大学物理上重点习题
- 格式:docx
- 大小:176.22 KB
- 文档页数:4
大学物理经典试题及答案一、选择题(每题2分,共10分)1. 光的波长为λ,频率为f,光速为c,则下列关系正确的是()。
A. c=λfB. c=1/(λf)C. c=λ/fD. c=f/λ答案:A2. 一个物体在水平面上以初速度v0开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为()。
A. v0 + atB. v0 - atC. v0 + 2atD. v0 - 2at答案:A3. 根据牛顿第二定律,下列说法正确的是()。
A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 力的大小与物体的质量成正比D. 力的方向与物体运动的方向无关答案:B4. 一个质量为m的物体在水平面上受到一个大小为F的恒定力作用,若物体与水平面之间的动摩擦因数为μ,则物体的加速度为()。
A. F/mB. (F-μmg)/mC. (F+μmg)/mD. μg答案:B5. 根据能量守恒定律,下列说法正确的是()。
A. 能量可以被创造或消灭B. 能量在转化和转移过程中总量保持不变C. 能量的转化和转移具有方向性D. 能量的转化和转移不具有方向性答案:B二、填空题(每题2分,共10分)1. 根据麦克斯韦方程组,变化的磁场可以产生______电场。
答案:感应2. 一个物体在自由落体运动中,其加速度大小为______。
答案:g3. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与外界对系统做的功之和,即△U = Q + W,其中W为______。
答案:正功4. 理想气体状态方程为PV = nRT,其中R为______常数。
答案:气体5. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比,比例常数为______。
答案:k三、简答题(每题10分,共20分)1. 简述牛顿第三定律的内容及其在日常生活中的应用。
答案:牛顿第三定律指出,对于任何两个相互作用的物体,它们之间的力是相互的,大小相等,方向相反。
练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动;(D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) 11.75 m/s . (C) 12.5 m/s .(D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和3.16秒. (B) 1.78秒.(C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为t = 秒.2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点.则 质点的加速度a = (SI);图1.1质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cosω t i+B sinω t j, A, B ,ω为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cosθ ,0 , v02 cos2θ/g.(B) g cosθ ,g sinθ, 0.(C) g sinθ, 0, v02/g.(D) g , g , v02sin2θ/g.二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为.2. 任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;任意时刻a=0的运动是运动;任意时刻a t=0, a n=常量的运动是运动.3. 已知质点的运动方程为r=2t2i+cosπt j (SI), 则其速度v= ;加速度a= ;当t=1秒时,其切向加速度a t= ;法向加速度a n= .三.计算题1. 一轻杆CA以角速度ω绕定点C转动,而A端与重物M用细绳连接后跨过定滑轮B,如图2.1.试求重物M的速度.(已知CB=l为常数,ϕ=ωt,在t时刻∠CBA=α,计算速度时α作为已知数代入).2. 升降机以a=2g的加速度从静止开始上升,机顶有一螺帽在t0=2.0s时因松动而落下,设升降机高为h=2.0m,试求螺帽下落到底板所需时间t及相对地面下落的距离s.练习三牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动;(B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动;(D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.2. 如图3.1(A)所示,m A>μm B时,算出m B向右的加速度为a,今去掉m A而代之以拉力T= m A g,如图3.1(B)所示,算出m B的加速度a',则(A) a > a '.(B) a = a '.(C) a < a '.(D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则(A) 斜面保持静止.(B) 斜面向左运动.图3.1(C) 斜面向右运动.(D) 无法判断斜面是否运动. 4. 如图3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为 (A) 3mg . (B) 2mg . (C) 1mg .(D) 8mg / 3. 5. 如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动. (C) 立即处于静止状态.(D) 在重力作用下向上作减速运动.二.填空题1. 如图3.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ - mg = 0 (1) 也有人在沿绳子拉力方向求合力写出T - mg cos θ = 0 (2)显然两式互相矛盾,你认为哪式正确?答 . 理由是 .2. 如图3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当其角速度ω 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为ω的匀速圆周运动,如图3.7所示.则l 1, l 2两绳上的张力 T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图3.8所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少?图3.3 < < < < 图3.4aa2m 图3.7A环与绳之间的摩擦力多大?2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大;(B) 小力的冲量有可能比大力的冲量大;(C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体(A) 动量守恒,合外力为零.(B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.(C) 此过程动量守恒,合外力的冲量为零.(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M的船静止在平静的湖面上,一质量为m的人在船上从船头走到船尾,相对于船的速度为v..如设船的速度为V,则用动量守恒定律列出的方程为(A) MV+mv = 0.(B) MV = m (v+V).(C) MV = mv.(D) MV+m (v+V) = 0.(E) mv +(M+m)V = 0.(F) mv =(M+m)V.5. 长为l的轻绳,一端固定在光滑水平面上,另一端系一质量为m的物体.开始时物体在A点,绳子处于松弛状态,物体以速度v0垂直于OA运动,AO 长为h.当绳子被拉直后物体作半径为l的圆周运动,如图4.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A)0, mv0(h/l-1).A 0(B) 0, 0.(C) mv 0(l -h ), 0.(D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填<、=、>), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m .三.计算题1. 一质点作半径为r ,半锥角为θ的圆锥摆运动,其质量为m ,速度为v 0如图4.2所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题;(B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒;(D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图5.1,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;m(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图5.2所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则 (A) A 1 > A 2.(B) A 1 < A 2. (C) A 1 = A 2.(D) 无法确定.5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小;(D) 汽车的动能与它通过的路程成正比. 二.填空题 1. 如图5.3所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O '点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O '点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O '点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图5.4所示, 一半径R =0.5m 的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos α = mg sin θ (如图示C 点)?答 . 三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F =52.8 x +38.4x 2 (SI)求:(1) 将弹簧从定长 x 1 = 0.50m 拉伸到定长x 2 = 1.00m 时,外力所需做的功.< 图5.2图5.3图5.4 B(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长x 2 = 1.00m,再将物体由静止释放,求当弹簧回到x 1 = 0.50m 时,物体的速率. (3) 此弹簧的弹力是保守力吗?为什么?2. 如图5.5所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O '.整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(θ=60︒)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是 (A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动.2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为μ,求摩擦力矩M μ . 先取微元细杆d r ,其质量d m = λd r = (m /l )d r .它受的摩擦力是d f μ= μ(d m )g =(μmg /l )d r ,再进行以下的计算,(A) M μ=⎰r d f μ=⎰lr r lmgd μ=μmgl/2.(B) M μ=(⎰d f μ)l/2=(⎰lr l mgd μ)l/2=μmgl/2. (C) M μ=(⎰d f μ)l/3=(⎰l r lmg0d μ)l/3=μmgl/3. (D) M μ=(⎰d f μ)l =(⎰l r lmg0d μ)l =μmgl . 4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微图5.5元,如图6.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22-R 12)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰. (B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) . (G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B .. (B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B .二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m ,r = R , 则I 1 I 2 .2. 如图6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦, α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1α2(填< = >) . 3. 如图6.3所示,半径分别为RA 和RB 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B= ;法向加速度a n A :a n B = . 三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图6.4,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60︒角时的角加速度和角速度.图6.3 (1) (2) 图6.22. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为μ ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 3. 质量相同的三个均匀刚体A 、B 、C(如图7.1所示)以相同的角速度ω绕其对称轴旋转, 己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则(A) A 先停转. (B) B 先停转.(C) C 先停转.(D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变.(D) 转速可能不变,也可能改变.5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图7.2所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等.(B) 左边小于右边. (C) 右边小于左边. (D) 无法判断. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8π rad/s ,则主动轮在这图7.2图7.1段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA '转动,如图7.3所示,则此情况下盘的转动惯量I AA ' = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图7.4所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力? 2. 飞轮为质量m = 60kg , 半径r = 0.25m 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图7.5所示, 闸瓦与飞轮的摩擦系数μ = 0.4, 飞轮的转动惯量可按圆盘计算.(1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转.(2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒;(D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒.2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小.(B) 自转周期变小,动能增大.图7.3 图7.4图7.5(C) 自转周期变大,动能增大.(D) 自转周期变大,动能减小.(E) 自转周期不变,动能减小.3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同;(D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同.4. 如图8.1所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成θ角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足(A) ω1一定大于ω2.(B) ω1一定等于ω2. (C) ω1一定小于ω2. (D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m =0.5kg)可在一绕光滑竖直轴转动的水平平台上(平台半径为R =1m,质量M =2kg)作半径为r =0.8m 的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v =5m/s 的匀速圆周运动时,平台转动的角速度为ω1 = ;当小车急刹车停下来时,平台的角速度ω2= ;当小车从静止开始在平台上运行一周时,平台转动的角度θ = .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为 , 力F 做的功为 .3. 转动着的飞轮转动惯量为J , 在t =0时角速度为ω0, 此后飞轮经历制动过程,阻力矩M μ的大小与角速度ω的平方成正比, 比例系数为k (k 为大于0的常数), 当ω =ω0/3 时, 飞轮的角加速度α= , 从开始制动到ω =ω0/3 所经过的时间t = .三.计算题图8.11. 落体法测飞轮的转动惯量,如图8.2所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图8.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图9.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将 (A) 增大.(B) 不变.(C) 减小. (D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为ω0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为(A) 2ω0 .(B) 2ω0 .(C) 4ω0 .(D) ω0/2 .(E) ω0/2.3. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为α1和α2.则以下说法不正确的是(A) α1可能大于α2 ;(B) α1可能小于α2 ;(C) α1可能等α2 ;(D) α1一定大于α2 .4. 一圆锥摆,如图9.2,摆球在水平面内作圆周运动.则 (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒.(B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒.图8.3图9.1(D) 摆球的动量守恒, 摆球与地球组成系统的机械能不守恒.5. 如图9.3,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒.(B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量、机械能都守恒.二.填空题 1. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为 1.4×107m/s,则钍核的速度大小为 ,方向为 .2. 如图9.4所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .3. 最大摆角为θ0的摆在摆动进程中,张力最大在θ = 处,最小在θ = 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为θ, -θ0≤θ≤θ0)绳子的张力为 .三.计算题1. 如图9.5,一块宽L =0.60m 、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO '自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg 的子弹垂直击中木板A 点,A 离转轴OO '距离为l =0.36m,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求 (1) 子弹给予木板的冲量;(2) 木板获得的角速度.(已知:木板绕OO '轴的转动惯量J =ML 2 / 3)2. 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深?设铁锤两次击钉的速度相同.练习十 状态方程 压强公式 自由度一.选择题1. 把一容器用隔板分成相等的两部分,左边装CO 2 ,右边装H 2,两边气体质量相同,温度相同,如果隔板与器壁无摩擦,则隔板应(A) 向右移动.(B) 向左移动.图9.3图9.4。
大学物理上试题及答案一、选择题(每题2分,共10分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体质量成反比。
以下哪个选项正确描述了这一定律?()A. F = maB. F = ma^2C. F = m/aD. F = a/m3. 电磁波谱中,波长最长的是()。
A. 无线电波B. 微波C. 红外线D. 可见光4. 热力学第一定律表明能量守恒,其数学表达式为()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = Q * W5. 根据量子力学,电子在原子中的状态由()决定。
A. 电子的电荷B. 电子的质量C. 电子的自旋D. 电子的轨道二、填空题(每题2分,共10分)1. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度为______ m/s^2。
2. 绝对零度是温度的最低极限,其数值为______ K。
3. 光年是天文学中用来表示距离的单位,1光年等于______ km。
4. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不引起其他变化,这被称为______。
5. 原子核中的质子数决定了元素的______。
三、简答题(每题5分,共20分)1. 简述电磁感应现象及其应用。
2. 描述波粒二象性的概念及其在量子力学中的意义。
3. 解释什么是相对论,并简述其对现代物理学的影响。
4. 什么是超导现象?并说明超导材料在科技领域的潜在应用。
四、计算题(每题10分,共20分)1. 一个质量为5kg的物体从静止开始沿直线加速运动,加速度为2m/s^2,求物体在5秒后的速度。
2. 一个电阻为10Ω的电阻器通过电流为2A,求该电阻器在5分钟内产生的热量。
五、论述题(每题15分,共30分)1. 论述牛顿运动定律在现代科技中的应用,并举例说明。
)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理练习题及答案详解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学物理学(上)练习题第一编 力 学 第一章 质点的运动1.一质点在平面上作一般曲线运动,其瞬时速度为,v瞬时速率为v ,平均速率为,v 平均速度为v,它们之间如下的关系中必定正确的是(A) v v ≠,v v ≠; (B) v v =,v v ≠;(C) v v =,v v =; (C) v v ≠,v v = [ ]2.一质点的运动方程为26x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。
3.一质点沿x 轴作直线运动,在t 时刻的坐标为234.52x t t =-(SI )。
试求:质点在(1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。
4.灯距地面的高度为1h ,若身高为2hv 沿水平直线行走,如图所示,则他的头顶在地上的影子M 面移动的速率M v = 。
5.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式(1)dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt=. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ]6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。
(A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外);(C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零;(E )若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ]Av B vvv7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2v ct =(c 为常数),则从0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点的法向加速度n a = 。
重点例题第一章·书中的例题1.1, 1.4(P.6;P.15)一质点作匀速圆周运动,半径为r,角速度为ω,·书中例题:1.2, 1.6(p.7;p.17)(重点)直杆AB两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt随时间变化,其中ω为常量。
求:杆中M点的运动学方程。
·习题指导P9. 1.4(重点)在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少?·书中例题1.3, 1.5, 1.7(p.7;p.16;p.18)已知:运动学方程:x = -0.31t 2+7.2t +28 y = 0.22t 2-9.1t +30 求:t =15s 时的位置矢量和方向。
·例题:已知:a =100-4t 2,且t =0时,v =0,x =0 求:速度v 和运动学方程x第二章·例题:飞机着陆时受到的阻力为F=-ct,(c为常数)且t=0时,v=v0。
求:飞机着陆时的速度。
·例题:(重点)质量为m的物体以速度v0投入粘性流体中,受到阻力f=-cv (c为常数)而减速,若物体不受其它力,求:物体的运动速度。
·例题:(重点)光滑的桌面上一质量为M,长为L的匀质链条,有极小一段被推出桌子边缘。
求:链条刚刚离开桌面时的速度。
·例:有一个小球通过一根细线挂在车顶,当车静止时小球铅直向下,当车以加速度a开动时与铅垂线夹角θ。
求:加速度与θ之间的关系。
典型例题·书中例题 2.9(p76 )(非质点问题的处理方法)试证明在圆柱形容器内,以匀角速度ω绕中心轴作匀速旋转的流体表面为旋转抛物面。
y·书中例题P82,例2.14 (变质量,变力问题)长为L质量为M的均匀柔绳,盘绕在光滑的水平面上,从静止开始,以恒定加速度a竖直向上提绳,当提起的高度为l时,作用在绳端力的大小是多少?当以恒定速度v竖直向上提绳,当提起的高度为l时,作用在绳端力的大小又是多少?第三章·书中例题3.1 (P.95)已知:F=6x;cosθ=0.70-0.02x求:质点从x1=10m到x2=20m过程中F所作的功。
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
物理上重点习题
2-1一质点作直线运动,其运动方程为222t t x -+= , x 以m 计,t 以s 计。
试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程
解(1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以,m 3)0()3(-==-==t x t x x ∆ (2)本题需注意在题设时间内运动方向发生了变化。
对x 求极值,并令
022d d =-=t t
x
可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。
分段计算m 1011=-===t t x x x ∆,m 4)1()3(2-==-==t x t x x ∆ 路程为m 521=+=
x x s ∆∆
2-4如图所示,湖中有一只小船,岸上有人用绳跨过定滑轮拉船靠岸。
设滑轮距水面高度为h ,t = 0时,船与滑轮间的绳长为l 0。
试求:当人以匀速v 0拉绳时,船在距岸边x 处的速度和加速度。
解(1)设任意时刻 t ,绳长为l ,由题意t
l
v d d 0-=;船到岸边的水平距离为x ,则
22h l x -=
小船的运动速度为t
l h l l h l t t x v d d d d d d 222
2-=-==
022v x h x +-= 负号表示小船在水面上向岸靠近。
小船的运动速度为)(d d d d 02
2v h l l
t t v a --==
32
02022d d )(d d x
v h t l v h l l l -=--=
负号表示加速度的方向指向岸边,小船在水面上加速靠岸。
2-12一质点沿 x 轴作直线运动,其速度大小2
38t v +=,(SI 制)。
质点的初始位置在x 轴正方向10 m 处,试求:(1)s 2=t 时,质点的加速度;(2)质点的运动方程;
(3)第二秒内的平均速度。
解根据题意可知,0=t 时,10ms 8-=v ,m 100=x (1)质点的加速度t t
v
a 6d d ==
s 2=t 时,2ms 12-=a
v 0
(2)由t t t v x d )38(d d 2+== 两边积分
t t
x t
x d )38(d 0
2
10
⎰⎰+=
因此,质点的运动方程为3810t t x ++=
(3)第二秒内的平均速度为11
21
2s .m 15-=--==
t t x x t x v ∆∆ 3-3如图所示,质量m = 0.50kg 的小球挂在倾角o 30=θ的光滑斜面上。
(1)当斜面以加速度a = 2.0m/s 2水平向右运动时,绳中的张力及小球对斜面的正压力各是多大?(2)当斜面的加速度至少为多大时,小球将脱离斜面?
解:(1)对小球x 向:ma N T =-θθsin cos y 向:0cos sin =-+mg N T θθ 可得
N 32.3)30sin 8.930cos 2(5.0)sin cos (o o =+⨯⨯=+=ααg a m T N 75.3)30sin 230cos 8.9(5.0)sin cos (o o =+⨯⨯=+=ααa g m N
小球对斜面的压力N 75.3=='N N
(2)小球刚要脱离斜面时N = 0,则ma T =θcos ,mg T =θsin 由此二式可解得2
o
s m/0.1730tan /8.9tan /===θg a
3-9 一质量为10kg 的质点在力40120+=t F (F 的单位为N ,t 的单位为s )的作用下,沿x 轴作直线运动。
在t = 0时,质点位于x = 5.0m 处,其速度10s m 0.6-⋅=v 。
求质点在任意时刻的速度和位置。
解:由题意t
v
m
t d d 40120=+ 依据初始条件,t 0= 0时1
0s m 0.6-⋅=v ,积分[]t t v v
v t
d 412d 0
⎰
⎰+=
所以2
646t t v ++=
又因v = d x /d t ,并由初始条件:t 0= 0时x 0=5.0m ,积分
[]
t t t x x
x t
d 646d 0
2⎰
⎰++=
所以3
22265t t t x +++=
4-4高空作业时系安全带是非常必要的。
假如一个质量为50 kg 的杂技演员,在走钢丝练习时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来。
已知安全带的长度为5 m ,安全带弹性缓冲作用时间约为0.5 s 。
若取重力加速度2
s
.m 10-=g ,则安
mg N
T
全带对杂技演员的平均作用力为多少?
解以杂技演员为研究对象,人跌至5 m 处时的速率为gh v 21=
在缓冲过程中,根据动量定理,有12)(mv mv t mg F -=+∆
可得N 15002)
(=+=+=t
gh m mg t mv mg F ∆∆∆4-23质量m 1的弹丸A ,穿过如
题图所示的摆锤B 后,速率由v 减少到v /2 。
已知摆锤的质量为m 2,摆线长度为l ,如果
摆锤能在垂直平面内完成一个完全的圆周运动,v 的最小值应为多少?
解碰撞221
12
v m v
m v m += 摆锤达最高点(v 3为摆锤在最高点的速率)l
v m g m 2
3
22=
摆锤从最低点到最高点23222222
1221v m gl m v m += 所以gl m m v 521
2
=
5-9 用落体观察法测定飞轮的转动惯量,如图所示使质量为m 的重物由静止开始下落,带动飞轮转动。
记录重物下落的距离和时间,便可计算出飞轮的转动惯量。
试写出它的计算式(轴承进摩擦忽略不计)。
解对滑轮,根据转动定理,有βJ TR = 对重物,由牛顿定律,有ma T mg =- 由于βR a =
重物匀加速下落,则有2
2
1at h =
由上述各式可解得⎪⎪⎭
⎫
⎝⎛-=1222
h gt mR J
5-10半径为R ,质量为m 的均质圆盘,求通过圆盘边缘且与盘面垂直的轴的转动惯量。
解根据平行轴定理2
mR Jo o J +='和绕圆盘中心轴O 的转动惯量22
1
mR Jo =
可得 22222
3
21mR mR mR mR Jo o J =+=
+=' 5-14如题图所示的系统,滑轮C 可视为半径为R = 0.01 m 、质量为m C = 15kg 的匀质
圆盘,滑轮与绳子间无滑动,水平面光滑,若滑块A 的质量为m A = 50 kg ,重物B 的质量为m B =200kg 。
求重物B 的加速度及绳中的张力。
5-15 如题图所示,质量为m 1=16 kg 的实心圆柱体A ,其半径为r =15 cm 可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,其另一端系一个质量为m 2 = 8.0 kg 的物体B ,求:(1)物体B 由静止开始下降1.0 s
m 2
习题4-23 用图
1
mg
T T (
后的距离;(2)绳的张力。
解(1)对实心圆柱体A, ββ212
1
r m J Tr == 对物体B ,有a m T g m 22='- 又因为T T '=,βr a =
可解得物体下落的加速度2
1222m m g
m a +=
在t =1.0s 时,B 下落的距离为m 45.22212
1222
=+==m m gt m at s
(2)绳中的张力为N 2.392)(2
12
1=+=-=g m m m m a g m T
解:对A ,有a m T A =1 对B ,有a m T g m B B =-2 对滑转C ,有βJ R T T ='-')(12 又因为22
1
,R m J R a c ==
β, 2211,T T T T ='='
可解得1s m 61.72
1
-⋅=+
+=
c B A B m m m g m a ,N 3811==a m T A ,N 438)(2=-=a g m T B
mBg
T2
T1
T2
m2g
T '
T。