交通流理论
- 格式:doc
- 大小:1.56 MB
- 文档页数:4
交通流理论1. 引言交通流理论是研究交通流动特性和交通流量的理论体系,是交通工程学科中的重要分支之一。
交通流理论的研究旨在提供对交通流动过程的深入了解,以便进一步优化交通系统设计和交通管理,提高道路通行效率和交通安全性。
本文将介绍交通流理论的基本概念、流量参数和交通流模型。
2. 交通流的基本概念2.1 交通流定义交通流是指在一定时间内通过交通线路或交通节点的车辆数量。
由于道路容量和车辆需求之间的差异,交通流不断变化。
为了研究交通流的特性,人们引入了一些概念和参数。
2.2 交通密度和车头时距交通密度指单位长度上通过的车辆数,常以辆/km表示。
车头时距是指相邻车辆之间的时间间隔,常以秒表示。
交通密度和车头时距是交通流理论中重要的参数。
3. 流量参数3.1 交通流量和实际容量交通流量是指通过某一断面的单位时间内的车辆数量。
实际容量是指在现实条件下通过断面所能容纳的交通流量。
实际容量受到道路几何条件、交通信号控制和车辆行为等因素的影响。
3.2 具备流量具备流量是指交叉口或道路中单位面积内通过的车辆数目。
具备流量与交通流量之间存在一定的关系,是进行交通流计算和交通规划的重要参数。
4. 交通流模型4.1 简单线性模型简单线性模型是最基本的交通流模型之一,假设速度和车头时距成正比。
该模型可以用来预测车辆平均速度、车头时距和交通流量之间的关系。
4.2 瓶颈模型瓶颈模型是一种描述交通拥塞现象的模型,可以用来研究交通流在瓶颈区域的行为。
通过分析瓶颈模型,可以找到减少交通拥堵的措施,提高交通流动效率。
4.3 非线性模型非线性模型是对交通流动过程更为细致的描述,考虑了交通流量对车速和车头时距的影响。
非线性模型可以更准确地预测交通流的行为,并为交通系统优化提供更实用的建议。
5. 结论交通流理论是研究交通流动特性和优化交通系统的重要理论体系。
通过研究交通流的基本概念、流量参数和交通流模型,可以更好地理解和优化交通系统设计,提高道路通行效率和交通安全性。
交通流理论引言交通流理论是研究交通现象和交通管理的一门学科,它主要研究交通运输系统中的车辆和旅行者的行为。
交通流理论的目标是帮助人们了解交通流量的变化规律,以及如何优化交通系统以提高交通效率和安全性。
本文将介绍交通流理论的基本概念、模型和应用。
交通流基本概念交通流是指在某一时间段内通过某一交通要道的车辆流量。
交通流的核心概念包括车辆密度、速度和流量。
车辆密度是指某一交通要道上单位长度内通过的车辆数,通常以辆/km表示。
车辆速度是指车辆在单位时间内行驶的距离,通常以km/h表示。
交通流量是指某一时间段内通过某一交通要道的总车辆数,通常以辆/小时表示。
交通流模型交通流模型是用来描述交通系统中车辆密度、速度和流量之间关系的数学模型。
常见的交通流模型包括密度-速度关系模型、速度-流量关系模型和密度-流量关系模型。
密度-速度关系模型描述了车辆密度和车辆速度之间的关系。
其中最著名的模型是双曲线模型,它表达了车辆密度和速度之间的非线性关系。
双曲线模型可以用来预测交通拥堵的发生和解除时间。
速度-流量关系模型描述了车辆速度和交通流量之间的关系。
其中常用的模型是线性模型,它表达了车辆速度和交通流量之间的负相关关系。
线性模型可以用来估计路段的最大通行能力。
密度-流量关系模型描述了车辆密度和交通流量之间的关系。
常见的模型是线性模型,表达了车辆密度和交通流量之间的正相关关系。
密度-流量关系模型可以用来研究交通系统的稳定性。
交通流控制交通流理论不仅用于研究交通流量的变化规律,还可以用于交通流控制的设计和优化。
交通流控制是指通过交通信号灯、交通标志、交通导向系统等手段来改善交通流动性和减少交通事故的发生。
交通信号控制是最常见的交通流控制手段之一。
它通过交通信号灯的切换来控制交通要道上不同方向车辆的通行。
交通信号控制可以根据交通流量和交通需求来调整信号灯的时长,以达到最佳的交通效果。
另一个常用的交通流控制手段是交通导向系统。
交通导向系统通过交通标志、路标和电子屏幕等设施,引导车辆选择最优路径和行驶方向,以减少路口阻塞和旅行时间。
交通流理论与控制研究第一章交通流理论概述交通流理论是交通运输工程领域的一个重要研究方向,它研究的是道路、高速公路、城市道路等交通干线上车辆的运动规律及其与环境、道路设施等因素之间的相互作用,用数学模型等方法进行描述和分析。
具体来说,交通流理论可分为三个层次:宏观层面的交通流模型、中观层面的交通流理论、微观层面的交通流理论。
宏观层面的交通流模型是指对交通流总体运行状态的描述和分析,如平均速度、车辆密度、道路通行能力等;中观层面的交通流理论研究的是交通流的稳定性、交通容量、交通拥堵等问题;而微观层面的交通流理论主要研究单个车辆的运动轨迹、驾驶员行为及其对交通系统的影响等问题。
第二章交通流控制的方法交通流控制是指利用交通管理手段对交通流进行调控,改善交通运行状况,提高交通安全和效率。
常见的交通流控制方法包括以下几种:1. 车道分隔和限行措施:对于车速较慢的车辆(如卡车、公共汽车等),采取单独的车道分隔或限行措施,以减少其与其他车辆的碰撞机会,提高交通系统的通行能力。
2. 信号控制:交通信号灯是最常见的交通控制手段之一,它可以通过对不同车辆的交通信号进行控制,改变交通流的路权和平衡道路交通流量,从而调控交通拥堵。
3. 交通限速:交通限速是指对某一段路段的最高车速进行限制,以避免不同速度的车辆相互阻碍和交通意外的发生。
4. 车速限制和拦截:交通管理人员可以通过设立临时的车速限制或拦截某些车辆等手段,有效遏制不安全驾驶行为,降低交通事故的发生率和交通拥堵的出现。
第三章交通流控制模型为了更好地掌握交通流控制的原则和方法,交通流控制模型成为了研究交通流控制的重要方法之一。
交通流控制模型可分为马尔科夫过程模型、生产函数模型、瓶颈模型和微观交通流模型等。
其中,马尔科夫过程模型是一种基于概率论的模型,可以对各种状态下的交通流进行判断和分析,从而制定出相应的交通控制策略;生产函数模型则是一种根据交通流量和道路状况等变量来估计交通流容量的数学模型;瓶颈模型则主要研究交通流系统中的瓶颈位置、影响和处理方法;而微观交通流模型则是通过对单个车辆的行为和状态进行建模,分析其对整个交通流的影响和作用。
第四章交通流理论交通流理论(TrafficFlowTheory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。
第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。
交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。
一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。
由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。
Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。
二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。
汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。
此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。
交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(KinematicWave)理论和排队论(QueuingTheory)。
这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(IlyaPrigogine)。
着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。
交通流理论第五章交通流理论第一节概述交通流理论是研究交通流变化规律的方法体系,是一门边缘科学,它通过分析的方法来阐述交通现象及其机理,探讨交通流各参数间的相互关系及其变化规律,从而为交通规划、交通控制、道路设计以及智能运输系统提供理论依据和支持。
二十世纪三十年代交通流理论的研究开始起步,直到第二次世界大战结束为第一阶段。
二战以后,世界各国开始着手发展经济,交通问题变得日益重要,对交通流理论的研究也就进入了第二阶段。
1959年12月,在美国的底特律市举行了首届国际交通流理论学术会议,丹尼尔(Daniel)和马休(Matthew)在汇集了各方面的研究成果后,于1975年整理出版了《交通流理论》一书。
随着科学的进步,特别是计算机技术的发展,交通流理论的内容也在不断更新和充实。
在传统交通流理论的基础上,出现了现代交通流理论。
传统交通流理论已经基本趋于成熟,而现代交通流理论正在逐步发展。
就目前的应用来看,传统交通流理论仍居主导地位,其方法相对也较容易实现。
现代交通流理论以传统交通流理论为基础,只是其所应用的研究工具和手段与以前相比得到了很大改善,从更宽广的领域对交通流理论进行了研究。
主要内容如下:1、交通流特性参数的分布;2、排队论(也即随机服务系统)的应用;3、跟驰理论介绍;4、流体力学模型以及交通波理论;5、可插车间隙理论。
第二节交通流特性参数的统计分布在编制交通规划或设计道路交通设施、确定交通管理方案时,需要预测交通流的某些具体特性,并且希望能使用现有的数据或假设的数据。
车辆的到达具有随机性,描述这种随机性的方法有两种:一种是离散型分布,研究在一定时间内到达的交通数量的波动性;另一种是连续型分布,研究车辆间隔时间、车速等交通流参数的统计分布。
一、离散型分布在一定时间间隔内到达的车辆数是随机的,描述其统计规律可以用离散型分布,常用的离散型分布有如下几种。
(一)泊松分布1.基本公式4.例题一某信号交叉口的周期为c=97秒,有效绿灯时间为g=44秒。
第四章交通流理论交通流理论(Traffic Flow Theory)是研究交通流随时间和空间变化规律的模型和方法体系,被广泛应用于交通系统规划与控制的各个方面。
第一节交通流理论的发展历程在本节中,我们一起回顾交通流理论的发展历程。
交通流理论的兴起大致在20世纪30年代,在20世纪50年代到60年代经历了繁荣和快速发展,70年代以后,主要是对既有理论的发展完善和应用拓展。
一、交通流理论的萌芽期萌芽期从20世纪30年代到第二次世界大战结束。
由于发达国家汽车使用和道路建设的发展,需要探索道路交通流的基本规律,产生了研究交通流理论的初步需求。
Adams在1936发表的论文中将概率论用于描述道路交通流,格林息尔治(Greenshields)在1935年开创性提出了流量和速度关系式(也就是格林息尔治关系),并调查了交叉口的交通状态。
二、交通流理论的繁荣期繁荣期从第二次世界大战结束到20世纪50年代末。
汽车使用显着增长和道路交通系统建设加快,应用层面对交通特性和交通流理论的研究提出了急切需求。
此阶段是交通流理论最为辉煌的时期,经典交通流理论和模型几乎全部出自这一时期。
交通流理论中的经典方法、理论和模型相继涌现,如车辆跟驰(Car-following)模型、车流波动(Kinematic Wave)理论和排队论(Queuing Theory)。
这一时期群星闪耀,许多在自然科学其他领域中的大师级人物(如数学家、物理学家、力学家、经济学家)都投入到交通流理论的研究中,其中不乏诺贝尔奖金的获得者,如1977年的诺贝尔化学奖获得者伊利亚?普列高津(Ilya Prigogine)。
着名人物有赫曼(Herman)、鲁切尔(Reuschel)、沃德卢普(Wardrop)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽维尔(Newell)、盖热斯(Gazis)、韦伯斯特(Webster)、伊迪(Edie)、福特(Foote)和钱德勒(Chandler)。
交通运输中的交通流理论与模型第一章交通流理论的基本原理交通流理论是交通运输学中的一个重要分支,研究交通流的运行规律与特性,为交通规划和交通管理等提供决策支持。
本章将介绍交通流理论的基本原理,包括交通流类型、交通流参数和交通流模型等。
1.1 交通流的类型交通流通常分为三种类型:车辆交通流、行人交通流和混合交通流。
车辆交通流是指由车辆组成的流动车辆群体;行人交通流是指由行人组成的行人群体;混合交通流则是车辆交通流和行人交通流混合在一起。
1.2 交通流的参数交通流的参数是描述交通流特性的量化指标,常用的参数包括车辆密度、车速和交通流量等。
车辆密度是指单位长度道路上的车辆数;车速是车辆通过单位时间所走过的距离;交通流量是单位时间内通过某一路段的车辆数量。
1.3 交通流模型交通流模型是用来描述交通流特性与变化规律的数学模型。
常用的交通流模型有宏观模型和微观模型两种。
宏观模型研究交通流整体运行规律,如流动稳定性和拥堵解除等;微观模型则从个体车辆的角度考虑交通流的行为规律,如车辆加速度和避让等。
第二章常见的交通流模型本章将详细介绍一些常见的交通流模型,包括流量-密度关系模型、速度-密度关系模型和流量-速度关系模型等。
2.1 流量-密度关系模型流量-密度关系模型研究交通流量与交通流密度之间的关系。
常用的模型包括线性模型、理想模型和反S模型等。
线性模型假设交通流量与交通流密度成正比例关系;理想模型采用抛物线函数来描述交通流量与交通流密度之间的关系;反S模型则将交通流量与交通流密度联系起来,并引入饱和流量的概念。
2.2 速度-密度关系模型速度-密度关系模型研究交通流速度与交通流密度之间的关系。
常用的模型包括线性模型、理想模型和广义的Shriver模型等。
线性模型假设交通流速度与交通流密度成正比例关系;理想模型采用抛物线函数来描述交通流速度与交通流密度之间的关系;广义的Shriver模型则考虑了车辆间距和车辆长度等因素的影响。
交通流理论
交通流理论是一种用来研究交通流动性的理论。
它可以用来预测及分析交通流量的变化特征,以及如何影响交通流量的一系列因素。
它可以帮助我们更好地理解交通流动性的发展变化,以及如何采取措施来改善交通状况。
交通流理论最初由芝加哥大学交通研究中心的交通学家黎明先生提出。
他提出了一种模型,用来描述交通流动性的变化特征,这一模型被称为“离散交通问题”。
黎明的模型将交通流量分为四类:空闲时间、延时时间、拥堵时间和拥堵清除时间。
模型的基本思想是,空闲时间和延时时间是指车辆在路上行驶的时间,而拥堵时间是指车辆在拥堵状态下行驶的时间,而拥堵清除时间是指通过改善道路设施等措施来减少拥堵的时间。
后来,研究人员发展出了更为精细的交通流理论模型,例如离散交通模型、连续交通模型、非线性交通模型等。
这些模型能够更好地描述交通流动性的变化特征,并且可以更加准确地预测交通流量的变化趋势。
通过研究交通流理论,我们可以更好地理解交通流动性的变化特征,从而采取更加有效的措施来改善交通状况。
此外,通过研究交通流理论,还可以提出有效的交通管理措施,帮助我们更好地控制交通流量,最大程度地改善交通状况。
总之,交通流理论是一个重要的理论,它能够帮助我们更好地理解交通流动性的变化特征,以及如何采取有效的措施来改善交通状况。
第二节交通流理论
一、机动车交通
机动车交通是城市道路交通的主体。
国外城市中的机动车大多是小汽车,车种较为单一,在一定的路段上车速基本相同,交通流相对比较简单。
我国城市的机动车车种复杂,车速、性能差异较大,交通流比国外城市要复杂得多。
1.机动车流速度、流量和密度关系
(1)基本关系式
如果车流中所有车辆均以相同的车速通过某一段路程,则有下列关系:
式中:K为交通密度(辆/公里);Q为交通量 (辆/小时);V为车速(公里/小时)。
公式也经常写作:
(2)车速与密度的关系
Vf为自由车速,Kj为当车速为零时的阻塞密度。
由上式及图可知,当密度逐渐增大则车速逐渐减小,当达到阻塞密度Kj时,车速为零,交通停顿。
(3)交通量与密度的关系
Ko称为最佳密度。
由图可知,在Ko之前,交通量随密度的增加而增加,而在Ko之后,交通量将随密度的增加而减少。
(4)交通量与车速的关系
Vo称为最佳车速。
由图可知在Vo之前,交通量随车速的增加而增加,而在Vo之后,交通量将随车速的增加而减少。
综上所述,将Q-K, Q-V及V-K关系图作于同一平面上,如上图,全面分析可知:
(1)当密度很小时,交通量亦小,而车速很高(接近自由车速)。
(2)随着密度逐渐增加,交通量亦逐渐增加,而车速逐渐降低。
当车速降至Vo时,交通量达到最大此时的车速称为临界车速,密度Ko称为最佳密度。
(3)当密度继续增大(超过Ko),交通开始拥挤,交通量和车速都降低。
当密度达到最大(即阻塞密度凡)时,交通量与车速都降至为零,此时的交通状况为车辆首尾相接,堵塞于道路上。
(4)最大流量Qmax、临界车速Vo和最佳密度Ko是划分交通是否拥挤的特征值。
当Q>Qmax,K>Ko,V<Vo时交通属于拥挤;当Q≤Qmax,K≤Ko,V≥Vo时,交通属于畅通。
由上述三个参数间的量值关系可知,速度和容量 (密度)不可兼得。
因此,为保证高等道路(快速路、主干路)的速度,应对其密度加以限制 (如限制出入口、封闭横向路口等)。
国外多以交通密度作为衡量高等级道路运营服务质量的主要指标之一,而一般性道路着重考虑满足较大交通容量,对速度则不能有过高要求。
于是在道路设计、交通控制与管理各方面均与高等级道路有所不同。
2.机动车道通行能力与服务水平作为道路交通基础工作,通行能力与交通量适应性分析,可以确定道路建设的合理建设规模研究并可为道路网规划、道路工程可行性道路建设、建设需评估等方面提供更为科学的依据。
2.机动车道通行能力与服务水平
通行能力定义:
道路通行能力是道路能够疏导或处理交通流的能力。
在日本道路通行能力定义为:在一定时间内能通过道路某截面的最大车辆数。
美国曾定义:一定时段和通常的道路、交通与管制条件下,能合情合理地希望车辆或人通过道路或车行道的一点或均匀路段的最大流率,通常以辆/h或人//h来表示。
通行能力定义:
我国定义为:道路通行能力是指道路上某一车道或某一断面处,单位时间可能通过的最大交通量(车辆或行人)数,用辆/h或用辆/昼夜表示。
亦称道路容量、交通容量或简称容量。
通行能力影响因素:
(1)道路条件,是指街道或公路的几何条件,包括交通设施的种类、性质及其形成的环境,每个方向车道数、车道和路肩宽度、侧向净空以及平面纵面线形等。
通行能力影响因素:
(2>交通条件,性如设计速度;是指使用道路的交通流特客车、货车、大车、交通组成和分布;车道中交通流量、方向分布等。
小车等流向及
(3)管制条件,是指道路管制设施装备的类型种类管理体制的层次,交通信号的位置、配时等影响通行能力的关键性管制条件,其他还有停车让路标志、车道使用限制转弯禁止等措施。
(4)其他条件,有气候、温度、地形、风力、心理等因素。
但其中直接影响通行能力的主要因素有:车行道宽度及侧向净空,车道数量、交通组成、驾驶员特性、道路纵坡横向干扰与视距等。
通行能力分类:
根据通行能力的性质和使用要求,将其划分为基本通行能力、可能通行能力和实际通行能力。
道路路段通行能力:
<1)基本通行能力是指道路与交通处于理想情况下,每一条车道(或每一条道路)在单位时间能够通过的最大交通量。
这是一种理想状态下的通行能力,亦称理论通行能力。
作为交通的理想条件,主要是车辆组成为单一的标准型汽车,在一条车道上相同的速度,连续不断地行驶,各车辆之间保持与车速相适应的最小车头间隔,且无任何方向的干扰。
在这样理想的条件下,建立的车流计算模式,所得出的好大交通通过量,即基本通行能力。
(1)基本通行能力
C=3600/to
式中t。
为平均车头时距。
基本通行能力C(辆/小时)在理论上也可用车头间距与车速的关系来确定,即用车流保持同一车速v(公里/小时)时的最小安全车头间距H(米)来计算:
C=1000V/H
(2>可能通行能力
是在实际的道路和交通条件下,单位时间内通过道路上某一断面的最大可能交通量。
计算可能通行能力是以基本通行能力为基础,考虑到实际的地形、道路和交通状况,确定期修正系数,再以此修正系乘以前述的基本通行能力,即得实际道路、交通在一定环境条件下
的可能通行能力。
(3)实用通行能力
设计通行能力或称实际通行能力,是指道路根据使用要求的不同,按不同服务水平条件下所具有的通行能力,也就是要求道路所承担的服务交通量,通常作为道路规划和设计的依据。
考虑到实用通行能力不能充分客观地表达出交通状态与通行能力的关系,有人以“服务流量”代替实用通行能力,同时提出了“服务等级”和“服务流量”的概念。
服务流量(Service V olume)指在一定的服务水平的行车条件下,单位时间通过一条车道某一断面的最多的车辆数。
服务水平定义:
道路服务水平又称服务等级,是指道路使用者从道路状况、交通条件、道路线型、景观与环境方面可得到的服务质量或服务的满意程度。
美国等国家把服务水平分为六级。
A级,自由状态的车流。
行驶通畅,车速基本不受限制,路上没有或少有耽搁,车速高,流量低,车流密度低。
B级,稳定状态的车流。
车速开始受到交通条件的限制,但司机还可以自由选择合理的车速和行驶车道。
这一级的低限(最低车速、最大流量)常作为郊区公路设计的服务流量标准。
D级,车流趋向于不稳定。
流量稍有变动或车流偶尔受阻,运行车速已有相当水平下降。
司机操纵的自由、舒适和方便性受到很大制约。
这一级服务水平短时间内尚可忍受。
E级,不稳定状态的车流。
车辆时停时开,车速很少超过50 km/h,流量接近或达到道路本身的容量。
F级,阻滞状态的车流。
车流流动已属勉强,车速低.流量小于道路容量,出现车辆排队现象以致完全阻塞。
二、自行车交通
特点
机动灵活、准点方便、速度可快可慢、节能、无污染、费用少;人均占用的道路面积比公共交通上均占用的面积多10倍。
受体力和安全因素的制约。