天津理工电路习题及答案-第六章--一阶电路
- 格式:doc
- 大小:4.49 MB
- 文档页数:17
WORD 格式.分享方法一阶电路的三要素法一阶电路是指含有一个储能元件的电路。
一阶电路的瞬态过程是电路变量有初始值按指数规律趋向新的稳态值,趋向新稳态值的速度与时间常数有关。
其瞬态过程的通式为f (t ) = f (∞) + [ f (0+) – f (∞)]τt-e式中:f (0+) —— 瞬态变量的初始值; f (∞) —— 瞬态变量的稳态值; τ —— 电路的时间常数。
可见,只要求出f (0+)、f (∞)和 τ 就可写出瞬态过程的表达式。
把f (0+)、f (∞)和 τ 称为三要素,这种方法称三要素法。
如RC 串联电路的电容充电过程,u C (0+) = 0, u C (∞) = E , τ = RC ,则u C (t)= u C (∞)+[ u C (0+) − u C (∞)]τt-e结果与理论推导的完全相同,关键是三要素的计算。
f (0+)由换路定律求得,f (∞)是电容相当于开路,电感相当于短路时求得的新稳态值。
τ = RC 或RL=τ,R 为换路后从储能元件两端看进去的电阻。
三个要素的意义:(1) 稳态值f (∞):换路后,电路达到新稳态时的电压或电流值。
当直流电路处于稳态时,电路的处理方法是:电容开路,电感短路,用求稳态电路的方法求出所求量的新稳态值。
(2) 初始值f (0+):f (0+)是指任意元件上的电压或电流的初始值。
(3) 时间常数τ:用来表征暂态过程进行快慢的参数,单位为秒。
它的意义在于,a. τ越大,暂态过程的速度越慢,τ越小,暂态过程的速度则越快,b.理论上,当t 为无穷大时,暂态过程结束;实际中,当t =(3~5)τ时,即可认为暂态过程结束。
时间常数的求法是:对于RC 电路τ=RC ,对于RL 电路τ=L/R 。
这里R 、L 、C 都是等效值,其中R 是把换路后的电路变成无源电路,从电容(或电感)两端看进去的等效电阻(同戴维宁定理求R 0的方法)。
c.同一电路中,各个电压、电流量的τ相同,充、放电的速度是相同的。
习题六6-1 什么是本征半导体?什么是杂质半导体?各有什么特征?答:所谓本征半导体就是指完全纯净的、结构完整的半导体。
在本征半导体中掺入杂质后的半导体称为杂质半导体。
本征的半导体中的自由电子数量和空穴的数量是相等的,而杂质半导体中根据掺杂的元素不同可分为N 型半导体和P 型半导体,在N 型半导体中电子的浓度远远大于空穴的浓度,而P 型半导体恰恰相反。
6-2 掺杂半导体中多数载流子和少数载流子是如何产生的?答:在本征半导体中,由于半导体最外层有四个电子,它与周边原子的外层电子组成共价键结构,价电子不仅受到本身原子核的约束,而且受到相邻原子核的约束,不易摆脱形成自由电子。
但是,在掺杂的半导体中,杂质与周边的半导体的外层电子组成共价键,由于杂质半导体的外层电子或多(5价元素)或少(3价元素),必然有除形成共价键外多余的电子或不足的空穴,这些电子或空穴,或者由于受到原子核的约束较少容易摆脱,或者容易被其它的电子填充,就形成了容易导电的多数载流子。
而少数载流子是相对于多数载流子而言的另一种载流子,它是由于温度、电场等因素的影响,获得更多的能量而摆脱约束形成的。
6-3,黑表笔插入COM ,红表笔插入V/Ω(红笔的极性为“+”),将表笔连接在二极管,其读数为二极管正向压降的近似值。
用模拟万用表测量二极管时,万用表内的电池正极与黑色表笔相连;负极与红表笔相连。
测试二极管时,将万用表拨至R ×1k 档,将两表笔连接在二极管两端,然后再调换方向,若一个是高阻,一个是低阻,则证明二极管是好的。
当确定了二极管是好的以后就非常容易确定极性,在低阻时,与黑表笔连接的就是二极管正极。
6-4 什么是PN 结的击穿现象,击穿有哪两种。
击穿是否意味着PN 结坏了?为什么? 答:当PN 结加反向电压(P 极接电源负极,N 极接电源正极)超过一定的时候,反向电流突然急剧增加,这种现象叫做PN 结的反向击穿。
击穿分为齐纳击穿和雪崩击穿两种,齐纳击穿是由于PN 结中的掺杂浓度过高引起的,而雪崩击穿则是由于强电场引起的。
答案第一章 电路模型和电路定律【题1】:D 。
【题2】:D 。
【题3】:D 。
【题4】:P US1=50 W ;P US26=- W ;P US3=0;P IS115=- W ;P IS2 W =-14;P IS315=- W 。
【题5】:C 。
【题6】:3;-3。
【题7】:-5;-13。
【题8】:4(吸收);25。
【题9】:0.4。
【题10】:3123I +⨯=;I =13A 。
【题11】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题12】:I =-7A ;U =-35V ;X 元件吸收的功率为P UI =-=-245W 。
【题13】:由图可得U EB =4V ;流过2 Ω电阻的电流I EB =2A ;由回路ADEBCA 列KVL 得U I AC=-23;又由节点D 列KCL 得I I CD =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得U AC =-7V 。
第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I ab .=+=9485V ; I U 162125=-=ab .A ;P =⨯6125. W =7.5 W ;吸收功率7.5W 。
【题2】:[解答]【题3】:[解答] C 。
【题4】:[解答] 等效电路如图所示,I 005=.A 。
【题5】:[解答] 等效电路如图所示,I L =0.5A 。
【题6】:[解答]【题7】:[解答]由图可得U=4I-4。
【题8】:[解答]⑴U =-3 V 4⑵1 V 电压源的功率为P =2 W (吸收功率) 7⑶1 A 电流源的功率为P =-5 W (供出功率) 10【题9】:[解答]A【题10】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
第六章一阶电路——经典分析法(微分方程描述)——运算分析法(代数方程描述)见第十三章一、重点和难点1. 动态电路方程的建立和动态电路初始值的确定;2. 一阶电路时间常数、零输入响应、零状态响应、冲激响应、强制分量、自由分量、稳态分量和暂态分量的概念及求解;3. 求解一阶电路的三要素方法;电路初始条件的概念和确定方法;1.换路定理(换路规则)仅对动态元件(又称储能元件)的部分参数有效。
①电容元件:u C(0-) = u C(0+);(即:q C(0-) = q C(0+));i C(0-) ≠i C(0+)。
②电感元件:i L(0-) = i L(0+);(即:ΨL(0-) = ΨL(0+));u C(0-) ≠u C(0+)。
③电阻元件:u R(0-) ≠u R(0+);i R(0-) ≠i R(0+)。
因此,又称电容的电压、电感的电流为状态变量。
电容的电流、电感的电压、电阻的电压和电流为非状态变量。
如非状态变量的数值变化前后出现相等的情况则视为一种巧合,并非是一种规则。
2.画t=0+时刻的等效电路画t=0+时刻等效电路的规则:①对电容元件,如u C(0-) = 0,则把电容元件短路;如u C(0-) ≠ 0,则用理想电压源(其数值为u C(0-))替代电容元件。
②对电感元件,如i L(0-) = 0,则把电感元件开路;如i L(0-) ≠ 0,则用理想电流源(其数值为i L(0-))替代电感元件。
画t=0+时刻等效电路的应用:一般情况下,求解电路换路后非状态变量的初始值,然后利用三要素法求解非状态变量的过渡过程。
3. 时间常数τ①物理意义:衡量过渡过程快慢的技术指标(即等于一阶微分方程的特征方程的特征根)。
仅取决于电路的结构和元件的参数。
②几何意义:状态变量变化曲线中时间坐标轴上任意一点次切距的长度(即曲线上任意一点,如果以该点的斜率为固定变化率衰减,则经过τ时间后为零值)。
③单位:m(秒)、ms(毫秒)。
第六章 一阶电路6-1图示各电路中开关S 在0t =时动作,试求各电路在0t +=时刻的电压,电流。
(a)(b)题6-1图2F3ΩΩ3解:(a)在0t <时,电路处于稳固状态,电容看做断路,电路如题解图(a1)所示。
电容上的电压别离为:()1200610363c u V -=⨯=++()220035363c u V -=⨯=++依照换路时电容电压不能跃变,得()()110010c c u u V +-== ()()22005c c u u V +-==画出0+等效电路如题解图(a2)所示。
由图可得结点电压()10n u +为()1111201050363336n u +⎛⎫++=++ ⎪⎝⎭()1013n u V +=故各支路电流为()()112007033n u i A ++-==()()12054063n u i A ++-== ()()13010013n u i A ++-==电阻上得电压为()11307R u i V +=⨯= ()22608R u i V +=⨯= ()33303R u i V +=⨯=(a1)题解6-1图3Ω3Ω-+3ΩΩ(a2)V(b)中:在0t <时,电路处于稳固状态,电感看做短路,电路如题解图(b1)所示。
依照分流关系有()3200 1.22030L i A -⨯==+由换路定律()()00 1.2L L i i A -+==t +=时等效电路图如题解图(b2)所示。
由图可知()1060R u V += ()2018R u V += ()3036R u V +=()()()2300054L R R u u u V +++=--=-题解6-1图(b1)33A(b2)6-2开关S 原在位置1已久,0t =时合向位置2,求()c u t 和()i t 。
题6-2图解:0t <时的电路如题解6-2图(a)所示。
由图可知()5010*******c u V -=⨯=+故可得电容电压的初始值()()004c c u u V -+==0t >后的电路如题解图(b)所示。