第六章完整版邱关源电路(储能元件)
- 格式:pptx
- 大小:1.95 MB
- 文档页数:9
第一章电路模型和电路定律,第二章电阻电路的等效变换,第三章电阻电路的一般分析,第四章电路定理。
这四章是电路理论的基础,全部都考,都要认真看,打好电路基础。
第一章1-2电流和电压的参考方向要注意哈,个人认为搞清楚方向是解电路最重要的一步了,老师出题,喜欢把教材上常规的一些方向标号给标反,这样子,很多式子就得自己重推,这也是考验你学习能力的方式,不是死学,比如变压器那章,方向如果标反,式子是怎样,需要自己推导一遍。
第二章都要认真看。
第三章3-1 电路的图。
图论是一门很重要的学科,电路的图要好好理解,因为写电路的矩阵方程是考试重点,也是送分题,而矩阵方程是以电路图论为基础的。
第四章4-7对偶原理。
自己看一下,懂得什么意思就行了。
其他小节都是重点,特别是特勒跟和互易。
这几年真题第一题都考这个知识点。
第五章含有运算放大器的电阻电路。
这个知识点是武大电路考试内容,一定要懂,虚短和虚断在题目中是怎么用的,多做几个这章的题就很清楚了。
5-2 比例电路的分析。
这一节真题其实不怎么常见,跟第三节应该是一个内容,还是好好看一下吧。
第六章储能元件。
亲,这是电路基础知识,老老实实认真看吧。
清楚C和L的能量计算哦。
第七章一阶电路和二阶电路的时域分析。
一阶电路的都是重点,二阶电路的时域分析,其实不怎么重要,建议前期看一下,从来没有出现过真性二阶电路让考生用时域法解的,当然不是不可以解,只是解微分方程有点坑爹,而且基本上大家都是要背下来那么多种情况的解。
所以,这章的课后习题中,二阶的题用时域解的就不用做了,一般后面考试都是用运算法解。
7-1 7-2 7-3 7-4 都是重点,每年都考。
好好看。
7-5,7-6,两节,看一下即可,其实也不难懂,只是很难记。
7-7,7-8很重要,主要就是涉及到阶跃和冲激两个函数的定义和应用,是重点。
7-9,卷积积分,这个方法很有用,也不难懂,不过我没看过也不会用也不会做,每次遇到题目都是死算,建议好好研究下卷积。
第六章 储能元件§6-1 §6-2 §6-3电容元件 电感元件 电容、电感元件的串联和并联z 重点: 重点: z1. 电容元件的特性; 2. 电感元件的特性; 3. 电容、电感元件在串并联时的 等效参数。
§6-1电容器电容元件在外电源作用下,两极板上分 别带上等量异号电荷,并在介质中 建立电场而具有电场能。
撤去电 源,板上电荷仍可长久地集聚下 去,电场继续存在。
q +εq -电容器是一种能存储电荷或存储电场能量的部件。
电容元件就是反映这种物理现象的电路模型。
1. 线性电容元件(1) 电路符号 (2) 库伏特性C q + i + u -q -任何时刻,极板上的电荷q与电压u成正比。
q = CuC称为电容器的电容,是一个正实常数。
单位:F(法),常用µF,pF等表示。
q = Cu线性电容元件的库伏特性( q~u )是过原点的直线。
库伏特性qαOu(3) 线性电容元件的电压、电流关系 电流和电压取关联参考方向C q + i + u -q -dq d (Cu ) du i= = =C dt dt dtCdu 由式 i = C 可知 dtq + i + u-q -(1) 电流与电压的大小无关,而与电压的变化率成正 比。
即电压与电流具有动态关系,电容是动态元件; (2) 当电压不随时间变化,即u为常数(直流)时,电流 为零。
电容相当于开路,电容有隔断直流作用; (3) 实际电路中通过电容的电流i为有限值,则电容 电压u必定是时间的连续函数。
Cdq 由式 i = C 得 dtt t0q + i +t t0-q u tq(t ) = ∫ idξ = ∫ idξ + ∫ idξ = q(t 0) + ∫ idξ−∞ −∞ t0上式的物理意义是:t时刻具有的电荷量等于t0时 的电荷量加以t0到t时间间隔内增加的电荷量。
指定t0为时间起点并设为零( t0=0 ),上式写为q(t ) = q(0) + ∫ idξ0tC因 u = q /C 由i +q + u或t-q t 0q(t) = q(t 0) + ∫ idξt0q(t ) = q(0) + ∫ idξ1 t u(t ) = u(0) + ∫ idξ C 0得1 t u(t) = u(t 0) + ∫ idξ C t0或可见,电容电压除与0到t的电流值有关外,还与 u(0)值有关,因此,电容是一种有“记忆”的元件。
重点:电容元件的特性电感元件的特性电容、电感的串并联等效6.1 电容元件电容器:在外电源作用下,正负电极上分别带上等量异号电荷,撤去电源,电极上的电荷仍可长久地聚集下去的电路元件,是一种储存电能的部件。
电导体由绝缘材料分开就可以产生电容。
1. 定义电容元件:储存电能的两端元件。
任何时刻其储存的电荷 q 与其两端的电压 u 能用q ~u 平面上的一条曲线来描述(右图)。
0),(=q u f2. 线性时不变电容元件任何时刻,电容元件极板上的电荷q 与电压u 成正比。
q ~u 特性曲线是过原点的直线。
q=Cu(右图的红线为直线)电路符号:(右图)单位:F (法拉), 常用μF ,pF 等表示。
3. 电容的电压−电流关系u 、i 取关联参考方向tu C t Cu t q i d d d d d d === (电容元件VCR 的微分形式)表明:● 某一时刻电容电流 i 的大小取决于电容电压 u 的变化率,而与该时刻电压 u 的大小无关。
电容是动态元件;● 当 u 为常数(直流)时,i =0。
电容相当于开路,电容有隔断直流作用;● 实际电路中通过电容的电流 i 为有限值,则电容电压 u 必定是时间的连续函数。
(∞→∞→i dtdu ) ⎰+=⎰⎰∞-+=⎰∞-=t t ξi t u t t ξi t ξi t ξi t u 0d 1)0( 0d )(01d )(1d )(1)( ξξξ⎰+=t t ξi Ct u t u 0d 1)0()( (1) (电容元件VCR 的积分形式) 公式表明:⏹ 某一时刻的电容电压值与-∞到该时刻的所有电流值有关,即电容元件有记忆电流的作用,故称电容元件为记忆元件。
⏹ 研究某一初始时刻t 0 以后的电容电压,需要知道t 0时刻开始作用的电流 i 和t 0时刻的电压 u (t 0)。
注意:● 当电容的 u ,i 为非关联方向时,上述微分和积分表达式前要冠以负号 ;⎰+-=-=t t ξi C t u t u t u C i 0)d 1)0(()( ,d d● 上式中u (t0)称为电容电压的初始值,它反映电容初始时刻的储能状况,也称为初始状态。
第6章 角度调制与解调电路6.1已知调制信号 u 8cos(2 n 103t)V ,载波输出电压u °(t) 5cos(2 n 106t) V , k f 2n 103 rad/sgV ,试求调频信号的调频指数 m f 、最大频偏気和有效频谱带宽 BW ,写出调频信号表示式6.2已知调频信号 U o (t) 3cos [2 n 107t 5sin(2 n 102t)] V , k f(1)求该调频信号的最大相位偏移 m f 、最大频偏f m 和有效频谱带宽BW ; (2)写出调制信号和载波输出电压表示式。
[解]⑴m f 52u (t) cos2n 10 t(V) u O (t) 3cos2 n 107 t(V)6.3已知载波信号u °(t) U m cos(壮),调制信号u (t)为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移[解] 山皿⑴、(t)和 (t)波形如图P6.3(s)所示。
f m m f BWU o (t) k f U m 2 nk f U m 32n 1082n 2 n 103 8 2n 10338 10 Hz 8 rad32(m 1)F2(8 1) 10 18 kHz5cos(2 n 106 t 8sin2n 103t)(V)103 n rad/s gV ,试:f m m f F5 100 500 HzBW=2(m+1)F 2(5 1) 100 1200 Hz⑵因为m fk f U m,所以U巴 k f5 2n 100n 1031V ,故(t)和瞬时相位偏移(t)的波形。
岫 彳 __ _,!6.4 调频信号的最大频偏为 75 kHz ,当调制信号频率分别为 100 Hz 和15 kHz 时, 求调频信号的 m f 和BW 。
[解]当 F 100 Hz 时,m ff m F 3 75 10100 750 BW 2(m f 1)F 2(750 1) 100 Hz 150 kHz 当 F 15 kHz 时,m f 3 f m 75 10 c 3 5 F 15 10 BW 2(5 1) 15 103 Hz 180 kHz 6.5 已知调制信号 u (t) 6COS (4 n 103t)V 、载波输出电压 u °(t) 2cos(2 n 108t)V , k p 2 rad/V 。
5种基本的理想电路元件:电阻元件:表示消耗电能的元件。
电感元件:表示产生磁场,储存磁场能量的元件。
电容元件:表示产生电场,储存电场能量的元件。
电压源和电流源:表示将其他形式的能量转变成电能的元件。
规定正电荷的 运动方向为电流的实际方向对于复杂电路或电路中的电流随时间变化时,电流的实际方向往往很难事先判断。
任意假定一个正电荷运动的方向即为电流的参考方向。
u, i 取关联参考方向p=ui 表示元件吸收的功率p>0 吸收正功率 (实际吸收) u, i 取非关联参考方向p = ui 表示元件发出的功率p>0 发出正功率 (实际发出)电压源的功率电压、电流参考方向非关联电流(正电荷 )由低电位向高电位移动,外力克服电场力作功,电源发出功率。
S 0 p u i =>发出功率,起电源作用基尔霍夫电流定律 (KCL)在集总参数电路中,任意时刻,对任意结点流出(或流入)该结点电流的代数和等于零。
基尔霍夫电压定律 (KVL)在集总参数电路中,任一时刻,沿任一回路,所有支路电压的代数和恒等于零。
等效电路:1.电阻串联iR i R R i R i R i R u n n k eq 11)(=++=++++=knk k n k R R R R R R >=++++=∑=11eq2.电阻并联i = i1+ i2+ …+ ik+ …+in=u/R1 +u/R2 + …+u/Rn =u(1/R1+1/R2+…+1/Rn)=uGeqk nR R R R R G R <+++==eq 21eq eq 1111即Y →△的变换条件为213133113232233212112R R R R R R R R R R R R R R R R R R ++=++=++=△→Y 的变换条件为312312233133123121223231231231121R R R R R R R R R R R R R R R R R R ++=++=++=1.理想电压源的串联和并联串联nS1S2Sn S 1k k u u u u u ==+++=∑并联2S 1S u u u ==2. 理想电流源的串联和并联 并联∑=+⋅⋅⋅++=kn i i i i i S S S21S串联2S 1S i i i ==实际电源的两种模型及其等效变换1. 实际电压源iR u u S S -=2. 实际电流源S S R ui i -=实际电压源、实际电流源两种模型可以进行等效变换,所谓的等效是指端口的电压、电流关系在转换过程中保持不变。
第一章电路模型和电路定律1.实际电路:有电工设备和电气器件按预期目的连接构成的电流的通路。
功能:a.能量的传输、分配与转换b.信息的传递、控制与处理共性:建立在同一电路理论基础上2.电路模型:反应实际电路部件的主要电磁性质的理想元件5种基本的理想电路元件:电阻元件:表示消耗电能的元件电感元件:表示产生磁场,储存磁场能量的元件电容元件:表示产生的电场,储存电场能量的元件电压源和电流源:表示将其他形式的能量转变成电能的元件3.u, i 关联参考方向p = ui 表示元件吸收的功率P>0 吸收正功率(吸收)P<0 吸收负功率(发出)4.u, i 非关联参考方向p = ui 表示元件发出的功率P>0 发出正功率(发出)P<0 发出负功率(吸收)注:对一完整的电路,发出的功率=消耗的功率a.分析电路前必须选定电压和点流的参考方向b.参考方向一经选定,必须在图中相应位置标注(包括方向和符号)c.参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变5.理想电压源和理想电流源理想电压源:其两端电压总能保持定值或一定的时间函数,其值与流过它的电流i无关的元件叫理想电压源。
理想电压源的电压、电流关系:a.电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关b.通过电压源的电流由电源及外电路共同决定理想电流源:其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u无关的元件叫理想电流源。
理想电流源的电压、电流关系:a.电流源的输出电流由电源本身决定,与外电路无关;与它的两端电压的方向、大小无关b.电流源两端的电压由电源及外电路共同决定6.受控电源(非独立电源):电压或电流大小和方向不是给定的时间函数,而是受电路中某处的电压或电流控制的电源称为受控电源7.基尔霍夫定律基尔霍夫电压定律(KCL):在集总参数电路中,任意时刻,对任一结点流出(或流入)该节点电流的代数和为零基尔霍夫电压定律(KVL):在集总参数电路中,任意时刻,沿任一回路,所有支路电压的代数和恒等于零注:a.kcl是对支路电流的线性约束,kvl是对回路电压的线性约束。