2.2周期信号及其频谱
- 格式:pdf
- 大小:923.23 KB
- 文档页数:48
周期信号的频谱分析周期信号的频谱特点信号与系统实验报告实验三周期信号的频谱分析实验报告评分:_______实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t);N=input(‘Type in the number of the harmonic components N=‘);x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title(‘signal cos(w0.*t)’)subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title(‘signal cos(3*w0.*t))’)subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title(‘signal cos(5*w0.*t))’)subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title(‘signal xt’)(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
1.1 信息量: 1.2 平均信息量:2.12.2 周期信号频谱 ,令 ,则2.3周期方波: 周期余弦波: 周期正弦波: 矩形脉冲:3.1 3.2 广义平稳随机过程:①均值与t 无关;②自相关函数只跟时间间隔有关;3.3 各态历经性:1.平稳过程; 2. ; 3.3.4 正态分布:4.1 离散信道容量:4.2 连续信道容量: 6.1 传号交替反转码(AMI ): 将'1'交替变换为'+1','-1'; HDB 3码:4个连'0'变为'B00V','V'与前一个'1'极性相同,'B'可调; 双相码:'1'变换为'10','0'变换为'01';密勒码:'1'变换为'10'或'01','0'变换为'00'或'11',连'0'连'1'间有跳变; 传号反转码(CMI ):'1'交替变换为'00'或'11',0变换为'01';6.2 无码间串扰条件,时域: ; 频域(奈奎斯特第一准则):6.3 部分响应系统: 1.预编码: b k =a k ⊕b k-1, 即a k =b k ⊕b k-1;2.相关编码:C k =b k ⊕b k-1;3.模2判决:[C k ]mod2=a k 。
6.4 时域均衡器:由2N 个延时单元和2N+1个抽头系数组成; 峰值失真,6.5 迫零均衡器: 6.6 单极性NRZ : 双极性NRZ : 6.7 单极性基带系统最佳判决门限: ; 双极性: 。
7.1 格雷码:相邻码元只有一位不同; 7.28.1 最小频移键控(MSK ):221log log ()()()I p x b p x ==- 21()()log ()(/)M i i i H x P x p x b symbol ==- ∑11(),()22n n n n n n C a jb C a jb -=- =+02001())]j nf tnn n n s t C eC nf t ππθ∞∞=-∞===++∑∑000/220/201()()T j nf t n T C C nf s t e dt T π--==⎰,/2/2;()t n V n s V nT t nT C Sa T Tτπτττ= -≤≤+ =0001cos [()()]2t n s t C ωδωωδωω= : =++-000sin [()()]2t n js t C ωδωωδωω= : =+--()1,/2;()a n g t t C Sa f ττπτ= ||≤ =2211212[()](,);[()][()]()(,)[()()]E t xf x t dx D t E t a t R t t E t t ξξξξξ∞-∞= =- ; =⎰a a =()()R R ττ=22()())2x a f x σ--21211()(/);()()log ();(/)()(/)log (/);n i i i mnj i j i j j i C H x H x y H x P x P x H x y P y P x y P x y ====- =-=-∑∑∑20log (1)(/)t SC B b s n B=+ 1,()0,s k h kT other=0⎧=⎨ ⎩00021()||/()||2s s iis f i H T T or H f if f T f πωωπ+=, ≤ +=, ≤∑∑001||k k D y y ≠=∑nk i k ii ny C x-=-=∑012110102101010x x x C x x x C x x x C ---- ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ =⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦⎣⎦⎣⎦21()()()44s s sT P f sa fT f πδ=+2()()s s s P f T sa fT π=2*(0)ln2(1)n d A P V A P σ=+2*(0)ln 2(1)n d P V A P σ=min 101/21/4;1/4;s c s c s f T f f T f f T ∆=; =+ =-9.1 冲激抽样: ; 矩形脉冲 奈奎斯特抽样速率:9.2 对[-a a]均匀分布的m(t)均匀量化:量化噪音: 量噪比: ; PCM 系统(量化器+低通)总信噪比: ; M 量化电平数,Δv 量化间隔。
设计题目:应用MATLAB实现周期信号和非周期信号频谱仿真1 课程设计目的通过课程设计,提高学生综合运用所学知识来解决实际问题、查阅文献资料、及进行科学实验或技术设计的能力。
学会用MATLAB 语言编写信号与系统及数字信号处理的仿真程序;认真分析每个题目的具体要求;上机前初步编好程序,上机时认真调试程序;增加学生对仿真软件MATLAB的感性认识,熟悉MATLAB软件平台的使用和MATLAB编程方法及常用语句;了解MATLAB的编程方法和特点;加深理解采样与重构的概念,掌握连续系统频率响应概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法初步掌握线性系统的设计方法,培养独立工作能力。
培养学生正确的设计思想,理论联系实际的科学态度,严肃认真、实事求是的科学态度和勇于探索的创新精神。
培养学生综合运用所学信号与系统及数字信号处理的知识,分析和解决工程技术问题的能力。
为毕业设计打下基础。
2 设计原理2.1 MATLAB软件说明MATLAB(Matrix Laboratory)是美国Math Works公司产品,Matrix Laboratory意为“矩阵实验室”,最初的MATLAB只是一个数学计算工具。
但现在的MATLAB已经远不仅仅是一个“矩阵实验室”,它已经成为一个集概念设计、算法开发、建模仿真,实时实现于一体的集成环境,它拥有许多衍生子集工具。
MATLAB现已被广泛于数学、通信、信号处理、自动控制、神经网络、图形处理等许多不同学科的研究中。
MATLAB特点:(1)此高级语言可用于技术计算(2)此开发环境可对代码、文件和数据进行管理(3)交互式工具可以按迭代的方式探查、设计及求解问题(4)数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数积分等(5)二维和三维图形函数可用于可视化数据(6)各种工具可用于构建自定义的图形用户界面(7)各种函数可将基于MATLAB 的算法与外部应用程序和语言(如 C 、C++、Fortran 、Java 、COM 以及 Microsoft Excel )集成 (8)不支持大写输入,内核仅仅支持小写2.2 周期信号的频谱分析——傅里叶级数FS(1) 任何满足狄义赫利条件周期函数都可展成傅里叶级数。
实验三 信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征 二、原理说明:1、连续时间周期信号的傅里叶级数分析任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。
其中三角傅里叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1或: ∑∞=++=100)cos()(k k kt k ca t x ϕω 2.2其中102T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、余弦分量幅度和正弦分量幅度,k k c ϕ、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ϕ-0ωk 图像为相位谱。
三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。
也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。
指数形式的傅里叶级数为:∑∞-∞==k tjk kea t x 0)(ω 2.3其中,k a 为指数形式的傅里叶级数的系数,按如下公式计算:⎰--=2/2/1110)(1T T tjk k dt et x T a ω 2.4指数形式的傅里叶级数告诉我们,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的周期复指数信号所组成,其中每一个不同频率的周期复指数信号称为基本频率分量,其复幅度(complex amplitude )为k a 。