600Mw超临界无炉水循环泵锅炉启动初期汽温控制方法
- 格式:pdf
- 大小:100.18 KB
- 文档页数:1
600MW超临界锅炉启动过程中主汽温偏高问题分析及对策针对华电XX公司国产600MW机组直流锅炉启动时蒸汽温度偏高的问题分析,认为主要原因在水冷壁产生的蒸汽量太小,提出控制总风量、启动给水流量、加强燃料控制、提高给水温度和提高一二次风风温、制定完善的配煤计划等措施。
标签:超临界;直流锅炉;启动初期;温度高1 简介该锅炉为一次再热、挡板调节再热汽温、平衡通风、尾部双烟道、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。
前后墙对冲燃烧、W型火焰燃烧。
双进双出钢球磨煤机正压直吹式。
B、E 磨煤机燃烧器配置微油点火装置,A、F磨煤机燃烧器配置辅油油枪。
2台动叶可调轴流式送风机,2台动叶可调轴流式引风机,2台动叶可调轴流式一次风机,2台三分仓回转式空气预热器。
2 启动过程中主汽温度偏高现象在“168试运行”及投产半年内,多次启动过程中出现过热器汽温偏高,尤其是并网期间,在主蒸汽压力为7.8-9.5MPa左右时,屏式过热器及高温过热器金属温度都曾达到550℃,有时甚至达到575℃。
此时曾试图增加减温水量来控制汽温,由于启动电泵设计最高工作压力只有11.9MPa,且减温水取水点与喷入点间压降太小,使减温水流量小,减温效果差,对汽轮机的冲转造成了一定影响。
特别是机组冷态启动时,要求主汽温度维持450℃以下,但往往控制不了。
由于主汽温度高,造成汽轮机热冲击,高、中压缸胀差大甚至超限,致使机组启动延误,增加了启动成本。
3 原因分析3.1 风量偏大点火后由于油枪雾化效果差,烟色较黑,炉膛光亮度差。
运行人员为改善燃烧,增加启动油枪的根部风,过于开大C挡板。
加上风量测点极容易堵塞和测量不准,运行人员只有根据送风机电流、风机出口压力、氧量来调整送风机负荷。
运行人员为防止风量低低MFT,在风量调节中比较保守。
以上多种原因使得总风量超过启动时35%BMCR风量的要求,使火焰中心上移,减少煤粉在炉膛的停留时间,水冷壁的辐射吸热量减少,蒸发量降低。
600MW超临界直流锅炉的汽温调节摘要:本文阐述了发电厂600MW超临界直流锅炉汽温调节的一些常用方法,总结了这些调节方法的特性,对锅炉汽温的扰动因素做了简单分析,并阐述了作者自己的观点。
关键词:锅炉;主蒸汽温度;再热蒸汽温度;水煤比;减温水;负荷概述: #1、#2机组为国产600MW超临界压力燃煤发电机组,主要是带基本负荷运行,同时具有一定的调峰能力,热力系统为单元制系统,锅炉型号为HG-1950/25.4-YM1,采用哈尔滨锅炉厂有限责任公司引进英国三井巴布科克能源公司技术制造的超临界参数变压运行带内置式再循环泵启动系统的本生直流锅炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构、Π型锅炉。
汽轮机型号为N600-24.2/538/566,型式为超临界压力、一次中间再热、单轴、双背压、三缸四排汽、凝汽冲动式汽轮机。
发电机是型号为QFSN-600-2-22C、采用机端变自并励微机数字可控硅整流励磁系统的同步汽轮发电机。
600MW超临界直流锅炉由于没有汽包环节,给水经加热、蒸发和过热变成过热蒸汽是一次性连续完成的,随着运行工况的不同,锅炉将运行在亚临界或超临界压力下,蒸发点会自发地在一个或多个加热区段内移动,这就给锅炉汽温调节带来了很大难度。
下面分别就主蒸汽温度及再热蒸汽温度的情况进行探讨。
一、主蒸汽温度的调节对于600MW超临界直流锅炉,保持水煤比不变,则可维持过热蒸汽温度不变。
水煤比的变化是汽温变化的基本原因。
当过热蒸汽温度偏低时,首先应适当增加燃料量或减小给水量,使汽温升高,然后用喷水减温方法精确保持汽温。
1、湿态运行当机组负荷<30%B-MCR时,超临界锅炉为湿态运行,此时锅炉的动态特性类似于汽包锅炉。
在此过程中,通过给水及燃料量的改变来满足蒸汽参数的要求,此时要求溢流阀投自动以维持储水罐水位在7m左右,燃料与给水是否匹配,可以从溢流阀的开度反映出来,一般点火初期开度维持在30%左右,随着负荷的增加,开度逐渐减小,如需提高主蒸汽温度,则须增加给水流量并适当增加燃料量,这种情况下,溢流阀开度增大,汽温上升快而压力却上升很慢或者下降。
第31卷第2期东北电力大学学报Vo.l 31,No .22011年4月JournalO f N ortheast D ianli UniversityApr .,2011收稿日期:2011-01-12作者简介:郑国宽(1983-),男,中国神华胜利能源分公司助理工程师,工学硕士,现从事超临界直流锅炉机组集控运行及检修工作.文章编号:1005-2992(2011)02-0018-04600MW 级超临界直流锅炉启动过程中压力与温度控制探讨郑国宽1,袁春江1,文 岩2(1.中国神华胜利能源分公司,内蒙古锡林浩特026015;2.国电电力发展股份有限公司大连开发区热电厂,辽宁大连116600)摘 要:随着国民经济的发展和技术的进步,国产600MW 级超临界火力发电机组已经成为各大电网的主力机型。
直流锅炉启停过程中存在干湿态过程转换,两种运行状态的控制方式不同,哈锅生产的600MW 级超临界对冲燃烧方式锅炉的在启动及运行过程中,采用投油方式升温升压与提前启磨升温升压两种控制方式对温度与压力的调节特性做出探讨研究,并对正常运行过程中压力与温度的控制做出研究。
关键词:直流锅炉;温度;压力;中间点温度中图分类号:TK 229.2 文献标识码:A1 超临界锅炉启动初期3种不同启动方法介绍1.1 锅炉升温升压过程中只投油燃烧器某台由哈锅制造的超临界直流锅炉,燃烧方式为锅炉燃烧方式为前后墙对冲燃烧,前后墙各布置3层三井巴布科克公司生产的低NOX 轴向旋流燃烧器(LNASB),每层各有5只,共30只。
在最上层煤粉燃烧器上方,前后墙各布置1层燃尽风口,每层布置5只,共10只燃尽风口。
每只燃烧器配有一只油枪,用于锅炉点火和低负荷时稳燃。
锅炉燃油为#0轻柴油,其主要特性见表一。
从暖炉开始投油枪,点火后先点下层5支油枪,燃油出力为4~6t/h 暖炉半小时后逐渐增加燃油出力,每隔5m i n 点燃一支中层油枪,采用先点中间油枪后点两侧的方式相继点燃中层10支油枪,此时的燃油量为16.6t/h ,燃油压力为3.0~3.5M Pa 。
600MW超临界直流锅炉主、再热汽温调节特性摘要:本文以实际运行经验为基础,总结了600MW超临界机组主、再热汽温调整的调整手段,既提高了安全性,又提高了经济性。
关键词:超临界直流锅炉;主、再汽温;影响因素;调节方法。
在火力发电机组运行中,机组主、再热汽温对机组安全性和经济性影响较大,当主、再热汽温超温时,容易引起金属壁温超限,长时间超限或短时多次超限,将会引起金属寿命下降,引发安全生产事故;当主、再热汽温长时间处于低温运行时,一般主汽温每降低10℃,相当使循环热效率下降0.5%,汽轮机出口蒸汽温度增加0.7%,降低了机组效率的同时,还加大了对汽轮机末级叶片的侵蚀,甚至发生水冲击,严重危险汽轮机安全运行。
因此主、再热汽温的调整显的尤为重要。
600MW机组经济性指标参照图如表1所示:一.首先要知道影响主、再热汽温的几个因素:1.炉内燃烧工况的影响。
当加负荷过程或者煤质突然变好时,炉内燃烧工况加强,主汽压力上升,主、再热蒸汽温度会由于烟温上升、烟气量增加而有所上升;反之则下降,汽温的变化幅度与燃烧的幅度有关。
实际过程中发生在加负荷过程,送风及煤粉送入炉膛加强燃烧后导致主、再热蒸汽温度升高。
2.炉内火焰中心的影响。
当炉内火焰中心上移,水冷壁受到的辐射传热减少,炉膛出口烟温上升,导致锅炉烟道布置的主、再热蒸汽传热加强,引起主、再热汽温上升;反之则会下降。
实际过程为中、上层制粉系统切换前后,汽温调节特性的不同,以及炉底漏风量大时,导致汽温升高。
3.锅炉受热面积灰结焦程度的影响。
受热面积灰结焦对汽温的影响非常大,当受热面积灰和积焦后,根据传热原理R=δ/λA (K/w) ,δ—材料层厚度(m)λ—材料导热系数[W/(m.k)],传热热阻R不断增加,受热面的换热能力急剧下降,因此,换热面积灰结焦对主、再热蒸汽温调整影响非常大。
4.送风量的影响。
送风量的大小直接决定了烟气量的大小,提升送风量,会提高烟气流速,增加对流换热器(过热器、再热器)的换热能力,所以,送风量增加时气温上升,反之则下降。
最新整理600 MW超临界锅炉带循环泵启动系统的控制设计与运行综观世界锅炉制造商,直流锅炉的启动系统不管其形式如何变化,一般可分为内置式和外置式两种,而内置式启动系统又可分为扩容器式、疏水热交换式及循环泵式,对于带循环泵启动系统,就其布置形式有并联和串联两种。
本文主要介绍600 MW超临界参数锅炉所带循环泵启动系统,而且循环泵与给水泵为串联布置的启动系统的工作原理、控制思想及运行特点,锅炉最低直流负荷不大于30 %BMCR。
锅炉的主要设计参数(锅炉型号:SG1953P25.402M95X) 见表1。
1 带循环泵启动系统的组成在锅炉的启动及低负荷运行阶段,炉水循环确保了在锅炉达到最低直流负荷之前的炉膛水冷壁的安全性。
当锅炉负荷大于最低直流负荷时,一次通过的炉膛水冷壁质量流速能够对水冷壁进行足够的冷却。
在炉水循环中, 分离器分离出来的水往下流到锅炉启动循环泵的入口,通过泵提高压力来克服系统的流动阻力和省煤器最小流量控制阀(V2507) 的压降,水冷壁的最小流量是通过省煤器最小流量控制阀来实现控制的,即使当一次通过的蒸汽量小于此数值时,炉膛水冷壁的质量流速也不能低于此数值。
炉水再循环提供了锅炉启动和低负荷时所需的最小流量,选用的循环泵能提供锅炉冷态和热态启动时所需的体积流量,在启动过程中,并不需要像简单疏水扩容器系统那样往扩容器进行连续的排水,循环泵的设计必须提供足够的压头来建立冷态和热态启动时循环所需的最小流量。
从控制阀出来的水通过省煤器,再进入炉膛水冷壁,总体流程见图1。
在循环中,有部分的水蒸汽产生,然后此汽水混合物进入分离器,分离器布置靠近炉顶,这样可以提供循环泵在任何工况下(包括冷态启动和热态再启动) 所需要的净吸压头,分离器的较高的位置同样也提供了在锅炉初始启动阶段汽水膨胀时疏水所需要的静压头。
在图1 启动系统中,循环泵和给水泵是串联布置,这样的布置具有以下优点:(1) 进入循环泵的水来自下降管或锅炉给水泵或同时从这两者中来。
课程设计报告(2013—2014年度第二学期)名称:过程控制技术与系统题目:600MW超临界直流锅炉主汽温控制系统院系:控制与计算机工程学院班级:姓名:学号:设计周数: 1 周日期: 2014 年6月30日《过程控制》课程设计任务书一、目的与要求“过程控制课程设计”是“过程控制”课程的一个重要组成部分。
通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。
二、主要内容1.根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;2.根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID图);3.根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包括系统功能图和系统逻辑图);4.对所设计的系统进行仿真试验并进行系统整定;5.编写设计说明书。
三、进度计划四、设计(实验)成果要求1.绘制所设计热工控制系统的SAMA图;2.根据已给对象,用MATABL进行控制系统仿真整定,并打印整定效果曲线;3.撰写设计报告五、考核方式提交设计报告及答辩学生姓名:简一帆指导教师:张建华2014年 6月 30 日一、课程设计目的与要求1. 通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。
2. 掌握过程控制系统设计的两个阶段:设计前期工作及设计工作。
2.1设计前期工作(1)查阅资料。
对被控对象动态特性进行分析,确定控制系统的被调量和调节量。
(2)确定自动化水平。
包括确定自动控制范围、控制质量指标、报警设限及手自动切换水平。
(3)提出仪表选型原则。
包括测量、变送、调节及执行仪表的选型。
2.2设计工作(1)根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图。
600MW超临界给水汽温调整分析摘要:660MW超临界直流锅炉由于各种原因,运行中受热面、水冷壁经常出现超温、爆管现象机组安全性能得不到保障.。
锅炉受热面、水冷壁超温很大原因由于燃水比的失衡。
锅炉热负荷不均匀导致。
本文以目前国产大容量B&WB-2090/25.4-M型“W火焰”超临界直流锅炉。
超临界机组通常采用调节给水流量来实现燃水比控制。
在燃水比控制中,燃水比的失衡会影响到过热汽温,但是不能使用过热汽温作为燃水比的调整信号。
因为过热汽温对给水量扰动也有很大的迟延,若等到过热汽温已经明显变化后再用调节给水流量的话,必然会使过热汽温严重超温或大幅降温,这时及时修正中间点过热度的调整给水。
关键词:给水;控制;汽温;锅炉一、给水调整中间点温度燃水比改变后,汽水流程中各点工质焙值和温度都随着改变,可选择锅炉受热面中间位置某点蒸汽温度(又称为中间点温度或微过热温度)作为燃水比是否适当的反馈信号,因为中间点温度不仅变化趋势与过热汽温一致,而且滞后时间比过热汽温滞后时间要小得多,这对于稳定过热汽温,提高锅炉燃水比的调节过程品质是非常重要的。
而且中间点温度过热度越小,滞后越小,也就是越靠近汽水行程的入口,温度变化的惯性和滞后越小。
采用内置式汽水分离器的超临界机组,一般取汽水分离器出口蒸汽温度作为中间点温度来反映燃水比。
图2.1所示是直流锅炉的喷水减温示意图,给水流量W一般是指省煤器入口给水流量,减温水流量Wj是指过热器一、二级减温水流量之和。
锅炉总给水流量等于给水流量加上减温水流量减去分离器疏水量。
改变给水流量W和减温水流量Wj都会影响过热汽温,通常通过改变锅炉总给水流量来改变给水流量W进而粗调汽温,改变减温水流量W}进行过热汽温细调。
图1 直流锅炉的喷水减温示意图当由于燃水比例失调而引起汽温的变化时,仅依靠调节减温水流量来控制汽温会使减温水流量大范围变化,有时会超出减温器的减温水流量可调范围。
为了避免因燃水比失衡而导致减温水流量变化过大,超出减温水流量可调范围,因此可利用减温水流量与锅炉总给水流量的比值(喷水比)来对燃水比进行校正。