幂函数图像
- 格式:ppt
- 大小:1.13 MB
- 文档页数:26
幂函数的图像与性质一、相关内容1、形如αx y =的函数叫做幂函数,其中x 是自变量,α是常数。
2、幂函数的图像0<α10<<α1>α第一象限图像其他象限图像根据定义域和奇偶性判断性质总结1、幂函数的图像一定在第一象限,不在第四象限2、图像过定点(1,1)3、当0=α时,表示与X 轴平行,过(1,1),不过(0,1)的两条射线二、基础练习1、判断下列哪些是幂函数(1)xy 2.0= (2)21x y = (3)x y -=3 (4)1-=x y (5)x y 4= (6)5x y =2、画出下列函数的图像(1)43x y = (2)34x y =(3)76-=x y (4)31x y =(5)x y = (6)98x y =3、若幂函数y =()x f 的图象经过点(9,13), 则f(25)的值是_________4、若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f =5、幂函数()f x 的图象过点43,27)(,则()f x 的解析式是____________6、函数2223()(1)m m f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =______7、已知-1<a <0,则三个数331,,3a a a由小到大的顺序是___________8、在32521,2,,y y x y x x y x x===+=四个函数中,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个9、已知幂函数()y f x =的图象过点2(2,)2,则(4)f 的值为( )A .1B . 2C .12D .8 10、幂函数y =xm 2-3m -4(m ∈Z)的图象如下图所示,则m 的值为( )A .-1<m <4B .0或2C .1或3D .0,1,2或311、若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个12、幂函数y =x α(α是常数)的图象( )A 、一定经过点(0,0)B .一定经过点(1,1)C .一定经过点(-1,1)D .一定经过点(1,-1) 13、对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定。
幂函数图像及性质
性质:当α0时,幂函数y=xα有以下性质:a、图像都经过点〔1,1〕〔0,0〕;b、函数的图像在区间[0,+∞〕上是增函数;c、在第一象限内,α1时,导数值逐渐增大等。
性质:当α0时,幂函数y=xα有以下性质:a、图像都经过点〔1,1〕〔0,0〕;b、函数的图像在区间[0,+∞〕上是增函数;c、在第一象限内,α1时,导数值逐渐增大等。
幂函数的图像
幂函数的性质一、正值性质
当α0时,幂函数y=xα有以下性质:
a、图像都经过点〔1,1〕〔0,0〕;
b、函数的图像在区间[0,+∞〕上是增函数;
c、在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0lt;αlt;1时,导数值逐渐减小,趋近于0;
二、负值性质
当αlt;0时,幂函数y=xα有以下性质:
a、图像都通过点〔1,1〕;
b、图像在区间〔0,+∞〕上是减函数;〔内容补充:假设为X-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间〔-∞,0〕上单调递增。
其余偶函数亦是如此〕。
c、在第一象限内,有两条渐近线〔即坐标轴〕,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有以下性质:
a、y=x0的图像是直线y=1去掉一点〔0,1〕。
它的图像不是直线。
第 六 节 幂函数与函数的图像变换重点难点重点:①幂函数的定义、图象与性质.②函数图象三种基本变换规则.难点:①幂函数图象的位置和形状变化与指数的关系.②利用基本变换规则作函数图象知识归纳一、幂函数的定义和图象1.定义:形如y =x α的函数叫幂函数(α为常数)要重点掌握α=1,2,3,12,-1,0,-12,-2时的幂函数 2.图象:(只作出第一象限图象)幂函数在其它象限的图象,可由幂函数的奇偶性根据对称性作出.幂函数y=xα(α∈R)的图象如下表:α=qpα<00<α<1α>1p、q都是奇数p为奇数,q为偶数α=qpα<00<α<1α>1p为偶数,q为奇数3.性质:(1)当α>0时,幂函数图象都过点和点;且在第一象限都是函数;当0<α<1时曲线上凸;当α>1时,曲线下凸;α=1时,为过(0,0)点和(1,1)点的(2)当α<0时,幂函数图象总经过点,且在第一象限为函数.(3)α=0时y=x0,表示过(1,1)点平行于x轴的直线(除去(0,1)点).二、函数的图象与图象变换1.画图描点法①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性、值域);④列对应值表(尤其注意特殊点,如最大值、最小值、与坐标轴的交点);⑤描点,连线.2.识图绘图、识图是学习函数、应用函数的一项重要基本功.识图要首先把握函数的定义域、值域、单调区间、奇偶性或图象的对称特征、周期性、与坐标轴的交点,另外有无渐近线,正、负值区间等都是识图的重要方面,要注意函数解析式中含参数时.怎样由图象提供信息来确定这些参数.3.用图函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.4.有关结论若f(a+x)=f(a-x),x∈R恒成立,则y=f(x)的图象关于直线x=a成轴对称图形.误区警示1.对于函数y=|f(x)|与y=f(|x|)一定要区分开来,前者将y =f(x)位于x轴下方的图象翻折到x轴上方,后者将y=f(x)图象在y轴左侧图象去掉作右侧关于y轴的对称图,后者是偶函数而前者y ≥0.比如y=|sin x|与y=sin|x|.2.由函数y=f(x)的图象变换成y=g(x)的图象,变换顺序为①→②时,由y=g(x)的图象变换成y=f(x)的图象则是相反的变换且顺序也相反,即②→①.3.在研究幂函数y=xα的图象、性质时,应考虑α的三种情况:α>0,α=0和α<0.幂函数的图象一定出现在第一象限内,一定不会出现在第四象限内,与坐标轴相交时,交点一定是原点.一、数形结合的思想函数的图象可以形象地反映函数的性质.通过观察图形可以确定图象的变化趋势、对称性、分布情况等.数形结合借助于图象与函数的对应关系研究函数的性质,应用函数的性质.其本质是:函数图象的性质反映了函数关系;函数关系决定了函数图象的性质.二、解题技巧1.图形变换方法作图是学习和研究函数的基本功之一.变换法作图是应用基本函数的图象,通过平移、伸缩、对称等变换,作出相关函数的图象.应用变换法作图,要求我们熟记基本函数的图象及其性质,准确把握基本函数的图象特征,熟练地进行平移、伸缩、对称变换.(1)平移变换①左右平移:y=f(x-a)的图象,可由y=f(x)的图象向左(a<0)或向右(a>0)平移|a|个单位而得到.②上下平移:y=f(x)+b的图象,可由y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.(2)对称变换①y =f (-x )与y =f (x )的图象关于y 轴对称.②y =-f (x )与y =f (x )的图象关于x 轴对称.③y =-f (-x )与y =f (x )的图象关于原点对称.④y =f -1(x )与y =f (x )的图象关于直线y =x 对称.⑤y =|f (x )|的图象可将y =f (x )的图象在x 轴下方的部分以x 轴为对称轴翻折到x 轴上方,其余部分不变.⑥y =f (|x |)的图象可将y =f (x ),x ≥0的部分作出,再利用偶函数的图象关于y 轴的对称性,作出x <0的图象.(3)伸缩变换①y =Af (x )(A >0)的图象,可将y =f (x )图象上所有点的纵坐标变为原来的A 倍,横坐标不变而得到.②y =f (ax )(a >0)的图象,可将y =f (x )图象上所有点的横坐标变为原来的1a倍,纵坐标不变而得到. 2.图象对称性的证明(1)证明函数图象的对称性,即证明其图象上的任意一点关于对称中心(或对称轴)的对称点仍在图象上.(2)证明曲线C 1与C 2的对称性,即要证明C 1上任一点关于对称中心(对称轴)的对称点在C 2上,反之亦然.3.由于幂函数y =x α当α<0时,图象不过坐标原点,故有关幂函数y =x α(α<0)的单调性问题,一定要重视分区间讨论.幂函数的定义[例1]幂函数的图象过点(2,14),则它的单调增区间是( ) A .(0,+∞) B .[0,+∞)C .(-∞,+∞)D .(-∞,0)幂函数y =f (x )的图象过点⎝⎛⎭⎪⎫4,12,那么f (8)的值为________. 幂函数的单调性[例2] (1)已知(0.71.3)m <(1.30.7)m ,求m 的范围.(2)比较大小:0.80.7与0.70.8.分析:(1)中两个数的指数相同,故可视作幂函数y =x m 在x 取x 1=0.71.3与x 2=1.30.7时的两个函数值用单调性讨论.(2)中两个数底数不同,指数也不同,可借助中间量0.80.8(或0.70.7),用指数函数y =0.8x 与幂函数y =x 0.8的单调性解决.下列各式中正确的是( )幂函数图象的分布规律[例3] 幂函数y =x m 2+3m (m ∈Z)的图象如右图所示,则m 的值为( )A .-3<m <0B .-1C .-2D .-1或-2函数y =x 13 的图象是()函数f (x )=x +1x图象的对称中心为( ) A .(0,0) B .(0,1)C .(1,0)D .(1,1)幂函数图象与性质的综合应用已知幂函数f (x )=x m 2-6m +5 (m ∈Z)为奇函数,且在区间(0,+∞)上是减函数,则f (x )的解析式为________.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在(0,+∞)上是减函数,则实数m 的值为( )A .2B .3C .4D .5数形结合的思想[例5] 方程2-x +x 2=3的实数解的个数是( )A .2B .3C .1D .4已知f (x )是以2为周期的偶函数.当x ∈[0,1]时,f (x )=x ,那么在区间[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R 且k ≠-1)有四个根,则k 的取值范围是( )A .(-1,0)B .(-12,0)C .(-13,0)D .(-14,0)已知函数f (x )=⎩⎪⎨⎪⎧ 2x , x ≥2, x -1 3, x <2.若关于x 的方程f (x )=k 有两个不同的实数根,则实数k 的取值范围是________.据解析式作函数的图象[例6] 作出下列函数的图象(1)y =x 3|x |; (2)y =x +2x -1; (3)y =|log 2x -1|; (4)y =2|x -1|.y =|x -13 |的图象为( )设函数f (x )=ax +b x 2+c的图象如图,则a ,b ,c 满足()A .a >b >cB .a >c >bC .b >a >cD .b >c >a一、选择题1.在下列四个函数①y =x 13 ②y =x 12 ③y =x -2 ④y =x 0中,为偶函数的是( )A .①B .①③C .③④D .①②③④2.已知函数①y =3x ;②y =ln x ;③y =x -1;④y =x 12 .则下列函数图象(在第一象限部分)从左到右依次与函数序号的对应顺序一致的是()A .②①③④B .②③①④C .④①③②D .④③①②2.要将函数y =1+x -1的图象变换成幂函数y =x 12 的图象,需要将y =1+x -1的图象( )A .向左平移一个单位,再向上平移一个单位B .向左平移一个单位,再向下平移一个单位C .向右平移一个单位,再向上平移一个单位D .向右平移一个单位,再向下平移一个单位4.设a ∈{-1,1,12,3},则使函数y =x a 的定义域为R 且该函数为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,35.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使y =x α为奇函数且在(0,+∞)上单调递减的α值的个数为( )A .1B .2C .3D .4二、填空题6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x的值是______.7.幂函数(p ∈Z)为偶函数,且f (1)<f (4),则实数p =________.三、解答题 8.已知幂函数f (x )的图象过点(2,2)且幂函数g (x )=x m 2-m -2(m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称.(1)求f (x ),g (x )的解析式;(2)当x 为何值时①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).。