意义,则2-x≠0,解得:x≠2.故选:D.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.9.解:∵从数轴可知:a<-2<0<b<2,∴a<b,a+b<0,ab<0,|a|>|b|,∴只有选项C正确,选项A、B、D都错误;故选C.根据数轴得出a<-2<0<b<2,再根据有理数的乘法,有理数的大小比较,绝对值进行判断即可.本题考查了有理数的乘法,有理数的大小比较,绝对值,数轴的应用,能灵活运用知识点进行判断是解此题的关键.10.解:∵|a-2|+(b-0.5)2=0,∴a-2=0,b-0.5=0,∴a=2,b=0.5,∴a10•b10=(ab)10=1,故答案为1.根据非负数的性质进行计算即可.本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0是解题的关键.11.解:∵+(2x+3y-13)2=0,∴,解得:,则2x-y=4-3=1,故答案为:1利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,以及非负数的性质:偶次幂与算术平方根,熟练掌握运算法则是解本题的关键.12.解:绝对值不大于3的负整数有-1,-2,-3,则它们的和为-1+(-2)+(-3)=-6.故答案为-6.根据绝对值的意义得到绝对值不大于3的负整数有-1,-2,-3,然后把三个负数相加即可.本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.13.解:因为|-|=,||=,当|a|=|-|时,a=故答案为:先化简||,再根据绝对值的意义,确定a的值.本题考查了绝对值的意义.正数和0的绝对值是它本身,负数的绝对值的它的相反数.互为相反数的两个数的绝对值相等.14.解:单项式的系数是-,次数是6.故答案为:-,6.根据单项式的系数、次数的概念求解.本题考查了单项式的系数、次数的概念.单项式的系数是指单项式中的数字因数,次数为单项式中字母的指数和.15.解:-3+(+7)+(-8)=-4,则这天的夜间的气温是-4℃.故答案为:-4℃.根据题意列出代数式,根据有理数的加减混合运算法则计算即可.本题考查的是有理数的加减混合运算,根据题意列出代数式、掌握有理数的加减混合运算法则是解题的关键.16.解:∵n为正整数,∴2n是偶数,2n+1是奇数,则(-1)2n-(-1)2n+1=1+1=2,故答案为:2.根据乘方法则进行计算即可.本题考查的是有理数的乘方,乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.17.原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.18.(1)原式利用绝对值的代数意义,负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.此题考查了分式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.19.先利用完全平方公式和整式的乘法计算方法计算,合并后,再进一步代入求得数值即可.此题考查整式的化简求值,掌握整式的乘法和完全平方公式是解决问题的关键,注意先化简,再代入求值.20.分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.21.(1)先计算绝对值、二次根式、零指数幂,再计算加减;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查实数的混合运算与解一元一次不等式的能力,严格遵循实数的混合运算顺序与解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.先化简题目中的式子,然后根据a2-3a+2=0可得a的值,注意a的值要使得原分式有意义,本题得以解决.本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.23.先把括号里面的式子进行通分,再把括号外的式子因式分解,然后把除法转化成乘法,再进行约分即可.此题考查了分式的混合运算,解题的关键是掌握分式的混合运算的顺序和法则,通常用到通分、因式分解和约分.。
数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .82. 60cos 的值等于( ) A .21 B .22 C .23 D .13.把式子2(3)(2)a a a -+-化简为13a +,应满足的条件是( ) A . 2a -是正数B . 20a -≠ D . 2a -是非负数 D .20a -= 4.若关于x 的方程652m x =-的根为 1,则m 等于( ) A . 1 B . 8 C .18 D . 425.以下列各组数为长度的线段,能组成三角形的是( )A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm6.如图,下列说法中错误的是( )A .∠l 与∠2是同位角B .∠4与∠5是同旁内角C .∠2与∠4是对顶角D .∠l 与∠2是同旁内角7.如图,有下列说法:①∠1与∠C 是内错角;②∠2与∠B 是同旁内角;③∠1与∠B 是同位角;④∠2与∠C 是内错角.其中正确的是( )A .①②B .③④C .②③D .①④8.如图所示,下列判断正确的是( )A .若∠1 =∠2,则1l ∥2lB .若∠1 =∠4,则3l ∥4lC .若∠2=∠3,则1l ∥2lD .若∠2=∠4,则1l ∥2l9.如图,AB ∥CD ,那么( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠410.如果△ABC 是等腰三角形,那么它的边长可以是( )A .AB=AC=5,BC=11B .AB=AC=4,BC=8C .AB=AC=4,BC=5D .AB=AC=6,BC=12 11.计算43x x 结果是( )A . xB . 1C .7xD .1x12.如图,在△ABC 中,AB=AC ,∠BAC=120°,点D 在BC 上,AD=BD=2 cm ,则CD。
2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( )A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变圆弧 角 扇形 菱形 等腰梯形 A. B. C. D. (第7题图)形为( )A. (x + 2)2 = 9B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为( ) A.3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .(第9题图) (第11题图)(第12题图)17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - nm n +)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC= 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……② (第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM的长.(第23题图)25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的 直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第26题图)2019年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A C B C B D A B C A C 说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16.x2400-x %)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) =0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m –n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, (1)分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC·cos30°……………………1分 = 63×23= 9,........................2分∴DF = DC + CF = 9 + 1 = 10, (3)分∴GE = DF = 10. (4)分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ……………8分24. 解(1)如图,连接OA,则OA⊥AP. (1)分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9-x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴…………… 4分 180 a + 220(200-a)≤40880.解得78≤a≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 -a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当 a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2018年中考数学模拟试题(二) 姓名---------座号---------成绩-----------一、 选择题 1、 数中最大的数是()A 、BC 、D 、2、9的立方根是( )A 、B 、3C 、D 3、已知一元二次方程的两根、,则( )A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若,则下列式子一定成立的是( ) A 、 B 、 C 、 D 、6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( )5,0,2-1-5023±39392430x x -+=1x 2x 12x x +=a b >0a b +>0a b ->0ab >0a b>BDECA22 主视图左视图俯视图A 、正方形B 、矩形C 、菱形D 、等腰梯形8、不等式组的整数解有( )A 、0个B 、5个C 、6个D 、无数个9、已知点是反比例函数图像上的点,若,则一定成立的是( )A 、B 、C 、D 、 10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算: 13、分解因式:14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角,则飞机A 到控制点B 的距离约为 。
2019年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1、在百度网页中搜索“霍金”,一共显示有19500000个搜索结果,用科学记数法表示19500000个,正确的是( ▲ ) A .61.9510⨯ B .71.9510⨯ C . 719.510⨯ D .80.19510⨯2、一列四个水平放置的几何体中,三视图如图所示的是( ▲ )3、下列计算正确的是( ▲ )4、在平面直角坐标系中,半径为1的圆的圆心P (a ,0)沿x 轴移动.已知⊙P 与y 轴相离,则a 的取值范围是( ▲ )A .a >1B .-1<a <1C .a >1或a <-1D .a <-15、(网络)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AEAB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ▲ ) A .1∶3 B .1∶2 C . 1∶ 3 D .1∶46、已知关于x 的方程2x +4=-m -x 的解为负数,则m 的取值范围是( ▲ )A .m <43 B .m >43C .m <-4D .m >-47、如图,正六边形ABCDEF 中,AB =5,点P 在ED 上,EP :PD =2:3连结AP ,则AP 的长为( ▲ )A .BC . 8 D8、关于分式232x x x a--+,有下列说法,错误的有( ▲ )个:(1)当x 取2时,这个分式有意义,则a ≠1;(2)当x=3时,分式的值一定为零;(3)若这个分式的值为零,则a ≠-3;(4)当x 取任何值时,这个分式一定有意义,则二次函数y=x 2+x+a 与x 轴没有交点。
A. 0 B. 1 C. 2 D. 39、抛物线y =ax 2+bx+c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数a b cy x ++=在同一坐标系内的图像大致为( ▲ )10、关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB=1,则k=9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ▲ ) A .①②③④ B .②④ C .②③ D .①②④二、耐心填一填(本题有6个小题,每小题4分,共24分)11、在实数范围内分解因式:4a 2﹣8=__▲__ .12、一个不透明的袋中装有除颜色外均相同的9个白球、5个红球和若干个黄球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黄球的频率稳定于0.3,由此可估计袋中约有黄球__▲__个.13、把一个半径为8cm 的圆形硬纸片等分成4个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则这个圆锥的侧面积为__▲___;圆锥的高为__▲__.14、对于实数b a 、定义一种新运算“⊗”为:2aa b a b ⊗=-,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 ▲ .15、如图,已知△ABC ,AB =AC =4,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则BD 的长是 ▲ ,△BDA 的面积与△BDC 的面积比是 ▲ .(结果保留根号)16、如图,在边长为3正方形ABCD 中,动点E 、F 分别以相同的速度从D 、C 两点同时出发,向C 和B 运动(任何一个点到达即停止),在运动过程中,则线段CP 的最小值为 ▲ .三、认真答一答:(本题7个小题,共66分)17、(本小题满分6分)计算:第16题01( 3.14)(sin 30)4cos 45π︒-︒-++-18、(本题满分8分)如图,已知弧AB .求作:(1)确定弧AB 所在圆的圆心O ;(2)过点A 且与⊙O 相切的直线.(要求用直尺和圆规作图,保留作图痕迹,不要求写作法)19、(本小题满分8分)如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C =60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B ,PE 交CD 于E .(1)求证:△APB ∽△PEC ; (2)若CE =3,求BP 的长.20、(本小题满分10分)我校对全部1200名学生就交通安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___ 人,条形统计图中“了解”部分所对应的人数是 人; (2) 扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。
2019中考数学模拟试题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019中考数学模拟试题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019中考数学模拟试题附答案(word版可编辑修改)的全部内容。
2016中考数学信息试卷一、选择题(每题3分,共24分)1.6-的绝对值等于( )A .6B .16C .16- D .6- 2.下列计算正确的是( )A .2x x x += B. 2x x x ⋅= C.235()x x = D 。
32x x x ÷=3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( )A .长方体B .正方体C .圆锥D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( )A 。
110° B. 115° C 。
120° D. 125°第4题 第7题 第8题5.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( )45°CBAA .2B .1C .3D .47.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( )A . 错误!cm 2B .错误!cm 2C .错误!cm 2D . 错误!cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=x 53 B .y=x 43 C .y=x 109D .y=x二、填空题(每题3分,共30分) 9.25的平方根是 .10.写出一个大于1且小于2的无理数 .11.太阳的半径约是6。
九年级(上)第二次模拟数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.22.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×1034.(3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)6.(3分)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.7.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.08.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm9.(3分)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)计算2﹣的结果是.13.(3分)把多项式3m2﹣6mn+3n2分解因式的结果是.14.(3分)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=.15.(3分)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是.16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.17.(3分)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)20.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(8分)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.23.(8分)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.24.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.25.(10分)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.26.(10分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?27.(13分)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.28.(13分)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.-学年江苏省南通市通州区九年级(上)第二次模拟数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(•成都)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.2【解答】解:﹣2<﹣1<0<2,故选:D.2.(3分)(•吉林一模)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.3.(3分)(2009•武汉)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×103【解答】解:102 000=1.02×105.故选B.4.(3分)(•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.5.(3分)(秋•南通月考)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)【解答】解:A、∵52+122=132,∴能构成直角三角形,故本选项不符合题意;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合题意;C、∵62+82≠122,∴不能构成直角三角形,故本选项符合题意;D、∵(3a)2+(4a)2=(5a)2,∴能构成直角三角形,故本选项不符合题意.故选C.6.(3分)(秋•南通月考)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故选A.7.(3分)(2010•武汉)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.0【解答】解:原方程可化为:x2﹣4=0;∴x1+x2=﹣=0;故选D.8.(3分)(•防城港)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm【解答】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.9.(3分)(秋•南通月考)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时【解答】解:A、∵函数图象中y值的最大值为2.5,∴体育场离王强家2.5千米,该结论符合题意;B、∵30﹣15=15(分钟),∴王强在体育场锻炼了15分钟,该结论符合题意;C、∵2.5﹣1.5=1(千米),∴体育场离早餐店1千米,该结论不符合题意;D、∵1.5÷=3(千米/小时),∴王强从早餐店回家的平均速度是3千米/小时,该结论符合题意.故选C.10.(3分)(秋•南通月考)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个【解答】解:设OA的解析式为y=kx,则3k=1,解得k=,则OA的解析式为y=x,∵A(3,1),∴C点坐标为(1.5,0.5),设CD的解析式为y=﹣3x+b,则﹣3×1.5+b=0.5,解得b=5,则CD的解析式为y=﹣3x+5,则=1,解得k=3,则双曲线为y=,联立双曲线与CD的解析式可得﹣3x+5=,∴3x2﹣5x+3=0,△=(﹣5)2﹣4×3×3=﹣11<0,∴方程无解,根据反比例函数的对称性可得:若△AOB为等腰三角形,则点B为(1,3),(﹣1,﹣3)(﹣3,﹣1),一共3个.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(秋•南通月考)在函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意,得x+1≠0,解得x≠1,故答案为:x≠﹣1.12.(3分)(•高淳县一模)计算2﹣的结果是﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.13.(3分)(•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.14.(3分)(•哈尔滨模拟)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=3.【解答】解:由题意知:=,解得x=3.故答案为3.15.(3分)(秋•南通月考)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是24.【解答】解:∵l=,∴r===24.故答案为:24.16.(3分)(秋•南通月考)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是150度.【解答】解法1:∵OA=OB=OC,∴∠OAB=∠OBA,∠OBC=∠OCB,∵∠ABC=∠OBA+∠OBC=70°,∴∠OAB+∠OBA+∠OBC+∠OCB=140°,即∠OAB+∠ABC+∠OCB=140°,又∵∠ABC+∠BCD+∠ADC+∠BAD=360°,即∠ABC+∠OCB+∠OCD+∠ADC+∠DAO+∠OAB=360°,∵∠ADC=70°,∠OAB+∠ABC+∠OCB=140°,∴∠DAO+∠DCO=360°﹣140°﹣70°=150°.解法2:由AO=BO=CO,可知O是三角形ABC的外心,∠ABC是圆周角,∠AOC是圆心角,所以∠AOC=2∠ABC=140°,又∠D=70°,所以∠DAO+∠DCO=360°﹣140°﹣70°=150°.故答案为:150.17.(3分)(秋•南通月考)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.【解答】解:过A作AE⊥BC于E,∵AB=AC=2,BC=8,∴BE=CE=4,∵DE垂直平分AB,∴BD=AB=,∵∠BDE=∠AEB=90°,∠B=∠B,∴△BED∽△ABE,∴=()2=,∵S△ABC=2S△ABE,∴=,∴=.故答案为:.18.(3分)(秋•南通月考)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.【解答】解:设P点坐标为P(a,a2﹣2ma+m2+m﹣1),AP2=(m﹣a)2+[a2﹣2ma+m2+m﹣1﹣(m+1)]2=(m﹣a)2+[(m﹣a)2﹣2]2令(m﹣a)2=t(t≥0)则有AP2=t+(t﹣2)2=t2﹣3t+4=(t﹣)2+,所以,当t=时,AP2有最小值,所以AP=,故答案为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(秋•南通月考)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)【解答】解:(1)原式=2﹣2﹣1+4=3;(2)原式=•=﹣x﹣1.20.(8分)(•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:年该城市有219天不适宜开展户外活动.21.(8分)(秋•南通月考)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB 的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【解答】解:如图,作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2,AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1,在Rt△BCH中,BH==≈=5.6,∴AB=AH+BH=9.1+5.6=14.7,答:改直的公路AB的长14.7千米.22.(8分)(秋•南通月考)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.【解答】解:(1)连结OA.∵∠ACD=22.5°,∴∠AOD=45°,∵CD⊥AB,∴∠AEO=90°,∴AE=OE,在Rt△AOE中,OA=2,∴AE=OE=,由垂径定理,得AB=2AE=2;(2)∵CE=2+,AE=,∴tan∠BAC===+1.23.(8分)(秋•南通月考)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.【解答】解:(1)∵点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上,∴k=a(a+5)=6(a+1),整理得:a2﹣a﹣6=(a+2)(a﹣3)=0,解得:a=﹣2或a=3(舍去),∴k=a(a+5)=﹣2×(﹣2+5)=﹣6.(2)∵a=﹣2,∴A(﹣2,3),B(6,﹣1).设直线AB的解析式为y=kx+b(k≠0),将A(﹣2,3)、B(6,﹣1)代入y=kx+b中,,解得:,∴直线AB的解析式为y=﹣x+2.设直线AB与y轴交于点C,则点C的坐标为(0,2),∴OC=2,∴S△AOB=OC•(x B﹣x A)=×2×[6﹣(﹣2)]=8.24.(8分)(•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.25.(10分)(秋•南通月考)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.【解答】解:(1)小明答对第一道题的概率=;故答案为;(2)若小明“求助”第一题(假设去掉错误选项C)画树状图为:共有8种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,若小明“求助”第二题(假设去掉错误选项D)画树状图为:共有9种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,而>,所以他应该在第一题使用“求助”,顺利通关的概率才更大.26.(10分)(秋•南通月考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,又∵EF是公共边,∴AE=2BE;(2)设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,AB=3a=﹣x+30∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,∴0<x<40(3)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.27.(13分)(秋•南通月考)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB ﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG (SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.28.(13分)(秋•南通月考)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A (﹣1,0),B(5,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|﹣m+15|①若﹣m2+m+2=﹣m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(﹣m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.∴点F的坐标为(2,0)或(,0).(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴=,即=,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的m的值为0或﹣或4或3+.中考数学模拟试卷好题精选(河北一模)12.(2分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径(河北一模)19.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.(河北一模)20.(8分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.(河北一模)26.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x 轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.(江苏南通通州二模)8.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm(江苏南通通州二模)10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个(江苏南通通州二模)16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.(江苏南通通州二模)18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.(安徽宿州灵璧磬乡协作校一模)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.(安徽宿州埇桥一模)15.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.(安徽宿州埇桥一模)22.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.(安徽宿州埇桥一模)23.(14分)如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是;抛物线l1的解析式是;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN 的最小值与此时b的值.(广东韶关南雄二中一模)19.(6分)如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.(广东韶关南雄二中四模)14.(4分)在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C 的度数为.(广东韶关南雄二中四模)19.(6分)已知:如图,在△ABC中,AD平分∠ABC.(1)作线段AD的垂直平分线MN,MN与AB边交于点E,AC边交于点F.(2)若AB=AC,请直接写出EF和BC的关系.(广东韶关南雄二中五模)18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.(广东深圳龙岗一模)15.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.(河北保定涿州一模)11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=1(河北保定涿州一模)12.(2分)如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°(河北数学模拟三)9.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0(河北数学模拟三)15.(2分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,)C.(,)D.(,)(河北数学模拟三)26.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.(河南南阳新野新航中学模拟)5.(3分)两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C.D.(河南南阳新野新航中学模拟)9.(3分)对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为.(河南濮阳一模)7.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5(河南濮阳一模)9.(3分)从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2 B.﹣3 C.D.(河南濮阳一模)16.(8分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.(河南濮阳一模)21.(10分)阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.(河南濮阳一模)22.(10分)(1)【问题发现】。
考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.三角形的三边长a 、b 、c 满足等式(22()2a b c ab +-=,则此三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形2.王京从点O 出发.先向西走40米,再向南走30米,到达点M.如果点M 的位置用(-40,-30)表示,从点M 继续向东走50米,再向北走50米,到达点N ,那么点N 的坐标是( )A . (-l0,10)B . (10,-l0)C .(10,-20)D . (10,20)3.下面计算中,能用平方差公式的是( )A .(1)(1)a a +--B .()()b c b c ---+C .11()()22x y +-D .(2)(2)m n m n -+ 4.关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A .1 B .3 C .-1 D .-35.如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点0,且∠BOC=α,则∠A 的度数是 ( )A .180°-αB .2α-180°C .180°-2αD .12α6.,已知a ,b ,c 是三角形的三边,那么代数式2222a ab b c -+-的值( )A . 大于零B . 等于零C . 小于零D . 不能确定 7. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =8.如图,线段AC 、BD 交于点0,且AO=CO ,BO=DO ,则图中全等三角形的对数有( )A .1对B . 2对C .3对D .4对9.已知甲数比乙数小 5,且甲数的3倍等于乙数的 2倍,则甲、乙两数分别为( )A . 10,15B . 15,10C . 5,10D . 10,510.将一个三形平移后得到另一个三角形,则下列说法中,错误的是( )A .两个三角形的大小不同B .两个三角形的对应边相等C .两个三角形的周长相等D .两个三角形的面积相等11.如图所示,下列判断正确的是( )A .若∠1 =∠2,则1l ∥2lB .若∠1 =∠4,则3l ∥4lC .若∠2=∠3,则1l ∥2lD .若∠2=∠4,则1l ∥2l12.钟表的分针匀速转一周需要1小时,经过35分钟,分针旋转的角度是( )A .180°B .200°C .210°D .220°13.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( )A .第三边长为3B .第三边的平方为3C .第三边的平方为5D .第三边的平方为3或514.如图,AD 、AE 分别是△ABC 的高和角平分线,∠DAE=20°,∠B=65°,则∠C 等于( )。
2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。
数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.当x=-2时,二次函数21-312y x x =-+的值是( ) A .9 B .8 C .6 D .52.若两个数的和为 3,积为-1,则这两个数的平方和为( )A .7B .8C .9D . - 113.下列现象中,属于平移变换的是( )A .前进中的汽车轮子B .沿直线飞行的飞机C .翻动的书D .正在走动中的钟表指针4.等腰三角形是轴对称图形,它的对称轴是( )A .过顶点的直线B .底边上的高所在的直线C .顶角平分线所在的直线D .腰上的高所在的直线5.将直角三角形的三边都扩大3倍后,得到的三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定6.等腰三角形一边长等于4,一边长等于9,它的周长是( )A .17B .22C .17或22D .137.下列调查方式中,不合适的是( )A .了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B .了解某渔场中青鱼的平均重量,采用抽查的方式C .了解某型号联想电脑的使用寿命,采用普查的方式D .了解一批汽车的刹车性能,采用普查的方式8.解不等式123x x +-≤的过程:①6613x x -+≤;②316x x --≤--; 47x -≤-;④74x ≥其中造成解答错误的一步是( )A .①B .②C .③D .④9.若关于x 的方程332x k +=的解是正数,则k 为( )A .23k <B .23k >C .为任何实数D .0k >10.某市出租车的收费标准是:起步价 5 元(即行驶距离不超过 3 km 都预付 5 元车费),超过3 km 后,每增加 1km 加收 2 元(不足1km 按1km 计).某人乘出租车从A 地到B 地共付车费 19 元,那么A 地到B 地的路程是( )A .9.5kmB .10 kmC .至多 10 kmD .至少9 km11.甲、乙、丙排成一排,甲排在中间的概率是( )A .14B .13C .12D .2312.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( )A .B .C .D .13.分式2221m m m m -+-约分后的结果是( ) A .1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 14. 已知三角形的两边长分别为 3,5,则第三边上的中线 m 的取值范围是( )A .1m >B .14m ≤≤C .14m <<D .4m <15.小明家的坐标为(1,2),小丽家的坐标为(一2,一l ),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向16.在平面直角坐标系中,点(1,3)位于( )A . 第一象限B .第二象限C .第三象限D . 第四象限17.将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是 ( )A .关于x 轴对称B .关于y 轴对称C .原图形向x 轴负方向平移1个单位D .原图形向y 轴负方向平移1个单位18.如图,一个质点在第一象限及x 轴、y 轴上运动,在第1秒钟,它从原点运动到(0,。
数学模拟测试
考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( )
A .
B .
C .
D .
2.下列从左到右的变形,属于因式分解的是( )
A .2(3)(2)6x x x x +-=+-
B .1()1ax ay a x y --=--
C .2323824a b a b =⋅
D .24(2)(2)x x x -=+-
3. 下图中,正确画出△ABC 的AC 边上的高的是( )
A .
B .
C .
D . 4.方程
512552x x x +=--的解x 等于( ) A .-3
B .-2
C . -1
D .0 5.已知方程
3233x x x =---有增根,则这个增根一定是( ) A .2x = B .3x = C .4x = D .5x =
6.下列各组长度的三条线段能组成三角形的是( ) A .3cm,3cm , 6cm
B .7 cm,4cm , 5cm
C .3cm,4cm , 8cm
D .4.2 cm, 2.8cm , 7cm 7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现摸到红色、黑色球的频率分别为 15%和 45%,则口袋中
白色球的数目很可能是( )
A .6个
B . 16个
C .18个
D .24个
8. 若a 的值使得224(2)1x x a x ++=+-成立,则a 值为( )
A . 5
B .4
C . 3
D . 2
9.下列现象中,属于平移变换的是( )
A .前进中的汽车轮子
B .沿直线飞行的飞机
C .翻动的书
D .正在走动中的钟表指针
10.在△ABC 中,AB = BC ,∠A =80°, 则∠B 的度数是( )
A .100°
B .80°
C . 20
D . 80°或 20°
11.下列函数中是一次函数的是( )
A .y=kx+b
B .2y x -=
C .2331y x x =-++
D .112
y x =-+ 12.如图,在等边△ABC 中,点D 是边BC 上的点,DE ⊥AC 于E ,则∠CDE 的度数为( )
A .90°
B .60°
C .45°
D .30°
13.下列运算正确的是( )
A .0(3)1-=-
B .236-=-
C .9)3(2-=-
D .932-=-
14.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..
等腰三角形,则满足上述条件的所有点P 的个数为( )
A .3
B .4
C .6
D .7
15.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( )
A .圆锥
B .立方体
C .圆柱
D .直六棱柱
16.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是 ( )
A .4个
B .5个
C .6个
D .7个 C B A。