等式和方程的区别
- 格式:docx
- 大小:16.58 KB
- 文档页数:1
【数学知识点】方程的概念和意义
方程是指含有未知数的等式。
是表示两个数学式(如两个数、函数、量、运算)之间
相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。
在数学中,一个方
程是一个包含一个或多个变量的等式的语句。
求解等式包括确定变量的哪些值使得等式成立。
变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
方程式或简称方程,是含有未知数的等式。
即:⒈方程中一定有含一个或一个以上未
知数的代数式;2.方程式是等式,但等式不一定是方程。
未知数:通常设x.y.z为未知数,也可以设别的字母,全部小写字母都可以。
“次”:方程中次的概念和整式的“次”的概念相似。
指的是含有未知数的项中,未
知数次数最高的项。
而次数最高的项,就是方程的次数。
“解”:方程的解,指使,方程的根是方程两边相等的未知数的值,指一元方程的解,两者通常可以通用。
解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,或说明方程
无解的过程叫解方程。
方程中,恒等式叫做恒等方程,矛盾式叫做矛盾方程。
在未知数等于某特定值时,恰
能使等号两边的值相等者称为条件方程,例如,在时等号成立。
使方程左右两边相等的未
知数的值叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
感谢您的阅读,祝您生活愉快。
学生姓名性别年级学科数学授课教师魏涛上课时间2013年月日第()次课课时:2 课时教学课题方程与整式、等式的区别,方程的解题技巧教学目标结合方程特点进行有技巧的解题教学重点教学难点技巧性解题教学过程一、方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。
等式:用等号来表示相等关系的式子叫做等式。
如,m=n=n+m等都叫做等式,而像-,m2n不含等号,所以它们不是等式,而是代数式。
方程:含有未知数的等式叫做方程。
如5x+3=11,等都是方程。
理解方程的概念必须明确两点:①是等式;②含有未知数。
两者缺一不可。
(2)从是否含有等号来看:方程首先是一个等式,它是用“=”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。
(3)从是否含有未知量来看:等式必含有“=”,但不一定含有未知量;方程既含有“=”,又必须含有未知数。
但整式必不含有等号,不一定含有未知量,分为单项式和多项式。
二、规律方法指导1、判断一个式子是否是一元一次方程:(1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。
(2)当括号内含有分数时,常由外向内先去括号,再去分母。
(3)当分母中含有小数时,可用分数的基本性质化成整数。
(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。
三、经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。
其中方程的个数是( )A、5B、6C、7D、8思路点拨:方程是含有未知数的等式,根据定义逐个进行判断,显然②③不合题意。
总结升华:根据定义逐个进行判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,体现了对概念的理解与应用能力。
方程式和等式的关系
嘿,大家好呀!今天咱们来好好聊聊方程式和等式,这俩家伙可是数学世界里特别重要的存在呢!
先来说说等式吧。
等式就像是一个平衡的天平,两边的重量是一样的。
比如 3+2=5,这就是一个简单又典型的等式呀。
等式就是表示两个数或者表达式之间是相等的关系。
那方程式呢?方程式其实可以看作是一种特殊的等式哦!它就像是带着一个小谜团的等式。
比如 2x+3=7,这里面有个未知数 x 呀,我们的任务就是要找出 x 到底是多少,才能让这个方程式成立。
这不就像是解开一个小谜题嘛!
等式和方程式可是有着密切的联系呢!方程式其实就是一种特殊的等式,它包含着未知数,等着我们去求解。
可以说,方程式是等式这个大家庭里很有特色的一员呢!
想想看,要是没有等式,那数学的世界得变得多么混乱呀!我们怎么能确定两个东西是一样多或者一样大呢?而方程式呢,则给我们带来了更多的挑战和乐趣。
就好像我们在玩一个解谜游戏,通过各种方法去找到那个隐藏的答案。
你说,等式和方程式是不是很神奇呀?它们就像数学世界里的基石和宝藏,让我们不断地去探索和发现。
所以呀,方程式和等式那可真是关系紧密,相辅相成呀!它们都是数学中不可或缺的重要部分呢!。
整式知识点梳理考点01 方程的有关概念一、等式1.等式:用“=”来表示相等关系的式子叫作等式。
2.等式的性质:(1)性质1:等式两边加(或减)同一个数(或式子),结果仍相等(如果b a =,那么c b c a ±=±(c 为一个数或式子))。
(2)性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等(如果b a =,那么bc ac =.如果)(0≠=c b a ,那么cb c a =) 3.等式性质的延伸:(1)对称性:等式左右两边互换,所得结果仍相等,即如果b a =,那么a b =。
(2)传递性:如果b a =,c b =,那么c a =。
二、方程的概念和方程的解1.方程的概念:含有未知数的等式叫作方程。
2.方程与等式的区别:方程是等式,但等式中不一定含有未知数,即等式不一定是方程。
3.方程的解:使方程左右两边相等的未知数的值,叫作方程的解。
4.判断一个数(或一组数)是不是某方程的解,只需看两点:(1)它是方程中的未知数的值.(2)将它分别代入方程的左右两边,若左边等于右边,则它是方程的解,否则不是。
5.解方程:求方程解的过程叫作解方程。
6.方程的解和解方程的区别:方程的解是一个结果,解方程则是得到这个结果的一个过程。
7.一元一次方程:只含有一个未知数(元),并且未知数的次数是1,这样的整式方程叫作一元一次方程。
8.一元一次方程知识拓展:(1)“元”是指未知数,“次”是指未知数的次数.(2)一元一次方程满足3个条件:①是整式方程.②只含有一个未知数.③未知数的次数是1.(3)一元一次方程的标准形式:),0(0是已知数、b a a b ax ≠=+。
考点02 解一元一次方程与一元一次方程的应用一、解一元一次方程1.移项:把等式一边的某项变号后移到另一边,叫作移项,注意移项要变号。
2.解一元一次方程的步骤:(1)去分母:把方程两边都乘以各分母的最小公倍数(去分母时,若分子是多项式,要添括号).(2)去括号:先去小括号,再去中括号,最后去大括号(不要漏乘括号里的项,不要弄错符号).(3)移项:把含有未知数的项移到方程的一边,其他项移到另一边(注意移项要变号).(4)合并同类项:把等号两边的同类项分别合并,化成“b ax =”的形式(0≠a ).(5)系数化为1:方程两边同除以未知数的系数a 得方程的解为ab x =。
方程的意义和等式的性质方程是数学中的一个重要概念,它在实际问题的建模和计算中有着广泛的应用。
而等式则是描述方程中的两个量之间的相等关系。
在解方程过程中,我们需要了解方程的意义和等式的性质,以便能够正确地解决问题。
首先,让我们来谈谈方程的意义。
方程是用来描述两个或多个量之间的关系的数学式子。
其中,等式是方程的一种特例,即表示两个量相等的关系。
方程可以包括变量、常数和运算符等数学元素。
通过解方程,我们可以找到满足方程条件的未知数的取值,从而得到问题的答案。
1.描述物理、化学和工程等实际问题:方程可以用来描述各种自然和社会现象。
例如,动力学方程描述了物体的运动状态,化学方程描述了化学反应的发生与变化,电路方程描述了电流和电压之间的关系等。
2.建立数学模型:方程可以用来建立数学模型,从而分析和预测实际问题。
数学模型是将现实世界中的问题抽象化为数学形式的表示方式。
通过建立合适的方程模型,我们可以对问题进行量化和计算,从而得到问题的解析解或数值解。
3.解决未知数的取值问题:方程中的未知数代表了我们要求解的问题中的一些变量。
通过解方程,我们可以找到满足方程条件的未知数的取值。
这对于解决各种实际问题非常重要,如计算距离、求解面积和体积、预测未来趋势等。
接下来,让我们来谈谈等式的性质。
等式是方程中一种特殊的形式,它表示两个量之间的相等关系。
等式的性质有以下几个方面:1.反身性:对于任何数a,a=a都成立。
2.对称性:如果a=b,则b=a。
3.传递性:如果a=b,b=c,则a=c。
4.替换性:等式两边可以相互替换。
5.合并性:等式两边的项可以合并。
6.可加性和可乘性:在等式两边同时加上或乘以同一个数,等式仍然成立。
通过利用等式的性质,我们可以对方程进行各种运算和变形,从而得到方程的不同形式和简化形式,方便我们进行进一步的计算和解题。
方程的意义及等式的性质知识点回顾1、方程的意义(1)概念:含有未知数的等式就是方程例如:100+x=250,8-x=18,6(x-2)=24,(x+4)÷2=3注意:方程中的字母表示未知的量,叫做未知数(2)方程必须具备的两个条件:一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
(3)方程与等式的关系所有的方程一定是等式,但等式不一定是方程2、等式的性质(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变典型题目一、口算。
0.9-0.25= 4.8+0.07=0.24×3=0.7÷0.1=0.69÷0.3=7.8÷0.3=二、填空。
1.含有未知数的(),叫做方程。
2.用5,y,6组成的方程有:()、()。
3.用方程表示数量关系。
比a多2.4的数是3.8。
()7.8除以a,商是0.6。
()4、若天平的左边放3把同样的茶壶,天平的右边放9个同样的茶杯,天平平衡,则1把茶壶和()个茶杯同样重。
三、判断。
(对的打“√”,错的打“×”)1.含有未知数的式子都是方程。
()2.所有的方程都是等式。
()3.等式不一定是方程。
()4.6x-18=0和4x-8中都含有未知数,所以都是方程。
()5、3x+3是方程()6、方程是等式,等式是方程()7、未知数的式子都是方程。
()四、给小式子找家。
(1)15+8a=374-2x4y=5a5a÷8 34×0.2=3.6a+9<163a÷4=74y+5y=7×9等式方程不等式(2)5+8a=374-2x4y=5a5a÷8 18×0.2=3.6a+9<16a÷4=74y+5y=7×9等式方程不等式五、你能写出3个方程式吗?()()()六、选择。
(将正确答案的序号填在括号里)1.a+a+a=()。
等式与方程的区别与联系概述说明以及概述1. 引言:1.1 概述:等式和方程是数学中非常重要的概念,它们在解决数学问题和现实生活中的各种问题时发挥着关键作用。
尽管等式和方程有一些共同之处,但它们也有一些区别。
本文旨在比较和说明等式与方程的区别与联系,并探讨它们在数学领域和实际应用中的差异。
1.2 文章结构:本文将按照以下结构来论述等式与方程的区别与联系:- 第二部分将对等式与方程的定义、特点以及解的概念和存在性进行详细说明。
- 第三部分将重点讨论等式与方程之间的区别,包括形式上的区别、意义上的区别以及在数学领域中应用上的差异。
- 第四部分将探讨等式与方程之间的联系,包括等式可以看作一种简单类型的方程、方程可以看作一种广义形式的等式,以及复杂问题中同时存在等式和方程。
- 最后一部分将总结等式与方程之间的关系,并强调它们在数学和现实中的重要性,并提出进一步研究等式和方程相关问题的建议。
1.3 目的:本文旨在帮助读者更好地理解等式与方程的概念、区别与联系,并认识到它们在数学领域和实际应用中的作用和重要性。
通过深入分析等式与方程的特点,我们可以为解决各种数学问题提供更有效的方法和思路,并将这些概念应用到实际生活中,解决现实中遇到的各种问题。
2. 等式与方程的区别与联系2.1 定义和特点等式和方程都是数学中常见的概念,它们之间存在着一定的区别和联系。
首先,我们来看它们的定义和特点。
等式是指两个表达式相等的关系,通常用“=”符号连接两个表达式。
在一个等式中,左边的表达式和右边的表达式具有相同的值。
方程是指包含未知数的等式。
在一个方程中,除了含有已知数或已知量外,还包含一个或多个未知数,并且方程中至少存在一个未知数。
通过解方程可以求得未知数的值。
2.2 解的概念和解的存在性等式和方程都涉及到解的概念。
对于一个等式,当找到满足等号两侧表达式相等的值时,这个值就叫做该等式的解。
例如,在等式3x + 5 = 14中,当x取值为3时,就满足了等号两侧相等。
三、式与方程
1用字母表示数
一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。
在省略数字与字母之间的乘号时,要把数字写在字母的前面。
二、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘。
即:2a=a +a,a2= a×a。
三、用字母表示数:
①用字母表示任意数:如X=4 a=6
②用字母表示常见的数量关系:如s=vt
③用字母表示运算定律:如a+b=b+a
④用字母表示计算公式:S=ah
联系方程一定是等式,等式不一定是方程
区别含有未知数不一定含有未知数
五、等式的基本性质(一):等式两边同时加上(或减去)一个相同的数,
所得结果仍然是等式。
六、等式的基本性质(二):等式两边同时乘(或除以)一个不等于零的数,
所得结果仍然是等式。
七、列方程解应用题的一般步骤:
①弄清题意,找出未知数并用X表示。
②找出应用题中数量间的相等关系,并列出方程。
③求出方程的解。
更多学习资料请关注ABC微课堂
④检验或验算,写出答案。
五年级上册第五单元简易方程一、用字母表示数(代数式)。
用字母可以简明地表达数和数量关系、运算定律和计算公式;在一个含有字母的式子里.数字与字母、字母与字母相乘,字母与数字相乘,中间的乘号可以用小圆点代替或者省略。
二、简易方程1.方程的概念(1)含有未知数的等式叫做方程。
方程的特征是:它含有未知数,同时又是—个等式。
用等号连接的两个式子,叫做等式。
(2)方程与等式有什么联系和区别:方程一定是等式,但等式不一定是方程。
(3)等式的性质1:在等号的两边同时加上(或减去)同一个数,等式不变。
等式的性质2:在等号的两边同时乘以(或除以)同一个数(0除外),等式不变。
(4)方程的解”与“解方程”的区别。
2、解方程的方法:在解方程的过程中,可以运用等式的基本性质,主要还是应用加、减、乘、除法的逆运算。
求一个加数=和-另一个加数被减数=差 + 减数减数=被减数-差求一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商3、列方程解应用题的方法(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程,这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,进而列出方程,这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的步骤:(1)分析题意,弄清已知条件和所求问题;(2)根据分析设定未知数;(3)利用等量关系列出方程;(4)求解方程:(5)将结果代回原题检验,答。
【我能行】1.名士小学现有学生2000人,民航小学现有学生人数的3倍比名士学校少800人,民航小学现有学生多少人?2.甲、乙两个车间共生产420个零件,计划7小时完成,如果甲车间每小时生产28个,乙车间每小时应生产多少个?3.五年级一班的图书柜中文艺书的本数比科技书的5倍少18本,两种书共有222本,科技书有多少本?4.白兔和黑兔一共180只,白兔是黑兔的3倍,白兔和黑兔各多少只?5.甲仓所存的粮食是乙仓的3倍,若从甲仓取出1200千克存入乙仓,则两仓所存的粮食相等,两仓各存粮多少千克?6.一条公路长360米,甲乙两支施工队同时从公路的两端往中间铺柏油。
华文个性化教学设计教案 教师姓名
上课日期 年 月 日 学生姓名
年级 5 学科 数学 课 题
等式的性质和解方程 学习目标
掌握方程与等式的区别与联系,会解方程 教学重点
解方程 教学难点 等式的基本性质
教学过程
知识点1:等式与方程的联系与区别
1、等式的含义
表示相等关系的式子叫做等式。
2、方程的含义
1、含有未知数的等式是方程。
重点提示:方程中的未知数不一定都是x ,还可以是其他字母或符号。
如:a+7=20,8-b=5,
x+y=24等。
2、看下图,思考,你有好的办法使天平平衡吗?
3、等式和方程的关系
根据等式的含义,等式包括含有未知数的等式和不含未知数的等式两类,含有未知数的等式是方程,不含有未知数的等式不是方程。
如:3+2=5,不是方程。
它们之间的关系可以用下面的图来表示:
思想方法解读:用圆圈表示等式与方程的关系,渗透了集合思想。
集合思想就是运用集合
的概念、逻辑语言、运算、图形等来解决数学问题的思想方法。
归纳总结:方程一定是等式,等式不一定是方程。
X 5X 100
280克 等式 方程。
方程及等式(提高)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一是等式;二是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它(或它们)是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).5.建立方程:把所要求的量用字母x(或y,…)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程.【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①是一个方程;②必须只含有一个未知数;③含有未知数的项的最高次数是1;④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是常数) .(3)一元一次方程的最简形式是: ax=b(其中a≠0,a,b是常数).【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),所得结果仍是等式.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边都乘(或除以)同一个数(或式子),(除数或除式不能为0),所得结果仍是等式.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x =0中,两边加上得x +,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式,哪些是等式?哪些是方程?①3a+4;②x+2y =8;③5-3=2;④12x x -=;⑤y =10;⑥83x -=;⑦3y 2+y =0;⑧2a 2-3a 2;⑨3a <-2a .【思路点拨】理解等式与方程的定义,区别等式与方程的关系是解决此题的关键.【答案与解析】解:等式有:②③④⑤⑥⑦;方程有:②④⑤⑥⑦.【总结升华】方程是含有未知数的等式,方程和等式的关系是从属关系,且具有不可逆性,方程一定是等式,但等式不一定是方程,区别在于是否含有未知数.2.下列各方程后面括号里的数都是方程的解的是( ).A .2x-1=3 (2,-1)B .5118x x +=- (3,-3) C. (x-1)(x-2)=0 (1,2) D .2(y-2)-1=5 (5,4)【答案】C.【解析】把方程后面括号里的数分别代入方程的左、右两边,使左边=右边的是方程的解,若左边≠右边的,则不是方程的解.【总结升华】检验一个数是否为方程的解,只要把这个值分别代入方程的左边和右边:若代入后使左边和右边的值相等,则这个数是方程的解;若代入后使方程左右两边的值不相等,则这个数不是方程的解.举一反三: 【变式】若是关于的方程的解,则的值为__________.【答案】-1. 类型二、一元一次方程的相关概念3.已知下列方程:①210x +=;②x =0;③13x x +=;④x+y =0;⑤623x x =-;⑥0.2x =4;⑦2x+1-3=2(x-1).其中一元一次方程的个数是( ).A .2B .3C .4D .5【答案】B【解析】方程①中未知数x 的最高次数是2,所以不是一元一次方程;方程③中的分母含有未知数x ,所以它也不是;方程④中含有两个未知数,所以也不是一元一次方程;⑦经化简后为-2=-2,故它也不是一元一次方程;方程②⑤⑥满足一元一次方程的条件,所以是一元一次方程.【总结升华】方程中的未知数叫做元,只含有一个未知数称为“一元”,“次”是指含有未知数的项中次数最高项的次数,判断一个方程是不是一元一次方程,看它是否具备三个条件:①只含有一个未知数;②经过整理未知数的最高次数是1;③含未知数的代数式必须是整式(即整式方程).举一反三:【变式】(1)已知关于x 的一元一次方程32105m x +=,求得m =________. (2)已知方程(m-4)x+2=2009是关于x 的一元一次方程,则m 的取值范围是________.(3)若||1(2)5m m x --=是关于x 的一元一次方程,则m 的值为( )A .±2B .-2C .2D .4【答案】(1)13m =-(2)m ≠4 (3)B 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪条性质,以及怎样变形得到的.(1)若4a =8a-5,则4a+________=8a .(2)若163x -=,则x =________. (3)13132x y y -=-,则112x +=________. (4)ax+by =-c ,则ax =-c________.【答案与解析】解:(1) 5 ; 根据等式性质1,等式两边同时加上5. (2) 118-; 根据等式性质2,等式两边同时除以-6. (3) 2 ; 根据等式性质l ,等式两边都加上(1+3y) .(4) –by ; 根据等式性质l ,等式两边都加上-by .【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下面方程变形中,错在哪里:(1)由2+x=-4, 得x=-4+2.(2)由9x=-4, 得94x =-. (3)由5=x-3, 得x=-3-5.(4)由3241155x x -+=-,得3x-2=5-4x+1. (5)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(6)由3721223x x x -+=+,得3(3-7x)=2(2x+1)+2x. 【答案】(1)不正确.错在数2从方程的等号左边移到右边时没有变号.(2)不正确,错在被除数与除数颠倒(或分子与分母颠倒了).(3)不正确,错在移项或等号两边的项对调时把符号弄错,正确的变形是:由5=x-3,得5+3=x, 即x=5+3.(4)不正确,没有注意到分数415x +中的“分数线”也起着括号的作用,因此当方程两边的各项都乘以5时,+1没有变号.(5)不正确,错在第二步,方程两边都除以x-y ,由等式性质2要除以不为零的数.(6)不正确,错在2x 没乘以公分母6.类型四、等式或方程的应用5.观察下面的点阵图形(如图所示)和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式.……(2)通过猜想,写出与第n 个图形相对应的等式. 【思路点拨】通过观察图像可得:图形呈放射状,四条线上每变化一次各增加一个点,第n 个图形每条线上应该是n 个点;再观察对应的等式即可求解.【答案与解析】解:等式的左右两边都是表示对应图形中点的个数,等式的左边是从1个点开始的,第2个图形增加4个点表示为4×1+1,第3个图形又增加4个点,表示为4×2+1,…,第n 个图形共增加(n-1)个4个点,表示为4(n-1)+1;等式的右边,把第一个图形看作4点重合为一个点,表示为4×1-3,第2个图形增加4个点,表示为4×2-3,第3个图形又增加4个点,表示为4×3-3,…,第n 个图形看作n 个4个点少3个点,表示为4n-3,所以有4(n-1)+1=4n-3.(1) ④4×3+1=4×4-3 ⑤4×4+1=4×5-3 (2)4(n-1)+1=4n-3【总结升华】设出未知量并用此未知量表示出题中的数量关系.举一反三:【变式】某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.()22891256x -=B.()22561289x -=C.289(1-2x)=256D.256(1-2x)=289【答案】A。