水平井产液剖面测试管柱图
- 格式:doc
- 大小:1.40 MB
- 文档页数:3
油田高含水开发期,更多的会应用水平井,为提高油田开发的效率,就需要对水平井进行懂爱测试,以充分了解水平段的产液状况,其中产业剖面测井技术是当前测井找水方法中最为直观且实际的方法。
通过动态监测出水规律,能够有效指导油田开发方案的制定与调整,实现对堵水等措施提供充足的依据,从而提高水平井开发的水平。
一、产业剖面测井技术概述产液剖面测井主要是在产油气井正常生产过程中,对储层产液性质信息进行检测。
具体而言就是通过涡轮流量或者是示踪流量来计算分层中的产液量,通过对持水率曲线(有时加测流体密度、持气率)的计算,结合实验室图版来计算分层产液的性质,其中井温和压力曲线可以对分析产出段定性,而磁定位和自然伽马曲线可以用来做深度的校正,以更好的了解井内管串结构。
要注意的是,通常对水平井产业剖面测井的解释,需要与井眼轨迹以及阵列电容持水率CAT、阵列电阻持水率RAT还有示踪流量和井温等相关测井资料来进行综合的分析。
二、水平井产液剖面测井所需仪器与应用1.水平井测井爬行器输送工艺当前,水平井产业剖面测井的主要工艺有管具输送法、爬行器输送法以及挠性管输送法。
其中管具输送法的工艺存在一定的不足,在应用中有所限制,难以进行水平井产出剖面、注入剖面等带压的测井项目施工。
而挠性管技术对于水平井生产测井施工而言,相对价格又比较高。
因此在当前的水平井测井工作中,广泛采用的是爬行器输送工艺。
通常爬行器系统由三个部分组成。
首先是高效的电机供电,能够确保爬行器进行双向爬行,同时也能够与地面进行实时的通讯。
采用的爬行器通常有MaxTrac爬行器与SONDEX公司所生产的爬行器。
其中MaxTrac爬行器的液压制动腿,能够针对井内套管或者是油管的尺寸来改变伸缩半径,伸开后就能够卡住井壁并沿着仪器的方向进行滑动,从而到达测试层。
这一一起的牵引力比较大,能够很好的适应不同直径的套管,井筒内的岩屑基本不会对其产生影响。
Sondex爬行器主要是提供了一个办法,通过单芯电缆能够在水平井和大斜度井中下放仪器和装置。
孤岛油田油水井作业管柱图例编写:田庆国、孙晋祥、韩学良审核:付继彤、孙宝京批准:刘恩胜孤岛采油厂作业管理中心二零一零年三月前言近年来,孤岛油田在防砂、热采、堵水等采油工艺方面,形成了一整套油水井开采及施工常用管柱。
为了使从事采油、作业的工作人员较为系统地认识和应用,规范管柱结构录入工作,满足生产要求,我们整理完善了“孤岛油田油水井作业管柱图例”。
包括采油管柱、卡封管柱、防砂生产管柱、水井管柱、施工管柱、常用套管结构示意图、工具图例七部分内容,较为详细的介绍了目前孤岛油田油水井管柱结构,可供采油厂从事采油、作业的工人、干部和技术人员使用和参考。
在编写过程中,得到了工艺所史宝光、张德杰,信息中心刘建平、范靖,作业大队(西区)陈良虎、蔡学卫、刘兴山,作业大队(东区)翟省杰、王效雷、刘相奎等单位领导、专家的大力支持,谨此表示感谢。
由于编辑时间紧,水平有限,难免存有错误及不足之处,欢迎广大读者提出宝贵意见,以便进一步修改和完善。
目录一、采油管柱[1] 普通抽油泵生产管柱 (1)[2] 下螺杆泵生产管柱 (3)[3] 下水力喷射泵生产管柱 (5)[4] 下电泵生产管柱 (7)二、卡封管柱[5] 下丢封封下采上生产管柱 (9)[6] 封上采下生产管柱 (11)三、防砂生产管柱[7] 滤砂管防砂生产管柱 (13)[8] 金属滤砂管防砂生产管柱 (15)[9] 绕丝筛管(割缝)防砂生产管柱 (17)[10] 水平井下金属滤生产管柱 (19)四、水井管柱[11] 光油管注水管柱(带喇叭口) (21)[12] 空心分层注水管柱 (23)[13] 偏心分层注水管柱 (25)[14] 单层注聚管柱 (27)[15]双管分层注聚管柱 (29)五、施工管柱[16]腹膜砂、酸化、堵水等光油管施工管柱 (31)[17]分层防砂施工管柱 (33)[18] 注水泥塞施工管柱 (35)[19]分层酸化、堵水、测调施工管柱 (37)[20]压裂施工管柱 (39)[21]绕丝筛管(割缝)正循环充填施工管柱 (41)[22]绕丝筛管(割缝)反循环充填施工管柱 (43)[23]高压充填(绕丝防砂)施工管柱 (45)[24]水平井正充填施工管柱 (47)[25]水平井逆向充填施工管柱 (49)[26]热采注汽施工管柱(带封) (51)[27]热采注汽施工管柱(不带封) (53)[28]验串、封串施工管柱 (55)[29] 双封找漏施工管柱 (57)[30] 冲中心管施工管柱 (59)[31]水平井均匀注汽施工管柱 (61)六、常用套管结构示意图[32]裸眼完井 (63)[33]套管射孔完井 (64)[34]小套管完井 (65)[35]套管补贴完井 (66)[36]割缝衬管完井 (67)[37]水平井筛管完井 (68)七、工具图例 (69)一、采油管柱[1] 普通抽油泵生产管柱- 1 -技术要求:1、尾管深度应距离防砂鱼顶以上5-10m;2、泵的沉没度在200米以上。
吸水剖面测井基本常识一、何为吸水剖面以及主要用途随着油田开发时间的推移,油层压力逐渐下降,为了实现长期稳定的开发,需要给地层补充能量,保持油层的压力。
目前主要的方法是采用注水保持油层压力。
因此在一个油田开发时除了钻一批采油井外,还要钻一批注水井。
通过注水井给井下油层注水,维持油层压力使油井产量保持稳定。
为了了解注水井注水状况,就需要测吸水剖面,了解个小层的绝对注入量。
主要用途:了解注入井各小层的吸水状况,检查井下工具到位及工作情况,检查调剖效果,检查管外窜流,分析油井出水情况,分析油层水淹状况,进行浅部找漏。
二、测井原理目前吸水剖面主要用示踪法进行测井(即同位素吸水剖面测井)。
在注水条件下将同位素注入井内,随着注入水的流入,同位素滤积在注水层表面,用伽马仪测取示踪曲线,曲线上显示的放射性强度的差异就代表了注入量的大小。
该工艺采用放射性核素释放器携带放射性核素载体在预定的井深位置释放,载体与井筒内的注入水形成活化悬浮液,油层吸水时也吸收活化悬浮液。
而放射性载体滤积在井壁地层表面。
此时所测的伽马曲线与释放核素前的自然伽马曲线对比,对应吸水层中二者的幅度差,即反映该地层的吸水状况。
三、吸水剖面测井资料解释方法由于Q=△J/△I,即进入地层的水量Q与滤积的放射性活度△J成正比,测井曲线上反映即是吸水量与吸水层上的同位素伽马曲线与自然伽马曲线的包络面积成正比。
图1所示:图1 放射性同位素示踪载体法测井原理示意图如1图所示:图中1、2、3三个层为注水层,深度校齐后,把自然伽马曲线与同位素曲线叠合,并使其在非目的层段重合,在三个注水层位分别求出这两条曲线的包络面积S1、S2、S3,则这三层的吸水量之比即为:S1∶S2∶S3。
因此,只要求出各注水层的异常面积和各注水层总的异常面积,即可得到各注水层的相对吸水量:nβi=(S i /∑S i)×100% (1-2)n=1式中βi 为i层相对吸水量;Si为i层的异常面积。
水平井产液剖面测试工艺管柱及应用程世伟(吉林油田公司油气工程研究院采油工艺研究所 吉林松原 138000)摘 要:为了更好地开展对水平井产能预测方面的研究,亟需开展水平井产液剖面测试技术研究。
该技术通过对水平井产液剖面测试方式进行优选,选择适合吉林油田的产液剖面测试管柱,对该测试管柱的配套工具进行设计、试验,完善,形成水平井产液剖面工艺管柱,为水平井制定合理开发方案、实施有效措施方案提供技术保障。
关键词:水平井;产液剖面;测试;配套工具;一体化管柱1 概述水平井技术在目前的国内外石油工程领域得到了非常广泛的应用,水平井与传统的直井相比,具有泄油面积大、生产井段长、井底压降小等优势,大大提高了油藏的采收率。
在水平井石油开采过程中出现了一部分水平井的产量很低、生产效果不好的现象,特别是在吉林油田这种致密油藏的开采过程中,采用水平井分段压裂投产后,提高了致密油藏单井产量,但生产过程中出现了大量油井因含水上升而导致的产出油量快速降低。
并且油井出水后因无法判断出水层段位置,而无法开展有针对性的堵水措施,导致油藏整体开发效果变差。
随着油田开发期的延长、开发程度的提高,制定合理开发方案、实施有效措施方案难度越来越大,对井下产出层位认识不清,严重制约着水平井产能的发挥。
因此,开展水平井产液剖面测试技术研究,加强水平井的产层认知,可以有效指导油田开发,对油井的增产措施起到至关重要的作用。
目前,国内外水平井测试工艺技术主要有连续油管输送、特制硬电缆输送、地面水动力输送及井下爬行器输送四种方式(表1)。
这四种方式均需要采用电缆输送的方式,全井段电缆裸露在油管内,电缆容易受损伤,且需要针对各个层位分别进行测试,故存在测试效率低的技术问题,还存在占井时间长、劳动强度大、成本较高的缺点。
通过对比现有的水平井测试工艺技术,研究适合吉林油田的测试管柱尤为关键。
2 水平井产液剖面测试管柱组成为了能够在油井正常生产状态下准确测量井下生产数据,同时有针对性地分析每一层位的生产状况,需要研究设计水平井产液剖面测试一体化管柱。
水平井产液剖面测试工艺方案论证
一、研究目的
围绕低渗透、低丰度油田水平井采油工艺技术配套,针对采油八厂低渗透、低丰度油层水平井特点,开展水平井产液剖面测试工艺技术试验攻关,充分了解各段产液、含水情况。
二、方案论证
1、产夜剖面测试工艺
目前可以进行水平井产液剖面测试的有两种工艺:一是采用拖拉器把组合测试仪器带入井下水平段;二是采用管柱携带存储式组合测试仪送到水平段。
方案1:拖拉器测试工艺
工艺原理:该项测试技术采用的是预置式井下测试工艺技术,即先将仪器预置于造斜段,然后下入生产管柱,用牵引器将井下组合测试仪器牵引到水平段,安装专用测试井口,见图1,正常生产后,进行流量、压力、温度、含水率、深度等参数的测试。
测试仪器参数:牵引器最大外径Ф54mm,长度7m;测试仪外径ø38mm,长度6.8m。
电缆为直径Ф8mm的三芯测试电缆。
存在问题:
(1)目前的拖拉器外径太大,无法在油井正常生产时从油套环空顺利进入井下;
(2)只能采取先让拖拉器携带仪器进入水平段,然后再下入生产管柱,起抽后进行测试,存在生产管柱刮碰测试电缆的危险。
图1 水平井产夜剖面测试工艺管柱结构示意图
2005年10月在州62-平61井进行现场试验。
首先使牵引器从套管中试爬进入水平段指端,回收电缆测出水平段井温、压力曲线。
然后使牵引器再次进入水平段指端,下入生产管柱到825m,出现电缆随生产管柱一起移动现象,上提电缆,拉力达到1.3t(额定拉力1.6t,最大拉力2.0t),为确保电缆安全,上提生产管柱到630m,上提电缆力降到1.0t,安装井口完井启抽。
生产30小时测液面深度为580m。
回收电缆进行分层找水测试,测试结果见表1。
表1 州62-平61井分层找水解释成果表
该井正常生产时日产液8.3t,日产油7.1t,含水14% 。
测试结果与实际生产数据差距较大。
主要是测试时生产情况与测试前不同,测试时,油井流压较高,生产时间短,还没有达到稳定生产,所以测试结果不是对该井正常生产情况的真实反映。
方案2:管柱携带存储式组合测试仪工艺
管柱结构:主要由生产管柱和丢手管柱两部分组成。
工艺原理:由丢手管柱携带封隔器和桥式偏心工作筒(携带组合测试仪,并有桥式过流通道),分段测试产液、含水、压力和温度等参数。
存在问题:
(1)目前还没有成型的存储式组合测试仪,需要针对我厂水平井情况开发存储式组合测试仪,存储式组合测试仪不具有通用性;
(2)目前还没有成熟的水平井封隔器,水平段下工具分段风险很高,打捞工艺不成熟。
图2 水平井产夜剖面测试工艺管柱结构示意图。