第四章道路交通流理论.
- 格式:ppt
- 大小:1.22 MB
- 文档页数:53
《交通工程学第四章交通流理论》习题解答4-1在交通流模型中,假定流速 V 与密度k 之间的关系式为 V=a(1-bk)2,试依据两个边界条 件,确定系数a 、b 的值,并导出速度与流量以及流量与密度的关系式。
1解答:当 V=0 时,K =Kj ,••• b =—;k j当 K = 0 时,V =V f ,• a =V f ;2把a 和b 代入到 V=a(1-bk)K•- V =V f 1-—— l 心丿又 Q =KV流量与密度的关系 Q=V f K 1 4-2已知某公路上中畅行速度 V f =82km/h ,阻塞密度 K j =105辆/km,速度与密度用线性关系模型,求:(1) 在该路段上期望得到的最大流量; (2) 此时所对应的车速是多少?解答:(1) V — K 线性关系,V f =82km/h , K j =105 辆/km•- V m =V f /2=41km/h , K m =K j /2=52.5 辆/km, •- Q m =V m K m =2152.5 辆/h (2) V m = 41km/h4-3对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有 如下形式:乂 =35.9 ln 180k式中车速V s 以km/h 计;密度k 以/km 计,试问在该路上的拥塞密度是多少?_ 180解答:V =35.9In ——k拥塞密度K j 为V=0时的密度,,180 门…ln 0K j•- K j =180 辆/km4-5某交通流属泊松分布,已知交通量为 1200辆/h,求: (1 )车头时距t> 5s 的概率;(2) 车头时距t> 5s 所出现的次数; (3) 车头时距t> 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q=1200辆/h流量与速度的关系Q=K j 1V f r-t—x 」翅(1) P(h t—5)=e i 二e 3600二e3=0.189(2) n=P(h K5)XQ=226 辆/h5»訂水4-6已知某公路q=720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j Q K V ⎛= ⎝ 流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h解答:35.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j f V Q K V V ⎛⎫=- ⎪ ⎪⎝⎭流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式:18035.9ln s V k= 式中车速s V 以 km/h 计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少? 解答:18035.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
1.车辆的到达具有随机性,描述这种随机性的方法有两种:一种是离散型分布,研究在一定时间内到达的交通数量的波动性;另一种是连续型分布,研究车辆间隔时间、车速等交通流参数的统计分布。
2.离散型分布(描述一定的时间间隔内事件发生的次数):泊松分布(适用条件:车流密度不大,车辆间的相互影响比较微弱。
)二项分布(应用条件:车流比较拥挤、自由行驶机会不多的车流用二项分布拟合较好。
)负、二项分布(适用条件:当到达的车流波动性很大或以一定的计算间隔观测到达的车辆数(人数)其间隔长度一直延续到高峰期间与非高峰期间两个时段时,所得数据可能具有较大的方差)3.泊松分布是一种离散概率分布,应用于一个区间内某一事件的发生。
随即变量k是这个事件在此区间内的发生次数。
这个区间可以是时间、距离、面积、体积或其他类似的单位。
泊松分布服从下列条件:1、随即变量k是一个事件在某区间内的发生次数;2、事件的发生必须是随机的;3、事件的发生必须是互相独立的;4、在所使用的区间内,事件的发生必须是统一的分布。
4.连续型分布(描述事件之间时间间隔的分布称为连续型分布):(1).负指数分布 (2).移位负指数分布。
负指数分布适用于车辆到达是随机的、有充分超车机会的单列车流和密度不大的多列车流的情况。
移位负指数分布适合描述限制超车的单列车流车头时距分布和低流量时多列车流的车头时距分布。
连续型分布常用来描述车头时距、或穿越空档、速度等交通流特性的分布特征。
5.排队论:定义:排队论也称随机服务系统,是研究“服务”系统因“需求”拥挤而产生等待行列即排队现象以及合理协调“需求”与“服务”关系的一种数学理论,是运筹学的一个重要分支。
6.排队单指等待服务的车辆,不包括正在被服务的车辆;排队系统则既包括等待服务的车辆,又包括正在被服务的车辆7.排队”与“排队系统”当一队车辆通过收费站,等待服务(收费)的车辆和正在被服务(收费)的车辆与收费站构成一个“排队系统”。
第四章 跟驰理论与加速度干扰本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论模型,最后简要介绍一下加速度干扰问题。
跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应。
车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性。
跟驰理论所研究的参数之一就是车辆在给定速度u 下跟驰行驶时的平均车头间距s ,平均车头间距则可以用来估计单车道的通行能力。
在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式:s u C /1000⋅= (4—1)式中:C ——单车道通行能力(veh/h );u ——速度(km/h ); s ——平均车头间距(m )。
研究表明,速度—间距的关系可以由下式表示:2u u s γβα++= (4—2)式中系数α、β、γ可取不同的值,其物理意义如下:α——车辆长度,l ;β——反应时间,T ;γ——跟驰车辆最大减速度的二倍之倒数。
附加项2u γ保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,γ的经验值可近似取为英尺。
一般情况下γ是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,γ的近似计算公式可取为:()115.0---=l f a a γ (4—3)式中:f a 、l a ——分别为跟车和头车的最大减速度。
跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行分析,近似得出单车道交通流的宏观特性。
总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。
第一节 线性跟驰模型的建立单车道车辆跟驰理论认为,车头间距在100~125m 以内时车辆间存在相互影响。
分析跟驰车辆驾驶员的反应,可将反应过程归结为以下三个阶段:感知阶段:驾驶员通过视觉搜集相关信息,包括前车的速度及加速度、车间距离(前车车尾与后车车头之间的距离,不同于车头间距)、相对速度等;决策阶段:驾驶员对所获信息进行分析,决定驾驶策略;控制阶段:驾驶员根据自己的决策和头车及道路的状况,对车辆进行操纵控制。