阅读MRI图像基础知识简介
- 格式:doc
- 大小:45.50 KB
- 文档页数:6
T1加权像高信号的产生机制一般认为,T1加权像上的高信号多由于出血或脂肪组织引起。
但近年来的研究表明,T1加权高信号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性疾病以及某些正常的生理状态下。
在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。
射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。
在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快,组织的T1弛豫时间越短,T1加权像其信号强度就越高。
T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。
一.结合水效应小分子的自由水(如脑脊液)具有非常高的运动频率,它的运动频率要远高于MRI的Larmor频率,其T1弛豫时间也远长于身体内其他组织,所以在T1加权像上呈低信号。
如在水中加入大分子的蛋白质,那么具有极性的水分子会被带有电荷的蛋白质分子吸引而结合在蛋白质分子上,从而形成一个蛋白质水化层。
在此蛋白分子水化层内的水分子受蛋白分子的吸引,致使水分子的运动频率下降,接近于Larmor频率。
使其T1驰豫时间缩短,故T1加权成像时呈现出高信号改变。
二.顺磁性物质顺磁性物质的特点是含有不成对的电子,常见的有铁、铬、钆、锰等金属、稀土元素及自由基。
在磁场中顺磁性物质的磁进动与组织内质子进动相互作用,产生一个随机变化的局部微小磁场,这个微小磁场的变化频率与Larmor频率接近,从而使T1弛豫时间缩短。
三.脂类分子纯水分子非常小,运动频率非常高,远高于Larmor频率。
大分子如蛋白质和DNA分子运动频率较慢,低于Larmor频率。
所以大、小分子在T1加权上均呈低信号。
脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor频率相似,所以T1弛豫时间短,T1加权像呈高信号。
正常脑组织的MR信号特点水水分子较小,它们处于平移、摆动和旋转运动之中,具有较高的自然运动频率,这部分水在MRI称为自由水。
MRI是与CT几乎同步发展起来的医学成像技术。
MRI作为最先进的影像检查技术之一,在许多方面有其独到的优势,尤其是近年来高场磁共振超快速成像与功能成像的出现,使得MRI的优势更为明显。
但是,由于国情所限,MRI 远没有CT普及,实际工作中,大量的病例本应首选MRI检查,却都进行了CT检查,因此造成的误诊及漏诊屡见不鲜。
除病人经济情况的原因之外,临床医生对MRI的了解不足也是一个重要原因。
目前关于磁共振成像的书籍虽很多,专业性均很强,信息量也非常大,临床医生很难有时间仔细翻阅,但临床医生又急需了解磁共振的相关知识。
鉴于此,我们编写了这本小册子,以期临床医生在阅读之后能够了解磁共振成像的临床应用价值、哪些情况下应当建议病人进行MRI检查、以及一些磁共振基本读片知识。
1 磁共振成像的特点一、无损伤性检查。
CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI 投入临床20多年来,已证实对人体没有明确损害。
孕妇可以进行MRI检查而不能进行CT 检查。
二、多种图像类型。
CT、X线只有一种图像类型,即X线吸收率成像。
而MRI常用的图像类型就有几十种,且新的技术和序列不断更新,理论上有无限多种图像类型。
可根据组织特意性用不同的技术制造对比,制造影像,力求诊断疾病证据充分、客观、可靠。
有更丰富的细节和依据方便医师作出明确的诊断,对疾病的治疗前及愈后作出更详细、系统的评估。
三、图像对比度高。
磁共振图像的软组织对比度要明显高于CT。
磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分构成,它们均含有丰富的氢原子核作为信号源,且三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常组织与异常组织之间对比更显而易见。
CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT。
四、任意方位断层。
由于我院MRI拥有1.5T高场强主磁体及先进的三维梯度系统逐点获得容积数据,所以可以在任意设定的成像断面上获得图像。
MRI磁共振成像基本原理及读片MRI(磁共振成像)是一种医学影像技术,利用磁共振原理来获得身体内部的高分辨率图像。
本文将详细介绍MRI的基本原理及读片过程。
一、MRI的基本原理1.磁共振现象:MRI利用磁共振现象来获得图像。
人体组织主要由氢原子构成,而氢原子含有一个质子,质子带有正电荷。
在强磁场的作用下,质子将朝向磁场的方向旋转。
质子的旋转频率与外部磁场的强度成正比。
2.弹性波:磁共振装置内的一套辅助磁场可以加入特定的辅助磁场,这些辅助磁场将会给氢原子的原子核一个脉冲的影响,并造成它们间接或直接在周围的分子上加入一个特定的力,这个力的效应可以用声音形容,并且它的效应在短时间之内会消失。
3.回弹:当辅助磁场停止作用时,氢原子的原子核会回到基本对齐的状态。
在这个过程中,它们会向周围发出信号,被称为MR信号或回声。
回声信号会被感应线圈捕获并送到计算机中进行处理和图像重建。
4.信号解析:计算机将回声信号解析为图像。
这里有几种常用的重建方法,包括傅立叶变换、快速傅立叶变换和回声信号积分。
二、MRI读片过程1.图像质量评估:在开始读片之前,需要对图像质量进行评估。
评估因素包括图像分辨率、对比度、噪声、伪影等。
图像质量好与否对于正确认识病灶和提供准确诊断至关重要。
2.解剖结构分析:先观察解剖结构,包括脑、脊髓、血管、骨骼等。
通过比较对称性、大小、形态等,可以初步判断是否存在异常。
3.病灶检测与定位:在观察解剖结构的基础上,进行病灶的检测与定位。
常见的病灶包括肿瘤、脑梗死、脑出血等。
通过对信号强度、位置、边界特征等进行分析,可以初步判断病灶的类型和范围。
4.强度与序列分析:MRI图像的信号强度与脉冲序列有关。
不同的脉冲序列可以提供不同的对比度和重建方式。
通过比较不同脉冲序列的信号强度变化,可以更好地分析病灶的性质,并提供更准确的诊断依据。
5.影像报告编写:根据对图像的分析和判断,编写MRI影像报告。
报告通常包括病人基本信息、病灶的位置、大小、特征、诊断意见等。
阅读MRI图像基础知识简介T】加权像高信号的产生机制一般认为,T加权像上的髙信号多由于出血或脂肪纽织引起。
但近年來的研究表明,T. 加权高佶号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性茨病以及某些正常的生理状态下。
在射频脉冲的澈发下.人体组织内氢质子吸收能量处于激发状态。
射频脉冲终止后,处于激发状态的氢质子恢复其原始状态.这个过程称为弛豫。
在弛豫过程中,氢质子将其吸收的能量释放到周圈环境中,若质子及所处晶格中的质子也以与barmor频率相似的频率进动, 那么氢质子的能斌释放就较快,组织的TJ也孩时间越短,n加权像其信号强度就越高。
T 弛豫时间缩短者有3种情况:其一为结介水效应;其二为顺磁性物质;其三为脂类分了%1.结合水效应小分子的自由水(如脑许液)具冇非常高的运动频率,它的运动频率要远高于MRI的[.armor频率,其T.她豫时间也远长于身体内其他纽织,所以在T,加权像上呈低信号。
如在水中加入人分子的蛋白质,那么具冇极性的水分子会被带冇电荷的蛋门丿贡分子吸引而结介在蛋门质分子上,从而形成一个蛋白质水化层。
在此蛋白分子水化层内的水分子受蛋白分子的吸弓I,致使水分子的运动频率下降.接近于l.armor频率。
使其T,驰豫时间缩短,故TJ川权成像时呈现出高信号改变。
%1.顺磁性物质顺磁性物质的持点是含冇不成对的电子,常见的冇铁、搭、轧、犠等金属、稀土元素及自由羞。
在磁场屮顺磁性物质的磁进动与组织内丿贡子进动相互作用,产生一个随机变化的局部微小磁场.这个微小磁场的变化频率与Larmor频率接近,从而使儿弛豫时间缩短。
%1.脂类分子纯水分子菲常小,运动频率菲常高,远髙于Larmor频率。
大分子如蛋白顶和DN.4分子运动频率较慢,低于Larmor频率。
所以大、小分子在TJ川权上均呈低信号。
脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor 率相似,所以弛豫时间短,T加权像呈高信号。
正常脑组织的MR信号特点水水分子较小,它们处于平移、摆动和旋转运动之中,具有较髙的自然运动频率,这部分水在MR1 称为门山水。
[MR读片指南——从入门到精通]编书大纲第一章 MR读片基础知识必读1、 MR是如何成像的?磁共振成像是利用原子核在磁场内所产生的信号经重建成像的一种技术。
人体内的氢质子分布最广,含量最高。
每一个氢质子可被视为一个小磁体,正常情况下,这些小磁体自旋轴的分布和排列是杂乱无章的,若人体置于一个强大的外磁场内时,这些小磁体的自旋轴将按磁场的方向重新有规律的排列,此时施加一个能够影响磁场方向的射频脉冲,使其产生共振,当射频脉冲停止后,磁场会恢复的原来的状态,并以射频信号的形式释放出吸收的能量,这个视频信号被接收后,经计算机处理后重建成图像。
2、 常用MR机有哪几种按照所用的磁体不同,磁共振可分为常导型、永磁型、超导型。
前二者因磁场稳定性差,目前应用最多的为超导型。
后者磁场稳定而均匀,不受外界温度影响,场强高,可调节。
但缺点是造价高,维护费用增高。
3、 何为纵向驰豫与横向驰豫纵向驰豫又称自旋-晶格驰豫,简称T1,是指900射频脉冲停止后,纵向磁化矢量从最小值恢复至平衡态的63%所经历的驰豫时间。
不同组织的T1时间不同,其纵向驰豫率的快慢亦不同,故产生MR信号强度的差别。
MR信号主要依赖T1而重建的图像称为T1加权像。
横向驰豫又称为自旋-自旋驰豫,简称T2,是指射频脉冲停止后,横向磁化由最大量衰减到37%时所经历的时间。
T2值也是一个具有组织特异性的时间常数,不同组织以及正常组织和病理组织之间有不同的T2值。
MR信号主要依赖T2而重建的图像称为T2加权像。
4、 MR图像特点图像反映组织间驰豫时间的差别;多方位成像;可以直接轴位、冠状位、矢状位成像。
多参数成像;可同时得到T1加权像、T2加权像、质子密度加权像。
流空效应;可在不使用造影剂的情况下,使血管显示。
5、 MR对比增强的原理及意义由于正常与异常组织的驰豫时间有较大重叠,故MR影像特异性较差,为提高影像的对比度,可以人为改变组织的MRI的特征性参数,即缩短T1和T2驰豫时间。
T1加权像高信号的产生机制在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。
射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。
【简单的理解就是本来处于平衡状态的粒子在吸收了外加磁场能量后,粒子发生跃迁,总体能量升高,MR给的磁场是射频,也就是说不是恒定的,这样当外加磁场撤去的时候,粒子就会恢复原来的稳态而释放出能量,并被计算机捕获成像。
那为什么MR需要非常强的磁场呢?原子核吸收交变磁场的能量并被激发.其表现的行为就是粒子向不同能阶跃迁的机率都变为相等,低能阶的核子数略高於高能阶,所以在跃迁机率相等的条件下就会有比较多的粒子从低能阶跃升到高能阶,所以整体的能量提升。
这个向高能阶和向低能阶移动的核子数差会随着高低能阶粒子数趋近相等而趋缓,假设在低能阶以及高能阶的原子核数目分别为 +与 -,那么吸收能阶在磁场中分开,越大的磁场能量差越大,恢复的时候释放的能量也就越大。
】在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快【这说的就是一种共振现象,即射频脉冲的频率越接近晶格中的质子的固有频率那么它能量释放的就越快,若分子运动频率远高于或远低于MRI的Larmor频率,那么能量释放的就慢,后面的成像都是这个道理】,组织的T1弛豫时间越短,T1加权像其信号强度就越高。
【我现在说的可以说是高中物化得难度,或稍深化了一点。
弛豫过程有两类。
其一为自旋-晶格弛豫,亦称为纵向弛豫。
其结果是一些核由高能级回到低能级。
该能量被转移至周围的分子(固体的晶格,液体则为周围的同类分子或溶剂分子)而转变成热运动,即纵向弛豫反映了体系和环境的能量交换;第二种弛豫过程为自旋-自旋弛豫,亦称为横向弛豫。
这种弛豫影响具体的(任一选定的)核在高能级停留的时间。
这个过程是样品分子的核之间的作用,是一个熵的效应。
T1叫自旋-晶格弛豫时间,T2叫自旋-自旋弛豫时间。
那从概念名称我们就可以看出:T1描述的是粒子与晶格间作用,即交变磁场停止,经由晶格作用,原子核将能量交予晶格,于是高能阶原子核数目逐渐减少,最后达到平衡状态。
原子核将能量交给晶格的特征时间称为T1。
T2描述的是粒子与粒子间作用,它是将所吸收到的能量,分配给物质中的每一个自旋,并使其自旋达到波兹曼分布(就是各粒子具有的自旋所形成的正态分布),于是这时样品会达到一个新的自旋温度。
在固体样品中,T2通常是远小于T1。
】T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。
一.结合水效应小分子的自由水(如脑脊液)具有非常高的运动频率,它的运动频率要远高于MRI的Lar mor频率,其T1弛豫时间也远长于身体内其他组织,所以在T1加权像上呈低信号。
如在水中加入大分子的蛋白质,那么具有极性的水分子会被带有电荷的蛋白质分子吸引而结合在蛋白质分子上,从而形成一个蛋白质水化层。
在此蛋白分子水化层内的水分子受蛋白分子的吸引,致使水分子的运动频率下降,接近于Larmor频率。
使其T1驰豫时间缩短,故T1加权成像时呈现出高信号改变。
二.顺磁性物质【如在做增强时我们会用到的马根维显】顺磁性物质的特点是含有不成对的电子,常见的有铁、铬、钆、锰等金属、稀土元素及自由基。
在磁场中顺磁性物质的磁进动与组织内质子进动相互作用,产生一个随机变化的局部微小磁场,这个微小磁场的变化频率与Larmor频率接近,从而使T1弛豫时间缩短。
三.脂类分子纯水分子非常小,运动频率非常高,远高于Larmor频率。
大分子如蛋白质和DNA分子运动频率较慢,低于Larmor频率。
所以大、小分子在T1加权上均呈低信号。
脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor频率相似,所以T1弛豫时间短,T1加权像呈高信号。
正常脑组织的MR信号特点一.水水分子较小,它们处于平移、摆动和旋转运动之中,具有较高的自然运动频率,这部分水在MRI称为自由水。
如果水分子依附在运动缓慢的较大分子蛋白质周围而构成水化层,这些水分子的自然运动频率就有较大幅度的减少,这部分水又被称为结合水。
自由水运动频率明显高于L armor共振频率,因此,T1弛豫缓慢,T1时间较长;较大的分子蛋白质其运动频率明显低于La rmor共振频率,故T1弛豫同样缓慢,T1时间也很长。
结合水运动频率介于自由水与较大分子之间,可望接近Larmor共振频率,因此T1弛豫颇有成效,T1时间也较上述二者明显缩短。
局部组织含水量稍有增加,不管是自由水还是结合水,MR信号均可发生显而易见的变化,相比之下,后者更为明显。
认识自由水与结合水的概念有助于认识病变的内部结构,有利于对病变作定性诊断。
CT检查由于囊性星形细胞瘤的密度与脑脊液密度近似而难以鉴别,而MRI检查由于囊性星形细胞瘤中的液体富含蛋白质,其T1时间短于脑脊液,在T1加权像中呈较脑脊液信号为高的信号。
又如,MRI较CT更能显示脑软化。
脑软化在显微镜下往往有较多由脑实质分隔的小囊组成,这些小囊靠近蛋白质表面的膜状结构,具有较多的结合水,T1较短,其图像比CT显示得更清楚。
所以M RI所见较CT更接近于病理所见。
再比如,在阻塞性脑积水时,脑脊液【相当于自由水】由脑室内被强行渗漏到脑室周围脑白质后,变为结合水,结合水在T1加权像中信号明显高于脑脊液,而在T2加权像中又低于脑脊液信号。
综上所述,局部组织水份增加可分为自由水和结合水,前者引起T1明显延长而远离Larmor共振频率,后者造成T1稍有延长而接近Larmor频率而致使T 1加权像上信号增强。
二.脂肪与骨髓组织脂肪与骨髓组织有较高的质子密度,且这些质子具有非常短的T1值,根据信号强度公式,质子密度大和T1值小,其信号强度大,故脂肪和骨髓组织在T1加权像上表现为高强度信号,与周围长T1组织形成良好对比,信号高呈白色。
若为质子密度加权像,此时脂肪组织和骨髓组织仍呈高信号,但周围组织的信号强度增加,使其对比度下降;若为T2加权像,脂肪组织和骨髓组织的信号都将受到一定程度的限制。
三.肌肉组织肌肉组织所含的质子密度明显少于上述脂肪和骨髓组织,且具有较长的T1和较短的T2驰豫特点。
所以在T1加权像上,信号强度较低,影像呈灰黑色。
随着短T2的弛豫特点,信号强度增加不多,影像呈中等灰黑色。
韧带和肌腱组织的质子密度低于肌肉组织,该组织也具有长T1和短T2弛豫特点,其MR信号无论在T1或T2加权像上,均表现为中低信号。
【短T1在T1加权上是高信号,长T2在T2加权上是高信号,反之自己想吧】四.骨骼组织骨皮质内所含的质子密度很小【核磁针对的就是质子,没质子它还共振什么啊】,MR信号非常弱,无论在T1加权或T2加权扫描,均表现为黑色低信号。
钙化软骨的质子密度特点与骨皮质相同,所以也表现为黑色低信号。
组织内出现其他钙化,无论其形态或大小,一般均呈现为与钙化软骨相同的组织影像特点。
纤维软骨组织则与钙化软骨不同,其组织内的质子密度明显高于骨皮质和钙化软骨。
且组织具有较长的T1和较短的T2弛豫特征,但因其具有一定的质子密度,故在T1或T2加权像上,信号强度不高,呈中低信号。
透明软骨内含有75%~80%的水份,具有较大的质子密度,并具有较长的T1和长T2弛豫特征。
在T1加权像上,因T1值长,所以信号强度较低。
而在T2加权像上,因T2值长,信号强度明显增加。
病理组织的MR信号特点不同的病理过程,病理组织有不同的质子密度、T1及T2弛豫时间。
采用不同的脉冲序列,将表现出不同的的信号强度。
掌握这些信号变化特点,有助于判别大体的病理性质,部分作出定性诊断。
三.铁沉积过多在中高场强MRI系统作T2加权扫描时,可于苍白球、红核、黑质、壳核、尾状核和丘脑部位见到明显的低信号,这是由于高铁物质在上述部位沉积所致。
脑部铁沉着(非亚铁血红蛋白)始于儿童,约在15~20岁达到成人水平。
在6个月龄的婴儿苍白球中已有铁存在,黑质铁沉着见于9~12个月时,红核在1岁半~2岁,小脑齿状核要到3 ~7岁才显示铁的存在。
上述部位的铁沉着量与年龄增长有一定相关性,仅沉积速度不一样,如苍白球的含铁量在开始时就高,以后缓慢增加;而纹状体(如壳核)的含铁量开始时不高,以后才较苍白球有明显的增加,直到70岁之后接近苍白球内所含的铁量。
大脑与小脑半球的脑灰、白质含铁量最低,其中相对较高的是颞叶皮层下弓状纤维,其次为额叶脑白质、枕叶脑白质。
在内囊后肢后端以及视放射中几乎不存在铁。
铁在脑部选择性的沉积其机理至今未明。
铁由小肠吸收之后,以亚铁血红蛋白形式(血红蛋白、肌球蛋白)与蛋白质结合,主要以铁蛋白形式沉着在脑细胞内,其中以少突神经胶质细胞与星形细胞含量最高。
铁作为一个重要的辅因子,在氧化磷酸化、多巴胺合成和更新以及羟基自由根基形成之中起积极作用。
血液中含有的转铁球蛋白不容易通过血脑屏障。
在铁沉积较多的上述解剖部位中,毛细血管内皮细胞中的转铁球蛋白受体并不比铁沉积较少或没有铁沉积的其他脑部多。
但是一些脑变性病、脱髓鞘病以及血管病变也确实在某些部位铁沉积过多,而且在MRI上有表现,这些疾病包括帕金森氏病(铁沉积于壳核、苍白球)、阿耳茨海默氏病(铁沉积于大脑皮层)、多发性硬化(铁沉积于斑块周围)、放疗后脑部(铁沉积于血管内皮细胞)、慢性出血性梗塞(铁沉积于出血部位)、脑内血肿(铁沉积于血肿四周),因此,MRI较其他影像学方法易于检出与诊断上述疾病。
MRI显示脑部铁沉着是高浓度铁蛋白缩短了T2时间而不影响T1时间所致。
细胞内的铁具有高磁化率,因此脑部铁沉积过多造成细胞内高磁化率、细胞外低磁化率,局部磁场不均匀,使T2时间明显缩短,在T2加权图像上呈低信号。
尽管有一些正常脑细胞中也存在铁,但由于其浓度不够,不足以在MRI特别是低场强的MR仪上引起明显的低信号。
梗塞组织因血液供应中断,组织出现缺血、水肿、变性、坏死等病理变化。
梗塞急性期、梗塞部位的水肿致T1和T2均延长,所以梗塞处在T1加权像上信号强度变低,在T2加权像上,信号强度增加。
亚急性期脑梗塞有时可在T1加权像上表现为高信号,多为不规则脑回状。
可能是由于缺血使小动脉壁破坏,梗塞后如血管再通或侧支循环建立,产生出血性变化,导致T2加权像出现高信号。
四.变性不同组织的变性机制不同,所以MRI表现不一。
如脑组织变性中一种称为多发性硬化者,系脑组织脱髓鞘改变,其变性部份水分增加,故致T1、T2延长。
在T1加权像见病变区信号强度低于周围健康组织,而在T2加权像上,病变区信号强度增高。
椎间盘变性时,富含蛋白质和水分的弹性髓核组织水分减少,且纤维结缔组织增多,组织内的质子密度减少。
故在T1和T2加权像上,变性的椎间盘信号明显低于其他正常的椎间盘组织信号强度。