数学北师大版八年级下册《认识分式方程》教学设计
- 格式:doc
- 大小:120.50 KB
- 文档页数:8
教学目标:1.理解什么是分式方程;2.能够解分式方程;3.能够应用分式方程解决实际问题。
教学重点:1.理解分式方程的含义;2.掌握解分式方程的方法。
教学难点:1.运用分式方程解决实际问题。
教学准备:教学课件、白板、黑板、笔、课后练习题。
教学过程:一、引入新知(5分钟)1.学生回顾一下分式的定义和运算规则;2.引导学生思考,如果等式中包含了分式,我们该如何解决?二、探究分式方程(10分钟)1.通过例题引导学生理解什么是分式方程;2.解释分式方程和整式方程的区别;3.回顾一下如何解整式方程,并与解分式方程进行对比。
三、解分式方程的基本方法(25分钟)1.第一种方法:通分法;a)通过实例引导学生掌握通分法的步骤;b)练习几道简单的例题。
2.第二种方法:消去法;a)通过实例引导学生掌握消去法的步骤;b)练习几道简单的例题。
3.学生通过比较两种方法的异同以及适用情况,总结解分式方程的基本方法。
四、应用分式方程解决实际问题(30分钟)1.引导学生分析一些实际问题,如人工成本、水泥用量等;3.学生尝试自己解决一些实际问题。
五、总结与拓展(5分钟)1.对本节课的内容进行思考,学生主动回答问题;2.对分式方程的解法进行总结;3.作业布置:完成课后练习题。
教学延伸:1.分组讨论:学生分成小组,每组选择一个实际问题,并设计自己的分式方程;2.拓展训练:提供一些难度较高的分式方程,让学生进行解答。
教学反思:本节课通过引入新知、探究分式方程、解分式方程的基本方法以及应用分式方程解决实际问题几个环节,全面而系统地讲解了分式方程的知识点。
通过让学生参与课堂讨论和练习,培养了他们解决实际问题的能力。
同时,通过拓展训练,激发了学生的思维和兴趣。
北师大版数学八年级下册5.4《分式方程》教学设计1一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上学习的。
本节课主要让学生掌握分式方程的定义、解法以及应用。
通过本节课的学习,学生能够理解和掌握分式方程的概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式运算有一定的了解。
但部分学生对分式的理解不够深入,解题思路不够清晰,需要在解题过程中进行引导。
此外,学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,需要通过实例进行启发。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用到实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.分式方程的定义及解法。
2.将分式方程应用到实际问题中。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的学习材料,如教材、课件、练习题等。
2.准备实际问题案例,用于引导学生应用分式方程解决实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解分式方程的定义,演示解法,让学生理解并掌握分式方程的基本知识。
3.操练(10分钟)让学生独立解决一些简单的分式方程,检验学生对知识点的掌握情况。
4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和辅导,使学生进一步巩固知识点。
5.拓展(10分钟)让学生尝试解决一些较复杂的分式方程,提高学生的解题能力。
6.小结(5分钟)总结本节课所学内容,强调分式方程的解法和应用。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
8.板书(5分钟)整理本节课的主要知识点和解题方法,方便学生复习。
北师大版八年级下册《认识分式》教学设计北师大版八年级下册《认识分式》教学设计一、教材分析本节课是北师大版八年级下册第五《分式与分式方程》的内容,共两课时。
本设计是第一课时。
本节课是分式的起始课,是学生学习了整式、因式分解基础上进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,所以分式的概念及分式在什么条件下有意义是本节课的重点和难点。
因为分式与分数类似,所以为了突破重点和难点,采用了类比的学习方法,让学生学会自主探索,合作交流,老师的讲和学生的学相结合。
分式是表示现实世界中一类量的数学模型,为了让学生体会这一点,在课题引入时从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
二、学情分析学生的知识技能基础:学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.学生的活动经验基础:在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.三、教学任务本节共分2个课时,这是第1课时,主要内容是了解分式的定义以及分式有意义、无意义、值为零的条件。
本节课的具体教学目标为:知识与技能:1、能用分式表示具体情境中的数量关系,体会分式是刻画现实世界中一类量的数学模型,进一步发展符号意识。
2、了解分式的概念,明确分式和整式的区别;3、会求分式的值,理解分式有意义、无意义及值为零的条件。
过程与方法:本节课通过“观察——类比——合作交流——概括、归纳——辩证”的途径,培养学生观察、分析及理解问题的能力,发展学生的数学抽象、数学建模思维,获得正确的学习方式。
情感态度价值观:感受数学知识于生活,又服务于生活,体会数学学科的一些核心素养,如数学抽象、数学建模对研究问题时的引领作用,体会分式是表示现实世界中的一类量的数学模型。
北师大版义务教育教科书《八年级下册》第五章《认识分式》教学设计一.教材分析本节课是北师大版八年级(下)第五章《分式与分式方程》第一节内容.学生在小学已经学习了有关分数及其运算的相关知识,本套教材又分别在七、八年级探究了“字母表示数”、“代数式”、“整式”、“因式分解”等内容,本节将继续学习代数式的另一组成部分——分式.作为本章的起始课,本节课起着承接分数、整式,引领分式性质、运算、分式方程以及反比函数相关知识的重要作用.本节课基于数学建模和类比思想,在具体情境中抽象出分式模型,类比分数掌握分式的概念,理解分式有无意义的条件,通过数学活动发展学生归纳、反思、总结的学习意识.二.学情分析在知识上,学生在小学学过分数,而分式可以看成是分数的“代数化”,所以其性质与运算是相类似的.在前面的学习中,学生已经学会用字母表示实际问题中的数量关系,在整式的学习中,学生已经会对整式进行分类,并初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在能力上,八年级学生已经有了合作学习的组织能力和方法,具有了一定的的分类、归纳、反思、总结等数学活动经验,为本节课开展提供了保障.三.教学目标分析1、结合具体情境体会分式的意义,体会分式时刻画现实世界中一类量的教学模型,发展符号意识.2、了解分式的概念,明确分式与整式的区别.3、会求分式的值,了解分式有意义的条件.重点:分式的概念;难点:分式有意义的条件及其在实际情景中的意义.四.教法与学法分析教法:“情境引入—类比交流—总结提炼—拓展应用”教学模式.学法:类比、交流、展示、应用.五.教学过程分析环节一:情境引入感受模型请你完成下列填空:(1)半径为a的圆的周长为,面积为;(2)一大盒牛奶m毫升,把这盒牛奶倒入某种玻璃杯中,刚好倒满3杯,则这种杯子的容量是毫升;(3)面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400公顷,计划每月固沙造林x公顷,实际每月固沙造林的面积比原计划多30公顷,则实际每月固沙造林公顷,计划完成造林任务需要个月,实际完成造林任务需要个月;(4)2014年青岛世界园艺博览会吸引了成千上万的参观者,某一段时间内的统计结果显示,前a天日均参观人数为3万人,后b天日均参观人数为5万人,这(a+b)天共有万名参观者,日均参观人数为万人;(5)新华书店库存一批图书,其中一种图书的原价是每册m元,现每册降价x元销售,当这种图书全部售出时,其销售额为n元,降价销售开始时,新华书店这种图书的库存量是册.【设计意图】1、提供丰富的生活情境,激发学生学习的欲望,同时让学生体会数学与生活的联系.2、利用代数式的实际背景,让学生初步感受分式的模型作用,体会分式的意义.3、问题的设置涉及到单字母和多字母的,涉及分母含字母和不含字母的,既为明确分式特征做铺垫,也为后续学习提供素材.【教学策略】独立思考—交流讨论—展示答案.环节二:探究交流提炼概念1.你能将上面的代数式分类吗?分类的依据是什么?2.对于代数式2400x ,2400+30x,35+ba ba+,nm x-,它们有哪些共同特征?与整式有什么不同?3.师生交流,生生交流,归纳总结:分式的概念:一般地,用A,B两个整式,A B÷可以表示成AB的形式.如果B中含有字母,那么称AB为分式.其中A称为分式的分子,B称为分式的分母.4.对于分式中的分母有什么要求?类比分数得到:3÷5=35A÷B=AB(整数)(整数)(分数) ( 整式)(整式)(分式)(不为0)(含字母,不为0)5. 你能再举几个分式的例子吗?跟进练习:下列代数式中哪些是分式?1a ,4a ,2m m n -,12a b +,23x y -,14x x+-+,2221x x x ++. 【设计意图】1、 让学生经历对代数式分类的过程,渗透代数式知识系统的建构.2、学生通过思考,交流,归纳,建立分式的概念. 3、 类比分数,明确分式的特征——①分子、分母都是整式;②分母含有字母且不能为零.用彩色粉笔标记关键点.4、 学生自己举例,丰富了对分式的认识,配合跟进练习,进一步加深了对分式特征认知.【教学策略】1、学生可能会提供的多种分类方式,予以鼓励,明确分类的依据. 2、 鼓励学生用自己的语言描述分式的共同特征,如果遇到困难可以适时安排小组讨论,或引导学生可以从形式,所含运算等方面进行思考.3、 及时追问,明确分式的特征,渗透类比思想.环节三:应用新知,提升能力例1:(1) 当a =1,2,-1时,分别求分式121a a +-的值; (2) 当a 取何值时,分式121a a +-有意义? 跟进练习:211m m m -+当取何值时,分式的值为零?【设计意图】1、学会求分式的值. 2、 理解分式有意义的条件和分式值为零的条件.【教学策略】1、分式求值较为简单,学生独立完成. 2、 引导学生理解分式有无意义的条件,结合具体题目分析分式值为零应满足的条件.3、适时小结,分式有意义对应分母不为零;分式值为零不仅要求分子为零,还要关注分母不能为零.环节四 :回归生活 拓展认知例2:新华书店库存一批图书,其中一种图书的原价是每册m 元,现每册降价x 元销售,当这种图书全部售出时,其销售额为n 元,降价销售开始时,新华书店这种图书的库存量是n m x -册.(1)(2)上述计算过程,表示什么实际意义呢?(3)何时分式无意义?此时又对应什么实际意义呢?【设计意图】这一部分虽然难度不大,但是这样安排有利于让学生结合问题情境,感受分式的模型作用,体会分式求值,分式无意义在具体情境中的实际含义.预计学生会有恍然大悟之感.【教学策略】 8,2,3000n m x n m x===-当时,分式的值为多少?师生问答,在独立思考的基础上进行适当的讨论交流,鼓励学生用通俗的语言表达自己的理解.环节五:小结串联,纳入系统1.在本节课中,你感受最深的是什么?2.你还有什么疑惑的地方吗?3.你愿意对这章的后继学习作一下展望吗?【设计意图】1、从多角度出发,完善学生的知识体系,实现其思维的升华.2、再次渗透类比的思想,结合小学对分数相关知识的学习,展望本章后续的学习内容,鼓励学生增强信心.【教学策略】学生发言小结为主,教师适时补充.环节六:达标检测,评价矫正1.当x取何值时,下列分式有意义?(1)21x-(2)219x-2. 当x=0,-2,12时,分别求分式2132xx-+的值.3.把甲、乙两种饮料按质量比:x y混合在一起,可以调制成一种混合饮料,调制1Kg这种混合饮料需要多少甲种饮料?【设计意图】评价是升华认知层次的有效措施,进一步丰富了分式的背景,拓展了学生的认知,给孩子的思维插上了的翅膀.【教学策略】学生独立完成,展示交流,关注通过率.环节七:布置作业继续学习必做题:课本习题5.1 知识技能1-3题选做题:课本习题5.1问题解决4-5题【设计意图】1、课后继续学习,拓展认知,保持学习的连贯性.2、分层作业,关注不同层次的学生.【教学策略】课后独立完成.。
北师大版认识分式方程说课稿8篇今天我说课的内容是八年级数学下册《分式方程》的第二课时,我将从以下几方面进行介绍。
一、教材的地位和作用:本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。
跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。
二、教学目标1.使学生理解分式方程的意义。
2.使学生掌握可化为一元一次方程的分式方程的一般解法。
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧。
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。
三、重、难点分析本节重点是可化为一元一次方程的分式方程求解中的转化。
解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。
难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。
四、教学方法:本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。
再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。
特别注重 ;精讲多练 ;,真正体现以学生为主体。
上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、教学过程(一)复习:(1)什么叫分式方程?设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。
1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。
北师大版数学八年级下册5.1《认识分式》教学设计1一. 教材分析北师大版数学八年级下册5.1《认识分式》是学生在学习了有理数、整式的基础上,进一步拓展数学知识范围的重要内容。
分式作为一种新的数学表达形式,不仅有助于提高学生分析问题、解决问题的能力,而且为学生以后学习函数、方程等数学知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数、整式的相关知识,具备了一定的数学思维能力。
但分式作为一种新的表达形式,对学生来说较为抽象,需要通过具体实例和操作来理解和掌握。
同时,学生对于分式的实际应用可能较为陌生,需要教师在教学中进行引导和拓展。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.能够对分式进行简单的运算和转化。
3.能够运用分式解决实际问题,提高解决问题的能力。
4.培养学生的数学思维能力和合作交流能力。
四. 教学重难点1.重点:分式的概念、基本性质和运算方法。
2.难点:分式的实际应用和解决复杂问题的能力。
五. 教学方法1.情境教学法:通过生活实例和具体问题,引发学生对分式的兴趣和认识。
2.启发式教学法:引导学生主动思考、探究分式的性质和运算方法。
3.合作交流法:鼓励学生分组讨论、合作解决问题,提高学生的团队协作能力。
4.实践操作法:通过具体的运算和实际问题,让学生动手实践,巩固分式的知识和技能。
六. 教学准备1.教学PPT:制作含有生动实例和动画的PPT,帮助学生直观地理解分式的概念和性质。
2.教学素材:准备一些实际问题和相关例题,用于引导学生进行分析和练习。
3.分式计算器:为学生提供分式计算器,方便他们在课堂上进行运算和实验。
七. 教学过程1.导入(5分钟)利用生活实例,如盐水的浓度问题,引出分式的概念。
让学生思考:如何用数学表达式来表示盐水的浓度?从而引出分式的定义。
2.呈现(10分钟)通过PPT展示分式的基本性质,如分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
《认识分式方程》教学设计
陕西师范大学锦园中学张冰冰
一、教材分析
分式方程是“数与代数”中重要的一部分,是在学习了用字母代表数、一元一次方程、二元一次方程(组)后学习的另外一种方程模型,解决问题过程中需要用到建模方法、分式的基本性质、等式的基本性质等基础知识,使原有知识在解决问题过程中得以升华,同时列分式方程这一建模过程为初三学习较难的一元二次方程、二次函数打下了基础,我们数学的知识体系是呈螺旋式上升,分式方程在其中起到了承上启下的作用。
分式方程中所涉及的问题情境全部来源于实际生产、生活中,为学生的数学建模能力搭建了一个平台,提高了学生的应用意识,随时间的推移与知识的积攒,学生会更加体会到数学知识来源于生活,服务于生活,提高学生学习的主动性。
二、学情分析
学生在七年级和八年级上都已经学习了用字母代表数、一元一次方程、二元一次方程(组),八年级下也学习了对分式的认识及分式化简、分式的加、减、乘、除等运算,这对本节课的学习也起到了很好的奠基作用。
这为顺利完成本节课的教学任务打下了基础,但对于分式方程的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
在分式方程的建模过程中,学生从中学到的不仅仅是知识、方法,在探究过程中,他们在语言表达、面对困难的勇气,对未知事物的好奇心、相互帮助、相互交流及学习方式的选择等方面都会有所收获。
三、教学目标
课程标准对本节课的要求是:
1.让学生经历从实际问题抽象、概括分式方程概念这一“数学化”的过程,体会分式方程的模型思想,进一步发展符号感。
2.经历观察、归纳、类比等数学活动,能解决一些与分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识。
引导学生寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力,会列分式方程。
3、通过学产,获得学习数学代数知识的常用方法,能感受代数学习的价值,发展分析问题、解决问题的能力,培养应用意识。
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
(一)知识与技能目标
经历用字母表示现实情境中数量关系的过程,了解分式议程的概念,体会体会分式方程的模型思想,进一步发展符号感。
(二)过程与方法目标
经历“问题情境—建立模型—解释应用拓展”的过程,发展学生分析问题、解决问题的能力,培养应用意识。
(三)情感与态度目标
综合运用各种方法解决生活问题,发展社会责任感,能够理解他人的思考方式并进行沟通,也能够反思自己的思考过程,通过与同伴合作克服困难,增进应用数学的自信。
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:探索、了解分式方程的概念。
难点:如何列分式方程,突破难点的关键是恰当设未知数,寻找等量关系。
四、教学方法
数学课堂教学是有备、有理、有序、有效的育人活动,但在学生学习过程中会有很多不可预知的障碍及灵感火花的迸发,所以也是一个教学想长的过程。
基于以上认识,我遵循“七环节”的教学模式,采用“情境引入—特征识别—概念明晰—概念应用”的方式展开教学。
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
五、教学过程
整个教学过程分为七个环节,这是每个环节及大约的时间分配,我认为我的亮点将出现在第三、四环节及学生的探究活动的广泛参与上。
下面我将具体阐述我的设计意图:
第一环节:复习就知,温故知新
教师通过数学思想方法的介绍自然引领学生回忆学过的方程及列方程解应用题的基本思路,引导学生回顾学过的应用题的公式。
设计意图:在课前对学生进行回顾引导,使学生能简单回忆起列方程解应用题的基本步骤,为下面问题情境的设、列等到步骤进行扫清障碍。
第二环节:创设情境,导入新课
由三副图片展示出学生们从小就耳熟能详的故事《龟兔赛跑》,将此故事发展出另外的三个小故事,提出问题(1)你能找到题目中的等量关系吗?在学生已有的认知基础上,学生文字回答并不困难,在此帮助学生运用数学等式表示,发展学生的符号感;提问问题(2)你能完成教师所设置的表格吗?分析每个问题是什么问题(工程问题、行程问题、顺水逆水问题、利润问题)(3)你能设、列这一问题吗?
蚂蚁与乌龟赛跑,距离12米,已知乌龟的速度是蚂蚁的1.2倍,乌龟提前1分钟跑到终点。
请你算算它们各自的速度。
解:设蚂蚁速度为x 米/分,则乌龟的速度为1.2x 米/分,根据题意,得
它发现自己在顺水中游泳6千米所需的时间和逆水游泳3千米所需时间相同。
已知水流速度是1千米/时,若乌龟本身的速度不变,你知道它在静水中游泳的速度吗?
解:设乌龟在静水中的速度为x 千米/时,根据题意,得
已知蚂蚁加工180个零件所用的时间,乌龟可以加工240个零件,而且蚂蚁每小时比乌龟少加工5个零件,求乌龟、蚂蚁每小时分别加工的零件个数。
121211.2x x -=6311
x x =+-
解:设乌龟每小时加工x 个零件,根据题意,得
授课过程中对学生可能出现的解决问题的办法,合理的要给予适当的评价,向学生展示解决问题的方法是不唯一的,并鼓励学生寻找最佳方案,因为学生之间能力有差距,鼓励学生尝试多种方法解决问题。
第三环节:探究尝试,建立模型
通知故事给出的三道问题,学生们解决了三道问题,列出了方程,让学生类比、归纳、用自己的语言描述分式方程的定义,并进行练习。
设计意图:能正确区分分式方程与整式方程,夯实基础。
教师适当小结。
这节课我们着重练习列分式方程解应用题,体会分式方程的作用。
● 我们来归纳: ,叫做分式方程。
设计意图:
(1) 让学生直接合作交流,探索结果,对自己设、列的解释能较为准确
2401805x x =-
的表述问题情境中两个等量关系的作用。
(2)能通过两个总是情境,教师适当小结,表达分式方程的定义。
注意两个要点:分母,含有字母。
第四环节:小组交流,编题解题
分组进行合作交流,一共八个组,要求学生自己出题,并解题,要求题目的完整性。
可编写的题目为工程问题、行程问题、顺水逆水问题等。
本环节的亮点在于:1、给学生自己出问题、解决问题的机会,理解方程的知识来源于生活的需要,是解决实际问题的重要手段,加强方程实用性的体验,增强学生的活动性。
2、问题设置会吸引学生主动参与,根据学生的心理特点,让他们自主选择喜欢的生活背景,更贴近生活;再一个以往都是教师为学生出题求解,在上给出方程由学生出题,充分满足学生的好奇心。
3、在学生参与的过程中,利用逆向思维,学生对于这种方程模型适用于多种问题有了更深刻的体会,帮助他们在以后的学习中透过各种问题情境抽象出数学模型。
●我们来合作设计:
第五环节:强化训练,巩固双基
将学生出的题出为练习题。
设计意图:1、通过所列多个方程的不同,加深对分式方程模型的认识,巩固双基。
2、通过一题多解练习,培养学生多角度解决问题的能力。
第六环节:小结归纳,拓展深化
学生可自主交流本节课学习中的收获与困惑,教师适当补充。
预设可能出现的反思:
1.知识方面:分式方程的定义、如何列分式方程、如何找等量关系。
2.方法与技能方面:娄比数学思想方法、一题多解。
3.情感态度、价值方面:体会合作交流的好外,重在参与;勇于克服困难,有胜利的成功感。
设计意图:使基础知识自然成一体系;增强学生之间的交流、沟通的能力;增强学生的表达能力。
第七环节:布置作业,提高升华
(必做)P126 习题5.7(1、2、3)
板书设计:。