专题训练 蚂蚁爬行的最短路径(含答案)(训练习题)
- 格式:doc
- 大小:440.50 KB
- 文档页数:19
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM==.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短, MD =MC +CD =1+2=3, MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,需要爬行的最短距离是 。
八年级数学蚂蚁爬最短路程基础练习一、单选题(共5道,每道20分)1.如图,一圆柱体的底面圆周长为24,高AB为4,BC是直径,一只蚂蚁从点A出发,沿着圆柱的表面爬行到点C的最短路程是()A.B.C.4πD.24π答案:B解题思路:解:将圆柱体的表面沿AB展开成平面图形,连接AC,AC即为所求ABB´A´为长方形,CD分别为BB´,AA´的中点,其中AB=4,AA´为圆柱体的底面圆的周长为24,AA´=24,AD=12,由勾股定理求得:AC=,B为正确选项试题难度:三颗星知识点:平面展开最短路径问题2.如图,是一个棱长为2的正方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是()A.B.+ 2C.D.答案:D解题思路:将正方体的两条边长的和4作为展开后的长方形的一条边长,正方体的另一条边长2作为展开后长方形的另一条边长,此长方形的对角线即为蜘蛛接近小昆虫时所爬行的最短路线,求得结果为试题难度:三颗星知识点:平面展开最短路径问题3.如图,一个长方体盒子(无盖)的长、宽、高分别是12,8,30.在棱AB的中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,最短路线的长是().A.30B.+ 15C.20D.25答案:D解题思路:可以从C点处沿平行于上下底面的直线切割,将原来的长方体切割成了两个,保留含有D点的新长方体,长、宽、高分别为12,8,15.然后利用蚂蚁爬长方体的解题技巧:把新的长方体的长和宽的和12+8-20作为长方形的一条边长,以15作为长方形的另一条边长,此长方形的对角线即为所求的最短路程,结果为试题难度:三颗星知识点:平面展开最短路径问题4.如图,某公司举行开业一周年庆典时,准备在公司门口长13米、高5米的台阶上铺设红地毯.已知台阶的宽为4米,则需要购买红地毯()平方米.A.18B.72C.48D.56答案:B解题思路:解:需要铺设红地毯的长度应为直角三角形两直角边的和13+5=18米,则需要购买红地毯的面积为18×4=72(平方米)试题难度:三颗星知识点:平面展开最短路径问题5.如图所示,有一根高为2m的木柱,它的底面周长为0.3m,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕圈,一直缠到起点的正上方为止,问:小明至少需要准备()m的一根彩带.A.8.41B.4C.2D.2.9答案:D解题思路:方法一:先求出彩带缠绕一圈时的最短长度,此时将缠绕一圈的圆柱体表面展开为长方形,长方形的一条边长为底面圆周长为0.3m,另一边边长为圆柱体高的,为,所以结果为,在算出绕7圈时的最短长度为方法二:将7圈彩带缠绕的圆柱体一块展开,此时得到的长方形一条边长为圆柱体的高2m,另一条边为底面圆的周长的7倍,为 2.1m,所以最短长度为展开后长方形的对角线为试题难度:三颗星知识点:平面展开最短路径问题。
2023年九年级中考数学专题训练:蚂蚁爬行问题一.选择题1.如图,长方体的高为,底面是边长为的正方形一只蚂蚁从顶点开始爬向顶点,那么它爬行的最短路程为()A.B.C.D.2.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离是()A.15cm B.16cm C.17cm D.18cm3.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱侧面爬到对角C处捕食,则它爬行的最短距离是( )A.3B.6C.9D.64.如图是一个三级台阶,它的每一级的长,宽,高分别是,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.B.C.D.5.图,长方体的长为8,宽为10,高为6,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.B.C.D.6.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为( )A.10B.12C.14D.207.一只蚂蚁趴在如图所示的数轴上,它从点A沿数轴向右爬行2个单位长度到达点B,设点A表示,那么点B所表示的数为()A.B.C.D.8.如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为( )A.B.C.D.二.填空题9.一只蚂蚁先向上爬4个单位长度,再向右爬5个单位长度后,到达,则它最开始所在位置的坐标是___________.10.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.11.如图,一只蚂蚁从点A沿数轴向右沿直线爬行2个单位长度到达点B,点A表示的数为,设点B所表示的数为m,则__________.12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是_____.13.如图,正方体的棱长为3 cm,已知点B与点C间的距离为1 cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为_________.14.已知圆锥的底面半径是,母线长为,C为母线的中点,蚂蚁在圆锥侧面上从A爬到C的最短距离是_____________.15.如图在直线AB上有一点C,,有两只蚂蚁分别以2cm/s、1cm/s 从A、C两点同时出发向右运动,经过__________秒,两只蚂蚁到C点的距离相等.16.在一个长米,宽为4米的长方形草地上,如图推放着一根三棱柱的木块,它的侧棱长平行且大于场地宽,木块的主视图的高是米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是___________.三.解答题17.如图,一个无盖的长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,,,,求这只蚂蚁爬行的最短距离.18.如图是长、宽、高的长方体容器.(1)求底面矩形的对角线的长;(2)长方体容器内可完全放入的棍子最长是多少?(3)一只蚂蚁从D点爬到E点最短路径是多少?19.如图,已知圆锥底面半径为,母线长为,求一只蚂蚁从A处出发绕圆锥侧面一周(回到原来的位置A处)所爬行的最短距离.20.如图,已知A、B分别为数轴上的两点,A点对应的数为,B点对应的数为,现有一只蚂蚁P从B点出发,以5个单位的速度沿数轴向左运动;同时另一只蚂蚁Q恰好从A点出发,以3个单位的速度沿数轴向右运动,请解决以下问题:(1)设两只蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少?(2)经过多少秒,之间的距离恰好是之间的距离的一半?参考答案:1.C2.A3.A4.A5.A6.A7.B8.C9.10.11./12./13厘米13.14.15.或2016.17.18.(1)底面矩形的对角线的长为(2)长方体容器内可完全放入的棍子最长是(3)蚂蚁从D点爬到E点最短路径19.20.(1)(2)秒或秒。
专题3.3 最短路径问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!一.选择题(共12小题)1.(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是( )A B.4cm C D.5cm【分析】正方体侧面展开为长方形,确定蚂蚁爬行的起点和终点,根据两点之间线段最短,根据勾股定理可求出最短路径长,【解答】解:如图,它运动的最短路程AB==cm).故选:C.2.(2022春•碑林区校级期末)如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC 上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是( )cm.A.14B.12C.10D.8【分析】首先画出圆柱的侧面展开图,根据底面周长为12cm,求出AB的值;再在Rt△ABD中,根据勾股定理求出AD的长,AD即为所求.【解答】解:圆柱侧面展开图如图所示,∵圆柱的底面周长为12cm,∴AB=6cm.∵BD=8cm,在Rt△ABD中,AD2=AB2+BD2,∴AD10(cm),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm.故选:C.3.(2022春•洛阳期中)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A.15B C.12D.18【分析】将圆柱沿过A的母线剪开,由题意可知,需在杯口所在的直线上找一点F,使AF+CF最小,则先作出A关于杯口所在直线的对称点A',连接A'C与杯口的交点即为F,此时AF+CF=A'F+CF=A'C,再利用勾股定理求A'C的长即可.【解答】解:如图所示,将圆柱沿过A的母线剪开,由题意可知,需在杯口所在的直线上找一点F,使AF+CF最小,故先作出A关于杯口所在直线的对称点A',连接A'C与杯口的交点即为F,此时AF+CF=A'F+CF=A'C,根据两点之间线段最短,即可得到此时AF+CF最小,并且最小值为A'C的长度,如图所示,延长过C的母线,过A'作A'D垂直于此母线于D,由题意可知,A'D=18÷2=9(cm),CD=12﹣4+4=12(cm),由勾股定理得:A'C=15(cm),故蚂蚁到达蜂蜜的最短距离为15cm,故选:A.4.(2022秋•高州市期末)国庆节期间,茂名市一广场用彩灯带装饰了所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为( )A B C D.5米【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【解答】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故选:D.5.(2022秋•沈阳期末)如图,长方体的长为3,宽为2,高为4,点B离点C的距离为1,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是( )A B.5C D【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB=5;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB=只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB=∵5∴蚂蚁爬行的最短距离是5.故选:B.6.(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )cm.A.B.C.120D.130【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵它的每一级的长宽高为20cm,宽30cm,长50cm,∴AB=cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是,故选:B.7.(2022秋•揭阳校级月考)如图,一个棱长为3的正方体,把它分成3×3×3个小正方体,小正方体的棱长都是1.如果一只蚂蚁从点A爬到点B,那么估计A,B间的最短路程d的值为( )A.4B.5C.6D.7【分析】过B作BD⊥AC于D,根据勾股定理即可得到结论.【解答】解:过B作BD⊥AC于D,则AD=4,BD=3,∴A,B间的最短路程d=5,故选:B.8.(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )(π取3)m.A.30B.28C.25D.22【分析】要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:其侧面展开图如图:作点C关于AB的对称点F,连接DF,∵中间可供滑行的部分的截面是半径为2.5m的半圆,∴BC=πR=2.5π≈7.5m,AB=CD=20m,∴CF=15m,在Rt△CDF中,DF==25(m),故他滑行的最短距离约为25m.故选:C.9.(2022春•靖西市期中)如图是放在地面上的一个长方体盒子,其中AB=7cm,BC=4cm,BF=6cm,点M在棱AB上,且AM=1cm,点N是FG的中点,一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为( )A.10cm B.C.D.【分析】利用平面展开图有2种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1中,MN=10(cm),如图2中,MN==10(cm),∴一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为10cm,故选:A.10.(2022秋•芝罘区期中)某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm【分析】画出三棱柱的侧面展开图,利用勾股定理求解即可.【解答】解:将三棱柱沿AA′展开,其展开图如图,则AA′=15(cm).故选:D.11.(2022秋•青岛期末)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是( )A.+10)cm B.C D.+3)cm【分析】求出两种展开图PA的值,比较即可判断.【解答】解:如图,有两种展开方法:方法一:PA=,方法二:PA=..故选:C.12.(2022•广饶县一模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )厘米.A.8B.10C.12D.13【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【解答】解:如图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ=13cm.故选:D.二.填空题(共8小题)13.(2022春•德城区期末)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C的距离是5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是 25 cm.【分析】画出长方体的侧面展开图,根据勾股定理求出AB的长即可.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=10+5=15(cm),AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB=25(cm);只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=20+5=25(cm),AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm);只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30(cm),在直角三角形ABC中,根据勾股定理得:∴AB==cm);∵25<∴蚂蚁爬行的最短距离是25cm.故答案为:25.14.(2022•潍城区一模)云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个m,其边缘AB=CD=24m,点E在CD 长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为12π上,CE=4m,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为.【分析】根据题意可得,AD=12,DE=CD﹣CE=24﹣4=20,线段AE即为滑行的最短路线长.在Rt△ADE中,根据勾股定理即可求出滑行的最短路线长.【解答】解:将半圆面展开可得:AD=12m,DE=DC﹣CE=20m,在Rt△ADE中,AE==m),即滑行的最短路线长为,故答案为:15.(2022春•仁怀市月考)如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B 村到河边的距离分别为2km和7km,且AB两村庄相距13km,则铺设水管的最短长度是 15 km.【分析】作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置;利用了轴对称的性质可得AP=A′P,在Rt△AEB中利用勾股定理可以算出AE的长,再在Rt△A′CB中利用勾股定理算出A′B的长,根据两点之间线段最短的性质即可求解.【解答】解:作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,(PA+PB)的值最小,即所铺设水管最短;过B点作l的垂线,过A′作l的平行线,设这两线交于点C,过A作AE⊥BC于E,则四边形AA′CE和四边形AMNE是矩形,∴EN=AM=2,EC=AA′=2+2=4,A′C=AE,在Rt△ABE中,依题意得:BE=BN﹣EN=7﹣2=5,AB=13,根据勾股定理可得:AE=12,在Rt△B A′C中,BC=BE+EC=5+4=9,A′C=12,根据勾股定理可得:A′B=15,∵PA=PA′,∴PA+PB=A′B=15(km),故答案为:15.16.(2022秋•锦江区校级期末)在一个长4米的长方形草地上,如图堆放着一根三棱柱的木块,它的侧棱长平行且大于场地宽AD,一只蚂蚁从点A处到C处需要走的最短路程是米.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【解答】解:由题意可知,将木块展开,相当于是AB+等腰直角三角形的两腰,∴长为2+2﹣10(米);宽为4米.=故答案为:17.(2022秋•高新区校级期末)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5米,点P到AD的距离是3米,有一只蚂蚁要从点P爬到点B【分析】可将教室的墙面ADEF与地面ABCD展开,连接P、B,根据两点之间线段最短,利用勾股定理求解即可.【解答】解:如图,过P作PG⊥BF于G,连接PB,∵AG=3米,AP=AB=5米,∴PG=4米,∴BG=8米,∴PB==故这只蚂蚁的最短行程应该是故答案为:18.(2022春•德州期中)如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B【分析】根据题意画出图形,过A作EA⊥CD于E,连接AB,则AB长为最短距离,求出OD=OC,∠DAC=90°,根据直角三角形斜边上中线性质求出AE=DE=EC=1,根据勾股定理求出即可.【解答】解:如图展开:过A作EA⊥CD于E,连接AB,则AB长为最短距离,∵四边形DFGC是正方形,DC=BC=2,∴OD=OC,∠DAC=90°,∴∠ADE=∠ECA=45°,∵AE⊥DC,∴DE=EC,∵∠DAC=90°,DC=1,∴AE=DE=EC=12在△AEB中,∠AEB=90°,BE=1+2=3,EA=1,由勾股定理得:AB19.(2022秋•中原区校级期末)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是 15 cm.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB==15cm,故答案为:15.20.(2022秋•凤城市期中)如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.则蚂蚁爬行的最短路线为 100 cm.【分析】作出A关于BC的对称点A′,连接A′G,与BC交于点Q,此时AQ+QG最短;A′G为直角△A′EG的斜边,根据勾股定理求解即可.【解答】解:如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80cm,EG=60cm,∴AQ+QG=A′Q+QG=A′G=100cm.∴最短路线长为100cm.故答案为:100.三.解答题(共10小题)21.(2022春•宜城市期末)如图,某小区有两个喷泉A,B,两个喷泉的距离长为125m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为60m,BM的长为75m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.【分析】(1)根据勾股定理解答即可;(2)根据勾股定理的逆定理和垂线段解答即可.【解答】解:(1)在Rt△MNB中,BN==45(m),∴AN=AB﹣BN=125﹣45=80(m),在Rt△AMN中,AM100(m),∴供水点M到喷泉A,B需要铺设的管道总长=100+75=175(m);(2)∵AB=125m,AM=100m,BM=75m,∴AB2=BM2+AM2,∴△ABM是直角三角形,∴BM⊥AC,∴喷泉B到小路AC的最短距离是BM=75m.22.(2022秋•原阳县期末)如图,一个正方体木箱子右边连接一个正方形木板,甲蚂蚁从点A出发,沿a,b,d三个面走最短路径到点B;同时,乙蚂蚁以相同的速度从点B出发,沿d,c两个面走最短路径到点A.请你通过计算判断哪只蚂蚁先到达目的地?【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解析展开a,b,c与d在同一平面内,如图所示.由题意可知,甲蚂蚁走的路径为A1B,A1B=cm).乙蚂蚁走的路径为A2B,A2B==cm).所以A1B>A2B,故乙蚂蚁先到达目的地.23.(2022秋•江北区期末)在立方体纸盒的顶点A处有一只蚂蚁,在另一顶点E处有一粒糖,你能为这只蚂蚁设计一条最短路线,使它沿着立方体表面上的这一条路线爬行,最快捷吃到糖吗?以下提供三个方案:①A→B→C→E;②A→C→E;③A→D→E.(1)三种方案①、②、③中爬行路线最短的方案是 ③ ;最长的方案是 ① .(2)请根据数学知识说明理由.【分析】(1)根据“化曲面为平面”,且利用“两点之间线段最短”可知,爬行路线最短的方案是③;最长的方案是①;(2)分别求出三种方案蚂蚁爬行的路程,比较即可求解.【解答】解:(1)三种方案①、②、③中爬行路线最短的方案是③;最长的方案是①.故答案为:③;①;(2)爬行路线最短的方案是③;最长的方案是①.理由如下:‘’设立方体纸盒的棱长为a,则a>0.方案:①A→B→C→E蚂蚁爬行的路程为:AB+BC+CE=a+a+a=3a;方案;②A→C→E蚂蚁爬行的路程为:AC+CE=a+1)a;方案;③A→D→E.1)a<3a,∴爬行路线最短的方案是③;最长的方案是①.24.(2022秋•二道区期末)如图,已知线段BC是圆柱底面的直径,圆柱底面的周长为10,圆柱的高AB=12,在圆柱的侧面上,过点A、C两点嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是 C ;(2)求该金属丝的长.【分析】(1)由平面图形的折叠及立体图形的表面展开图的特点解题;(2)要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:(1)因为圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故答案为:C;(2)如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为10,圆柱的高AB=12,∴该长度最短的金属丝的长为2AC==26.25.(2022秋•随县期末)如图1所示,长方形是由两个正方形拼成的,正方形的边长为a,对角线为b,长方形对角线为c.一只蚂蚁从A点爬行到C点.(1)求蚂蚁爬行的最短路线长(只能按箭头所示的三条路线走),并说明理由;(2)如果把右边的正方形EFBC沿EF翻转90°得到如图2所示的正方体相邻的两个面(实线表示),则蚂蚁从A点到C点的最短路线长是多少?请在图2中画出路线图,若与图中的线段有交点,则要标明并说明交点的准确位置.(可测量猜想判断)【分析】(1)根据两点之间线段最短求解;(2)把正方体相邻的两个面展开成平面,连接A,C即是最短路线.【解答】解:(1)从A﹣B﹣C路线长:a+a+a=3a,从A﹣D﹣C路线长:a+a+a=3a,从A﹣E﹣C路线长:a+b.(3分)根据两点之间,线段最短.可得AD+DE>AE,即a+a>b,(6分)所以a+a+a>a+b,即3a>a+b(7分)(说明:只要写出理由“两点之间,线段最短”即给6分)故从A到C的最短路线长为a+b;(8分)(2)从A到C的最短路线长为C,(10分)图中的点M为线段EF的中点.(11分)位置如图.(13分)26.(2022秋•罗湖区期中)(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:=13(cm).(2)分三种情况可得:AG=>AG>AG=,;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=13(Cm).27.(2022秋•元宝区校级期中)一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,问:丝带共有多长?【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.=150cm,答:丝带共有150cm.28.(2022秋•东明县期中)东明县是鲁西南的化工基地,有东明石化集团,洪业化工集团,玉皇化工集团等企业,化学工业越来越成为东明县经济的命脉,化工厂里我们会经常看到如图储存罐,根据需要,在圆柱形罐的外围要安装小梯子,如果油罐的底面半径为6米,高24米,梯子绕罐体半圆到达罐顶,则梯子至少要多长?【分析】把立体图形转化为平面图形,利用勾股定理即可解决问题.【解答】解:如图,根据题意,BC=24m,AB=1•2π•6≈18m,2在Rt△ABC中,AC30m,答:梯子至少要30m.29.(2022秋•福田区期末)如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B,甲蚂蚁要吃到食物需爬行的路程长l1+1 cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3≈1.4)【分析】(1)由∠A′O′B′=90°,可知△B′A′O′为等腰直角三角形,故此A′B′=′O ′,然后根据l1=A′B′+AA′求解即可;(2)先求得弧A′B′的长,然后根据勾股定理求得矩形AA′B′B的对角线的长度即可;(3 1.4代入从而可求得l1、l2的近似值,从而可作出判断.【解答】解:(1)∵∠A′O′B′=90°,O′A′=O′B′,∴A′B′=A′B′=′O′=∴l1=A′B′+AA′=1.故答案为:1.=6π=18.(2)A′B′=90°×2π×12360°将圆柱体的侧面展开得到如图1所示矩形AA′B′B.∵A′B′=18,∴A′B′=18.在Rt△ABB′中,AB′=故答案为:(3)∵l1=1≈12×1.4+1=17.8∴l21=316.84.∵l22=2=325,∴l21<l22.∴l1<l2.∴甲蚂蚁先到达食物处.30.(2022秋•安岳县期末)勾股定理是解决直角三角形很重要的数学定理.这个定理的证明的方法很多,也能解决许多数学问题.请按要求作答:(1)选择图1或图2中任一个图形来验证勾股定理;(2)利用勾股定理来解决下列问题:如图3,圆柱形玻璃杯高为12cm,底面周长为16cm,在杯外离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁且与蜂蜜C相对的点A处,点A离杯口3cm.则蚂蚁到达蜂蜜的最短距离为多少?【分析】(1)根据正方形的面积等于四个直角三角形的面积与正方形面积的即可得出结论;(2)蚂蚁实际上是在圆柱的半个侧面上爬行,如果将这半个侧面展开,根据:“两点之间,线段最短“,所求的最短路程就是这一个展开图AC的长.在R t△ABC中,AB=底面周长的一半=8cm,BC=12﹣3﹣3=6cm.,所以由勾股定理得:AC=10cm,所以蚂蚁爬行的最短路程为10cm.ab+c2,【解答】解:(1)若选图1,则由图形可知:(a+b)2=4×12整理得:a2+b2=c2;ab+(b﹣a)2=c2,若选图2,则由图形可知:4×12整理得:a2+b2=c2.(2)如图所示,∵在Rt△ABC中,AB=底面周长的一半=8cm,BC=12﹣3﹣3=6cm,∴由勾股定理得:AC=10cm,∴蚂蚁爬行的最短路程为10cm.。
13.4最短路径问题练习题一、能力提升1.如图,OA,OB分别是线段MC,MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA边上任意一点E,再爬到OB边上任意一点F,然后爬回点M处,则小蚂蚁爬行的路径最短可为()A.12cmB.10cmC.7cmD.5cm2.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°3.如图,牧童在A处放牛,其家在B处,A,B到河岸的距离分别为AC和BD,且AC=BD.若点A到河岸CD的中点的距离为500m,则牧童从A处把牛牵到河边饮水再回家,所走的最短路程是m.4.如图,要在河边修建一个水泵站,分别向张庄、李庄直接送水,水泵站修建在河边什么位置,可使所用的水管最短?(不写作法,只保留作图痕迹)5.如图,某公路(视为x轴)的同一侧有A,B,C三个村庄,要在公路边建一货栈(即在x轴上找一点)D,向A,B,C三个村庄运送农用物资,路线是:D→A→B→C→D(或D→C→B→A→D).试问在公路上是否存在点D使送货路程之和最短?若存在,请在图中画出点D所在的位置;若不存在,请说明理由.二、创新应用6.某中学八(2)班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO桌面上摆满了橘子,BO桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.答案:一、能力提升1.B设CD与OA的交点为E,与OB的交点为F.因为OA,OB分别是线段MC,MD的垂直平分线,所以ME=CE,MF=DF,所以小蚂蚁爬行的路径最短为CD=10cm,故选B.2.B如图,作点A关于BC和CD的对称点A',A″,连接A'A″,交BC于点M,交CD于点N,则A'A″即为△AMN的周长的最小值.∵∠DAB=120°,∴∠A'+∠A″=180°-120°=60°.∵∠A'=∠MAA',∠NAD=∠A″,且∠A'+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A'+∠MAA'+∠NAD+∠A″=2(∠A'+∠A″)=2×60°=120°,故选B.3.10004.解:如图.点P就是修建水泵站的位置.5.解:存在点D使所走路线D→A→B→C→D的路程之和最短.作法:(1)作点A关于x轴的对称点A';(2)连接A'C,交x轴于点D.如图.则点D(3,0)就是要建货栈的位置.二、创新应用6.解:如图.作法:①作点C关于OA的对称点C1,点D关于OB的对称点D1;②连接C1D1,分别交OA,OB于点P,Q,连接CP,DQ,小明沿C→P→Q→D的路线行走时,所走的总路程最短.。
蚂蚁爬行的最短路径1.一只蚂蚁从原点 0 出发来回爬行,爬行的各段路程依次为: +5,-3,+10,-8 ,-9,+12, -10.回答下列问题:(1)蚂蚁最后是否回到出发点 0;(2)在爬行过程中,如果每爬一个单位长度奖励 2 粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:( 1)否, 0+5-3+10-8-9+12-10=-3 ,故没有回到 0; (2)( |+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114 粒2. 如图,边长为 1 的正方体中,一只蚂蚁从顶点 A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3.(2006?茂名)如图,点 A 、B 分别是棱长为 2 的正方体左、右两侧面的中心,一蚂蚁从点 A 沿其表面爬到点 B 的最短路程是 cm解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB= 22 12 5 .AB 即为最短路线.B 的最短路程是两个棱长的长,即 2+2=4.4.如图,一只蚂蚁从正方体的底面 A 点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A? P? B B .A? Q? B C .A? R? B D .A? S? B解:根据两点之间线段最短可知选A.故选A.5.如图,点 A 的正方体左侧面的中心,点 B 是正方体的一个顶点,正方体的棱长为2,蚂蚁从点A沿其表面爬到点 B 的最短路程是()解:如图,AB= 1 2 2 12 10 .故选C.6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从 A 点爬行到M点的最短距离为()解:展开正方体的点M所在的面,∵BC的中点为M,1所以MC= BC=1,2在直角三角形中AM= = .7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向 B 处爬行,所走最短路程是cm 。
故选C.8. 正方体盒子的棱长为2,BC 的中点为M,一只蚂蚁从A 点爬行到M 点的最短距离解:将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=1+2,=3MD1= MD 2 DD1232 22139.如图所示一棱长为 3cm 的正方体, 把所有的面均分成 3×3个小正方形. 其边长都为 1cm ,假设一只蚂蚁每秒爬行 2cm ,则它从下底面点 A 沿表面爬行至侧面的 B 点,最少要用 2.5 秒钟解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短 的路线.( 1)展开前面右面由勾股定理得 AB= = cm ;(2)展开底面右面由勾股定理得 AB==5cm ;所以最短路径长为 5cm ,用时最少: 5÷2=2.5 秒.10.(2009?恩施州)如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是 。
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线.AB = 51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短,MD =MC +CD =1+2=3,MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
蚂蚁爬最短路问题(人教版)(专题)一、单选题(共10道,每道10分)1.如图,一个三级台阶的每一级的长、宽、高分别为50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点处有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,需要爬行的最短路径长为( )A.115cmB.130cmC.135cmD.169cm答案:B解题思路:将台阶展开,如图:因为BC=30×3+10×3=120,AC=50,所以,所以AB=130cm,所以壁虎爬行的最短线路为130cm.故选B试题难度:三颗星知识点:略2.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它至少要走( )A.20mB.24mC.25mD.26m答案:D解题思路:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24m,连接AC,四边形ABCD是长方形,AB=24m,宽AD=10m,∴,解得AC=26∴蚂蚱从A点爬到C点,它至少要走26m的路程.故选D试题难度:三颗星知识点:略3.如图,一圆柱体的底面周长为48cm,高AB为7cm,BC是上底面的直径.一只昆虫从点A 出发,沿着圆柱的侧面爬行到点C,则昆虫爬行的最短路程为( )A.15cmB.20cmC.25cmD.30cm答案:C解题思路:把圆柱体展开,则与点A,B,C,D相对应的四点构成一个长方形,且所求最短路径为对角线AC的长.在矩形ABCD中AB长为原柱体的高,AD长为原柱体底面周长的一半.由勾股定理可知AC=25故选C试题难度:三颗星知识点:略4.有一个圆柱形油罐,油罐的底面半径是2m,高AB是5m,要以点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需( )米取.A.13mB.15mC.20mD.24m答案:A解题思路:如图,∵油罐的底面半径是2m,∴油罐的底面周长为4π=12m,又∵高AB为5m,即展开图中,BC=5m,所以,解得AB=13故所建梯子最短为13m.故选A试题难度:三颗星知识点:略5.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A.16cmB.18cmC.20cmD.24cm答案:C解题思路:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12EF=18-1-1=16在Rt△FES中,由勾股定理得:SF2=SE2+EF2=解得SF=20所以捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选C试题难度:三颗星知识点:略6.如图,这是一个供滑板爱好者使用的型池,该型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的横截面是半径为3m的半圆,该部分的边缘AB=CD=45m,点E在CD上,CE=5m,一滑行爱好者从A点滑到E点,则他滑行的最短距离是( )m.(边缘部分的厚度可以忽略不计,π取整数A.30mB.40mC.41mD.50m答案:C解题思路:U型池池面侧面展开图如图,连接AE,DE=CD-CE=45-5=40,AD=πr=9,在Rt△ADE中,∠D=90°,由勾股定理得,∴∴AE=41故他滑行的最短距离约为41m故选C.试题难度:三颗星知识点:略7.2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为( )A.8cmB.10cmC.12cmD.15cm答案:B解题思路:将三棱柱沿展开,其展开图如图,由勾股定理得,解得所以这圈金属丝的长度至少为10cm故选B试题难度:三颗星知识点:略8.如图,长方体的长、宽、高分别为4cm,2cm,5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )A.9cmB.13cmC.12cmD.5cm答案:B解题思路:如图,作出长方体的侧面展开图在Rt△PP′Q′中,∠PP′Q′=90°,PP′=12,P′Q′=5由勾股定理得,解得因此,蚂蚁爬行的最短路径长是13cm故选B试题难度:三颗星知识点:略9.如图,长方体的长为10 cm,宽为5 cm,高为20 cm.若一只蚂蚁沿着长方体的表面从点A爬到点B,需要爬行的最短路径是( )A.25cmB.22cmC.28cmD.20cm答案:A解题思路:①如图,把我们所看到的左面和上面组成一个平面则这个长方形的长和宽分别是10 cm和25 cm,则由勾股定理,可得所走的最短线段的平方为②如图,把我们看到的前面与上面组成一个长方形则这个长方形的长和宽分别是30cm和5 cm,则由勾股定理,可得所走的最短线段的平方为;③如图,把我们所看到的左面和后面组成一个长方形则这个长方形的长和宽分别是15 cm和20 cm,则由勾股定理,可得所走的最短线段的平方为;三种情况比较而言,第三种情况最短.所以爬行的最短路径为25cm故选A试题难度:三颗星知识点:略10.如图所示,一棱长为3cm的正方体,把所有的面均分成3×3个小正方形,其边长都为1cm,假设一只蚂蚁从下底面点A沿表面爬行至侧面的B点,最少要爬( )A.30cmB.13cmC.20cmD.5cm答案:D解题思路:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.①按前面和右面展开,由勾股定理得;②按底面和右面展开,由勾股定理得;所以②中所爬行的路径最短,最短路径长为5cm故应选D试题难度:三颗星知识点:略。
文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.1.如图,有一个圆柱的高为 6cm ,底面周长为 16cm ,在圆柱下底面的 A 点有一只蚂蚁,它想吃到上底面 B 点处的食物,则沿着圆柱的表面需要爬行的最短路程是10cm.解:将圆柱体展开,连接A、 B,根据两点之间线段最短,∵圆柱的高为6cm ,底面周长为16cm ,∴A D=8cm , BD=6cm ,∴A B= √82+62=10cm .故答案为: 10 .2.如图圆柱的底面半径为 6 ㎝ ,高为 l0cm, 蚂蚁在圆柱表面爬行 ,从点 A 到点 B 的最短路程是多少厘米 ?(保留小数点后一位 )展开图成直角三角形,∠AOB=90°OB=3.14× 6=18.84cm , OA=10cm 。
求 AB∴A B=√( OA2+OB2) =21.3cm总结:最短路程=√底面圆周长一半的平方+圆柱高的平方3.一只蚂蚁要从正方体的一个顶点 A 沿表面爬到顶点 B,怎样爬行路线最短?如果要爬行到顶点 C 呢?说明你的理由。
A 到B 最短距离为其对角线,为根号 2 倍的边长A 到 C 可以将其想象成展开的平面,最短距离为这两个平面的对角线,为根号5倍的边长如图:向左转 |向右转3.一只蚂蚁在立方体的表面积爬行.(Ⅰ)如图 1 ,当蚂蚁从正方体的一个顶点 A 沿表面爬行到顶点 B ,怎样爬行路线最短?说出你的理由.(Ⅱ)如图1,如果蚂蚁要从边长为1cm 的正方体的顶点 A 沿最短路线爬行到顶点 C ,那么爬行的最短距离 d 的长度应是下面选项中的()(A ) 1cm < l<3cm(B)2cm(C)3cm这样的最短路径有6 条.(Ⅲ)如果将正方体换成长AD=2cm ,宽 DF=2cm ,高 AB=1.5cm的长方体(如图 2 所示),蚂蚁仍需从顶点 A 沿表面爬行到顶点 E 的位置,请你说明这只蚂蚁沿怎样路线爬行距离最短?为什么?(可通过画图测量来说明)考点:平面展开 - 最短路径问题.分析:( I)根据线段的性质:两点之间线段最短,求出即可;(II )根据图形可得出最短路径为√5,进而得出答案即可;(Ⅲ)将立方体采用两种不同的展开方式得出最短路径即可.解答:解:( I)如图 1 所示,沿线段AB 爬行即可,根据两点之间线段最短;(I I )如图 2 所示: 1cm <l<3cm ,故选 A,路线有 6 条,如图 2 所示:(III)蚂蚁爬行的最短路线是沿面AF 和面 FC 展开后所连接的线段AE ,原因:如图①和图②所示作图,分别连接AE ,并分别在两图中测量AE 的长,可得图②中的AE 较短.也可利用勾股定理得出:图①中AE=√732cm ,图②中 AE=√652cm .。
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.AB4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .AB1216. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
蚂蚁爬行的最短路径
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.
回答下列问题:
(1)蚂蚁最后是否回到出发点0;
(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0;
(2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒
2. 如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是.
解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.
AB= 5
1
22
2=
+.
3.(2006•茂名)如图,点A、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到点B的最短路程是cm
第6题
.
解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.
A
B
4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )
A .A ⇒P ⇒
B B .A ⇒Q ⇒B
C .A ⇒R ⇒B
D .A ⇒S ⇒B
解:根据两点之间线段最短可知选A . 故选A .
5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )
解:如图,AB =
()101212
2=++.故选C .
A
B
12
1
6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()
解:展开正方体的点M所在的面,
∵BC的中点为M,
所以MC=
2
1
BC=1,
在直角三角形中AM= = .
7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是cm。
解:将盒子展开,如图所示:
AB=CD=DF+FC=
2
1
EF+
2
1
GF=
2
1
×20+
2
1
×20=20cm.
故选C.。