变频器选型
- 格式:doc
- 大小:404.50 KB
- 文档页数:17
变频器选型方案1. 引言变频器是一种用于控制电机转速的电子装置,通过改变电机的供电频率和电压来实现对电机转速的精确控制。
在工业自动化领域,变频器被广泛应用于机械设备的变速运行,以提高设备的效率和可靠性。
本文将介绍变频器选型的一般原则和步骤,并提供一种变频器选型方案供参考。
2. 变频器选型原则在选择合适的变频器时,需要考虑以下原则:•负载特性:根据负载特性确定变频器的功率和控制方式。
不同的负载对电机的要求不同,如恒扭矩负载、变扭矩负载和恒功率负载等,需要选择适应性能符合要求的变频器。
•环境条件:考虑变频器将工作的环境条件,如温度、湿度、海拔等。
选型时应选择适应环境条件的变频器,以确保其正常运行和寿命。
•控制方式:根据实际需求选择合适的控制方式,如开环控制和闭环控制。
开环控制适用于精度要求不高的场合,闭环控制适用于精度要求较高的场合。
•可靠性:选择具有较高可靠性的变频器,以降低故障率和维修成本。
3. 变频器选型步骤步骤一:收集工程信息在选择变频器之前,需要首先收集工程信息,包括但不限于:•发电机功率与相数;•负载要求(如恒扭矩、变扭矩、恒功率等);•工作环境条件(如温度、湿度等);•控制方式(开环控制或闭环控制);•安装方式(壁挂式、柜式等);•其他特殊要求。
步骤二:计算所需输出功率根据工程信息和负载要求,计算所需的变频器输出功率。
输出功率一般按照下式计算:输出功率 = 功率系数 × 发电机功率其中,功率系数根据具体负载类型确定,如恒扭矩负载一般取值为1,变扭矩负载一般取值为1.2-1.5,恒功率负载一般取值为1.5-2。
步骤三:选择变频器规格根据计算得到的输出功率,选择合适的变频器规格。
选择时应考虑变频器的额定功率范围,其应大于或等于所需的输出功率。
步骤四:考虑环境条件根据工作环境的条件,选择适应性能好的变频器。
变频器应具备良好的防尘、防湿、耐高温和耐低温等性能,以确保其正常运行和寿命。
一般情况下,选择变频器的功率和电机的功率一样,在有些特殊情况下(如重载设备),也会选择变频器的功率大于电机的额定功率,以保证变频器带动电机能够正常运行。
合理的容量选择本身就是一种节能降耗措施。
根据现有资料和经验,比较简便的方法有三种。
(1) 电机实际功率确定法。
首先测定电机的实际功率,以此来选用变频器的容量。
(2) 公式法。
设安全系数取1. 05 ,则变频器的容量pb 为:pb = 1. 05 pm/ hm ×cosφ,kW式中pm ———电机负载,kWhm ———电机功率,kW计算出pb 后,按变频器产品目录选具体规格。
当一台变频器用于多台电机时,至少要考虑一台电动机启动电流的影响,以避免变频器过流跳闸。
③电机额定电流法。
变频器容量选定过程,实际上是一个变频器与电机的最佳匹配过程,最常见、也较安全的是使变频器的容量大于或等于电机的额定功率,但实际匹配中要考虑电机的实际功率与额定功率相差多少,通常都是设备所选能力偏大,而实际需要的能力小,因此按电机的实际功率选择变频器是合理的,避免选用的变频器过大,使投资增大。
对于轻负载类,变频器电流一般应按1. 1 In ( In 为电动机额定电流) 来选择,或按厂家在产品中标明的与变频器的输出功率额定值相配套的最大电机功率来选择。
先看电机的额定功率和额定电流,再看是不是恒转矩还是变转矩负载,另外你用的是多少伏的电压输入到变频器。
其他的看看通信或者是要不要四象限或者二象限等。
品牌的话国产的也不错,变频器技术现在很成熟了,没必要买国外那么贵的东西。
(任何转速下负载转矩TL总保持恒定或基本恒定,而与转速无关的负载称为恒转矩负载。
这类负载多数呈反抗性的,即负载转矩TL的极性随转速方向的改变而改变。
反抗性恒转矩负载特性应画在一三象限内,这类负载有金属的压延机构,机床的平移机构等。
还有一种位势性转矩负载,负载转矩TL的极性不随转速方向的改变而改变。
因此,恒转矩负载根据负载转矩的方向与旋转方向有关。
变频器的工作原理及选型一、工作原理变频器是一种电力调节设备,用于控制交流电动机的转速和扭矩。
它通过改变电源的频率和电压来调节电机的运行状态。
变频器主要由整流器、滤波器、逆变器和控制电路组成。
1. 整流器:将交流电源转换为直流电源,通常使用整流桥电路实现。
2. 滤波器:用于滤除整流器输出的脉动直流电,保证逆变器输入的直流电质量。
3. 逆变器:将直流电源转换为交流电源,通过控制逆变器输出的频率和电压来控制电机的转速和扭矩。
4. 控制电路:根据用户的需求,通过控制逆变器的参数来实现对电机的精确控制。
二、选型原则在选择变频器时,需要考虑以下几个因素:1. 功率:根据电机的额定功率选择合适的变频器,一般变频器的额定功率应略大于电机的额定功率,以确保变频器的稳定运行。
2. 输入电压和频率:根据现场的电源条件选择合适的变频器,通常有单相和三相两种输入电源形式,频率一般为50Hz或60Hz。
3. 控制方式:根据对电机的控制需求选择合适的控制方式,常见的控制方式有V/F控制、矢量控制和直接转矩控制等。
4. 保护功能:选择具有完善的保护功能的变频器,如过载保护、短路保护、过压保护和欠压保护等,以保护电机和变频器的安全运行。
5. 响应速度:根据对电机响应速度的要求选择合适的变频器,一般来说,响应速度越快,控制效果越好。
6. 通信接口:如果需要与其他设备进行通信,选择具有通信接口的变频器,以实现设备之间的数据传输和控制。
7. 可靠性和稳定性:选择具有较高可靠性和稳定性的品牌和型号的变频器,以确保设备的长期稳定运行。
三、案例分析以某工厂为例,该工厂需要控制一台额定功率为5kW的三相异步电动机,要求电机能够实现精确的转速和扭矩控制。
根据工作原理和选型原则,我们可以选择以下变频器:1. 型号:ABC-5000功率范围:5kW输入电压:380V三相输入频率:50Hz控制方式:矢量控制保护功能:过载保护、短路保护、过压保护、欠压保护响应速度:10ms通信接口:RS485可靠性和稳定性:采用国际知名品牌,具有良好的可靠性和稳定性。
变频器选用的方法随着机械设备智能化的发展,变频器在工业生产领域中的应用越来越广泛。
变频器是一种控制电机转速的设备,它通过改变输送给电机的电流频率来控制电机的转速,从而实现节能、降噪、减少机械损耗等效果。
那么,如何选择合适的变频器呢?本文将介绍一些常用的变频器选用方法及其注意事项。
一、根据电机功率选型变频器的选型要根据所需控制的电机的功率进行选择,因为变频器的额定功率与所控制电机的功率应该匹配。
如果变频器的额定功率小于所控制的电机的额定功率,则变频器在工作时需要经常超负荷或者过热,降低变频器的使用寿命。
而如果变频器的额定功率大于所控制的电机的额定功率,则相对来说变频器成本就会相对较高,不必要的浪费。
因此,我们需要根据所控制电机的功率选择相应额定功率的变频器。
二、根据负载特性选型在使用变频器时,应根据设备负载特性选择变频器的额定电流。
设备的负载特性包括启动时的负载、设备运行过程中的变化和设备的负荷类型。
一般来说,如果负载是轻载或者重载的均匀负载,则相对来说控制较为容易,变频器使用稍微简单;但如果负载类型比较特别,例如启动负载转矩较大、运行时负载变化较快,甚至包括周期负载和重载波动负载等,那么选择变频器时就需要考虑负载特性对控制器的影响,避免因控制难度大而造成工作难度和维护困难。
三、根据使用频繁度和使用环境选型变频器是一种电控设备,工作场合也不同,而且使用频繁度也可能不同。
在选择变频器时,应根据所用场地、使用频度等方面进行综合考虑,防止选择不当导致使用效果不佳或者变频器寿命较短。
同时,变频器的安装也是至关重要的。
因为一旦变频器的安装不当,则会导致控制不稳定,控制效果下降甚至设备受损。
总结总之,在选择变频器时,需要综合考虑所需控制的电机的功率、设备的负载特性、使用频繁度和使用环境等因素。
其中,和电机功率的关系比较密切。
如何合理选择变频器,避免变频器本身成为生产理念阻碍因素的同时,保证生产效益的最大化,这一点非常关键。
丹佛斯变频器怎么选型、丹佛斯选型指南丹佛斯变频器选型指南一、引言变频器作为工业自动化系统中的重要设备,广泛应用于各个行业。
丹佛斯作为一家全球知名的工业自动化解决方案供应商,其丰富的产品线和技术经验使其成为变频器市场的领导者之一。
本文将介绍丹佛斯变频器的选型方法和注意事项,帮助用户更好地选择合适的变频器。
二、丹佛斯变频器产品线介绍丹佛斯的变频器产品线包括低压和中压两个系列,每个系列又包括多个型号和规格。
用户在选型时需要根据具体应用场景和需求选择合适的产品。
2.1 低压系列丹佛斯低压系列变频器适用于功率范围较小的应用,常见型号有VLT Micro Drive、VLT AutomationDrive FC 301和VLT AutomationDrive FC 302.用户在选择时可以根据需要考虑功率、电压等因素。
2.2 中压系列丹佛斯中压系列变频器适用于功率较大的应用,常见型号有VLT Midi Drive和VLT AQUA Drive等。
用户在选择时需要确定需求的功率范围以及其他特定要求。
三、丹佛斯变频器选型步骤在选型过程中,用户需要根据具体需求和应用场景进行综合考虑。
以下是一个简单的选型步骤,供参考:3.1 确定应用要求首先,用户需要明确应用的要求,包括需求的功率范围、电压等。
同时还需要考虑特殊的环境因素,如温度、湿度、尘埃等。
3.2 确定负载类型根据应用的负载类型,用户可以选择相应的变频器型号。
丹佛斯的变频器适用于多种负载类型,包括泵、风机、压缩机等。
3.3 确定控制方式用户需要确定变频器的控制方式,包括开环控制和闭环控制。
开环控制适用于简单的应用,闭环控制适用于对控制精度有要求的应用。
3.4 确定通信接口根据系统的要求和需要,用户需要确定变频器是否需要支持通信接口,如Modbus、Profibus、Ethernet等。
3.5 考虑其他特殊要求根据具体应用的要求,用户还需要考虑其他特殊要求,如故障保护、过载保护、防护等级等。
变频器选型注意事项变频器是一种用于调整电机转速的装置,广泛应用于各种工业领域。
选型一个合适的变频器对于电机运行的效率和稳定性至关重要。
以下是一些选型变频器时需要注意的事项:1.负载类型:在选型变频器之前,首先需要了解负载的类型。
负载可以是恒定转矩负载、恒定功率负载或者是其它特殊负载。
不同类型的负载可能需要不同类型的变频器来实现最佳性能。
2.功率需求:在选型变频器时,需要考虑负载所需的功率。
要确保变频器的额定功率能够满足负载的要求,同时还要有一定的余量以应对临时的负荷峰值。
3.控制方式:变频器可以通过不同的控制方式进行操作,如键盘控制、无线遥控、PLC控制等。
根据实际需要选择合适的控制方式,以便方便地操作和监控变频器。
4.控制精度:变频器的控制精度对于一些需要高精度控制的应用很重要。
例如,一些需要精确位置控制的应用,如机器人、自动化生产线等。
在这种情况下,需要选择控制精度高的变频器。
5.变频器要选带有多种保护功能的型号,以确保电机和负载的安全运行。
常见的保护功能包括过载保护、过压保护、过流保护、电流限制、短路保护等。
这些功能可以有效避免变频器和负载在工作中因异常情况而产生的损坏。
6.变频器的适用环境也需要考虑。
例如,如果变频器将在潮湿的环境中使用,那么应选择具有防护等级的型号,以确保变频器能够正常运行。
同样,如果变频器将在高温、低温或者有腐蚀性气体的环境中使用,也需要选择相应的型号。
7.通信功能:一些高级变频器还具有通信功能,可以与上位机或其他设备进行通信。
这些功能可用于数据采集、远程监控和远程控制,提高了系统的灵活性和智能化程度。
如果需要这些功能,就需要选择带有通信功能的型号。
8.成本和可靠性:在选型变频器时,需要综合考虑性能、功能、品牌和价格。
虽然较便宜的变频器可以节省成本,但质量和可靠性可能不如知名品牌的产品。
因此,在选型时应充分考虑产品的质量和可靠性,并合理评估其性价比。
总的来说,选型一个合适的变频器需要综合考虑负载类型、功率需求、控制方式、控制精度、保护功能、适用环境、通信功能、成本和可靠性等多个因素。
变频器的工作原理及选型一、工作原理变频器是一种电力调节设备,用于控制交流电动机的转速和扭矩。
其工作原理是通过改变输入电源的频率和电压,来控制电动机的转速。
普通来说,变频器由整流器、逆变器和控制电路组成。
1. 整流器:变频器的输入电源普通是交流电,整流器的作用是将交流电转换为直流电。
整流器普通采用桥式整流电路,将交流电经过整流滤波后,输出稳定的直流电。
2. 逆变器:逆变器的作用是将直流电转换为可调节的交流电。
逆变器普通采用高频开关电路,通过控制开关管的导通和关断,将直流电转换为可调节的交流电。
3. 控制电路:控制电路是变频器的核心部份,用于控制整个系统的工作状态。
控制电路接收外部的控制信号,根据设定的参数和运算逻辑,控制整流器和逆变器的工作,从而实现对电动机的精确控制。
二、选型指南选择合适的变频器对于电动机的正常运行和效率提升至关重要。
以下是一些选型指南,可匡助您选择适合的变频器:1. 功率匹配:根据电动机的额定功率选择变频器的额定功率。
普通来说,变频器的额定功率应略大于电动机的额定功率,以确保变频器能够正常工作并应对电动机的负载变化。
2. 频率范围:根据应用需求选择变频器的频率范围。
不同的应用场景可能需要不同的频率范围,例如工业生产中的泵、风机等设备通常需要较宽的频率范围。
3. 控制方式:根据控制要求选择变频器的控制方式。
常见的控制方式包括恒转矩控制、恒功率控制和恒电流控制等。
根据具体应用需求,选择适合的控制方式以实现精确控制。
4. 响应速度:根据应用的要求选择变频器的响应速度。
对于某些需要快速响应的应用,如卷取机、切割机等,需要选择具有较快响应速度的变频器。
5. 可靠性和保护功能:选择具有良好可靠性和完善保护功能的变频器。
变频器作为关键设备,应具备过载保护、短路保护、过热保护等功能,以确保电动机的安全运行。
6. 节能性能:选择具有良好节能性能的变频器。
变频器可以通过调节电动机的转速来实现节能效果,选择具有高效率和节能功能的变频器能够有效降低能耗。
变频器的选型和配置策略随着现代工业的发展,变频器在工业生产中扮演着越来越重要的角色。
变频器作为一种电力电子设备,能够调节电机的转速和电压,实现对电机的精准控制。
在选择和配置变频器时,需要考虑多个因素,以确保其在实际应用中能够发挥最佳性能。
本文将介绍变频器的选型和配置策略,帮助读者更好地了解并运用变频器。
一、需求分析在选型和配置变频器之前,首先需要进行详尽的需求分析。
根据不同的应用场景和工作需求,确定以下关键参数:1.1 负载特性:了解负载的功率、转矩以及转速范围等特性,以便选择合适的变频器。
负载类型通常分为恒功率负载、恒转矩负载和恒电流负载。
1.2 工作环境:考虑工作环境的湿度、温度、振动等因素,确保所选变频器能够适应恶劣的工作条件。
1.3 控制要求:确定对电机的控制要求,如启动时间、停机时间、加速度、减速度等。
这些参数将直接影响到变频器的选型。
1.4 经济性:需要综合考虑所选变频器的价格、功率因数、能效等因素,以确保最佳的经济效益。
二、选型策略在进行选型时,可以参考以下几个方面的建议:2.1 适应性:根据负载的特性选择变频器,确保其能够适应负载的全功率范围,避免超载或过载现象的发生。
2.2 控制精度:根据实际应用需求,选择具有较高控制精度的变频器,以确保对电机的精确控制和调节。
2.3 功率因数:选择功率因数较高的变频器,能够提高电网的利用率,降低电能的损耗。
2.4 通信接口:如果需要与其他设备进行通信和集成,可以选择支持多种通信接口的变频器,以便实现系统的联动控制。
2.5 维护保养:考虑变频器的可靠性和维护保养的便捷性,选择品牌口碑好、售后服务完善的厂家和产品。
三、配置策略选型完成后,需要进行合适的配置,以确保变频器在不同工况下都能正常运行。
3.1 额定功率:根据负载的功率确定所选变频器的额定功率,避免功率不匹配导致的性能下降或故障风险。
3.2 输出电压:根据电机的额定电压选择合适的变频器输出电压,确保电机能够正常运转。
请简述变频器的选型注意事项有哪些变频器是一种用于调节电机转速和控制电机运行的设备,广泛应用于电力、工业、交通等领域。
在选择变频器时,需要注意以下几个方面。
1. 负载类型和特性:在选择变频器时,首先需要考虑负载的类型和特性。
不同的负载对电机的要求不同,如恒转矩负载、恒功率负载、离散负载等。
根据负载类型的不同,变频器的控制方式和参数设置也会有所不同。
2. 功率匹配:变频器的功率应与电机的额定功率匹配。
如果变频器的功率过小,可能无法提供足够的输出能力,影响电机的正常运行;如果功率过大,可能造成能量浪费和设备加速老化。
3. 运行环境和条件:变频器的选择还应考虑运行环境和条件。
在高温、高湿度、腐蚀性气体等恶劣环境下,需要选择具有防护性能良好的变频器。
需要考虑供电电压的稳定性和频率的波动等因素。
4. 控制方式和功能需求:根据实际需求,选择适合的控制方式和功能。
对于需要精确控制的应用,如工业生产线,应选择具有闭环控制功能的变频器。
对于需要进行远程监控和控制的应用,如大型电力系统,应选择支持网络通信和远程控制的变频器。
5. 产品质量和可靠性:选择具有良好的产品质量和可靠性的变频器至关重要。
产品质量直接影响设备的寿命和稳定性,而可靠性则关系到生产效率和安全性。
总结回顾:在选择变频器时,需要综合考虑负载类型和特性、功率匹配、运行环境和条件、控制方式和功能需求以及产品质量和可靠性等因素。
通过合理的选择和配置,可以确保变频器与电机的良好匹配,提高生产效率和能源利用效率,延长设备寿命。
个人观点和理解:变频器作为一种重要的电气控制设备,对现代工业的发展起到了关键的推动作用。
在选择变频器时,我们应该根据具体应用需求和工作环境的特点来进行选型,以确保设备的正常运行和可靠性。
在变频器的应用过程中,还需要不断关注新技术的发展和应用,以不断提升设备的效率和性能。
参考文献:[1] 李晓明. 变频器选型及应用. 机电工程技术, 2015(1): 48-49.[2] 赵云龙. 变频器的选型及应用. 工业控制计算机, 2020(5): 102-104.在选择变频器时,需要考虑以下几个注意事项:1. 负载类型和特性:首先需要根据实际应用的负载类型和特性来选择合适的变频器。
变频器的选型方法
通用变频器的选择包括变频器的型式选择和容量选择两个方面,其总的原则是首先保证牢靠地满意工艺要求,再尽可能节约资金。
要依据工艺环节、负载的详细要求选择性价比相对较高的品牌和类型及容量。
变频器的选型应满意以下条件:
1)电压等级与驱动电动机相符,变频器的额定电压与负载的额定电压相符。
2)额定电流为所驱动电动机额定电流的1.1~1.5倍,对于特别的负载,如深水泵等则需要参考电动机性能参数,以最大电流确定变频器电流和过载力量。
由于变频器的过载力量没有电动机过载力量强,一旦电动机有过载,损坏的首先是变频器。
假如机械设备选用的电动机功率大于实际机械负载功率,并把机械功率调整到电动机输出功率,此时,变频器的功率选用肯定要等于或大于电动机功率。
个别电动机额定电流值较特别,不在常用标准规格四周,又有的电动机额定电压低,额定电流偏大,此时要求变频器的额定电流必需等于或大于电动机额定电流。
3)依据被驱动设备的负载特性选择变频器的掌握方式。
变频器的选型除一般需留意的事项(如输入电源电压、频率、输出功率、负载特点等)外,还要求与相应的电动机匹配良好,要求在正常运行时,在充分发挥其节能优势的同时,避开其过载运行,并尽量避开被拖动设备的低效工作区,以保证其高效牢靠运行。
在变频器选
型时,对于相同设备配用的变频器规格应尽可能统一,便于备品备件的预备,便于修理管理,选用时还要考虑生产厂家售后服务质量状况。
变频器选型变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
变频器选型:变频器选型时要确定以下几点:1) 采用变频的目的;恒压控制或恒流控制等。
2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3) 变频器与负载的匹配问题;I.电压匹配;变频器的额定电压与负载的额定电压相符。
II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。
对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。
因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
变频器控制原理图设计:1) 首先确认变频器的安装环境;I.工作温度。
变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。
在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
I I. 环境温度。
温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。
必要时,必须在箱中增加干燥剂和加热器。
在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。
III.腐蚀性气体。
使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。
IV. 振动和冲击。
装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。
淮安热电就出现这样的问题。
这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。
设备运行一段时间后,应对其进行检查和维护。
V. 电磁波干扰。
变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。
因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。
所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。
如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。
2) 变频器和电机的距离确定电缆和布线方法;I.变频器和电机的距离应该尽量的短。
这样减小了电缆的对地电容,减少干扰的发射源。
II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。
III.电机电缆应独立于其它电缆走线,其最小距离为500mm。
同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。
如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。
与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。
IV.与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。
3) 变频器控制原理图I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。
虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。
可以用变频器本身的过载保护代替热继电器。
II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。
4) 变频器的接地变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。
变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。
变频器的接地应和动力设备的接地点分开,不能共地。
信号线的屏蔽层一端接到变频器的接地端,另一端浮空。
变频器与控制柜之间电气相通。
变频器控制柜设计:变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题1) 散热问题:变频器的发热是由内部的损耗产生的。
在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。
为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。
2) 电磁干扰问题:I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。
如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。
II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。
3) 防护问题需要注意以下几点:I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。
II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。
防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。
III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。
变频器接线规范:信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。
距离应在30cm以上。
即使在控制柜内,同样要保持这样的接线规范。
该信号与变频器之间的控制回路线最长不得超过50m。
信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。
1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm2。
在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。
2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。
变频器的运行和相关参数的设置:变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
控制方式:即速度控制、转距控制、PID控制或其他方式。
采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
载波频率: 载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
常见故障分析:1) 过流故障:过流故障可分为加速、减速、恒速过电流。
其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。
这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。
如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
2) 过载故障:过载故障包括变频过载和电机过载。
其可能是加速时间太短,电网电压太低、负载过重等原因引起的。
一般可通过延长加速时间、延长制动时间、检查电网电压等。
负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。
如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行变频器主回路故障简易判断方法变频器主回路如图3所示。
在日常维护中,技术人员可凭借数字式万用表可简单判断主回路的整流桥、IGBT、IPM器件等是否损坏。
为了人身安全,必须确保变频器断电,等待3~5分钟后,拆除变频器三相交流输入端子(R/L1、S/L2、T/L3)和变频器三相交流输出端子(U/T1、V/T2、W/T3)后方可操作。
图 3 变频器主回路图图4 主回路测量示意图4.1主回路检查步骤以下是变频器主回路静态判断,实际判断以带电机测试为准,但可为现场简易判断提供参考。
首先把数字万用表打到“二级管”档,然后通过数字万用表的红色表笔和黑色表笔按以下步骤检测变频器主回路:(1)数字万用表黑色表笔接触直流母线的正极(P+),红色表笔依次接触变频器输出端子(U/T1、V/T2、W/T3),记录万用表上的显示值;然后再把红色表笔接触(N),黑色表笔依次接触(U/T1、V/T2、W/T3),记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位置的IGBT逆变模块损坏。