1电动汽车整车控制器
- 格式:ppt
- 大小:4.23 MB
- 文档页数:18
电动汽车整车控制器(VCU)技术及开发流程深度剖析焉知焉知·焉能不知整车控制器(VCU)作为电动汽车上全部电⽓的运⾏平台,它的性能优劣,直接影响其他电⽓性能的发挥,是整车性能好坏的决定性因素之⼀。
1、组成1.1结构组成VCU,结构上,由⾦属壳体和⼀组PCB线路板组成。
1.2硬件组成功能上由主控芯⽚及其周边的时钟电路、复位电路、预留接⼝电路和电源模块组成最⼩系统。
在最⼩系统以外,⼀般还配备数字信号处理电路,模拟信号处理电路,频率信号处理电路,通讯接⼝电路(包括CAN通讯接⼝和RS232通讯接⼝)。
2、各电⽓与VCU之间是怎样⼯作的⼀些⽤于监测车体⾃⾝状态的信号或者车载部件中⽐较重要的开关信号、模拟信号和频率信号,由传感器直接传递给VCU,⽽不通过CAN总线。
电动汽车上的其他具有独⽴系统的电⽓,⼀般通过共⽤CAN总线的⽅式进⾏信息传递。
2.1直接传递的信号们开关信号:钥匙信号,档位信号,充电开关,制动信号等;模拟信号:加速踏板信号,制动踏板信号,电池电压信号等;频率信号,⽐如车速传感器的电磁信号。
输出的开关量,动⼒电池供电回路上的接触器和预充继电器,在⼀些车型上,由VCU负责控制。
2.2通过CAN交互的电⽓单元CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。
信息之间的先后顺序由发出信息者的优先级确定。
优先级在通讯协议中已经做出规定,每条信息⾥都有发信者的地址编码;通讯中的信息编码,都有相应的通讯协议予以明确规定。
谁发出什么样的代码提供哪些类型的信息,主要依据是供需双⽅的约定。
2.2.1 VCU与动⼒电池系统动⼒电池是纯电动汽车动⼒的唯⼀来源。
VCU与电池管理系统(BMS)通过整车CAN总线进⾏信息交互。
动⼒电池包实时监测并上报给VCU参数包括:总电流,总电压,最⾼单体电压,最低单体电压,最⾼温度,电池包荷电状态SOC,某些系统还监测电池包健康状态SOH。
VCU发送给电池包的命令包括充电,放电和开关指令:充电,在最初的充电连接信号确认后,整车处于禁⽌⾏车状态,VCU交出控制权。
纯电动汽车整车控制器(VCU)详细介绍⼀、国外产品介绍:(1)丰⽥公司整车控制器丰⽥公司整车控制器的原理图如下图所⽰。
该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向⾓度信号,汽车的运动传感器信号包括横摆⾓速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)⽇⽴公司整车控制器⽇⽴公司纯电动汽车整车控制器的原理图如下图所⽰。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由⾼速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的⼯况下使⽤不同的电机驱动电动汽车,或者按照⼀定的扭矩分配⽐例,联合使⽤2台电机驱动电动汽车,使系统动⼒传动效率最⼤。
当电动汽车起步或爬坡时,由低速、⼤扭矩永磁同步电机驱动前轮。
当电动汽车⾼速⾏驶时,由⾼速感应电机驱动后轮。
(3)⽇产公司整车控制器⽇产聆风LEAF是5门5座纯电动轿车,搭载锂离⼦电池,续驶⾥程是160km。
采⽤200V家⽤交流电,⼤约需要8h可以将电池充满;快速充电需要10min,可提供其⾏驶50km的⽤电量。
⽇产聆风LEAF的整车控制器原理图如下图所⽰,它接收来⾃组合仪表的车速传感器和加速踏板位置传感器的电⼦信号,通过⼦控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动⼒电池、太阳能电池、再⽣制动系统。
(4)英飞凌新能源汽车VCU & HCU解决⽅案该控制器可兼容12V及24V两种供电环境,可⽤于新能源乘⽤车、商⽤车电控系统,作为整车控制器或混合动⼒控制器。
该控制器对新能源汽车动⼒链的各个环节进⾏管理、协调和监控,以提⾼整车能量利⽤效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进⾏分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
电动汽车整车控制器原理概述电动汽车整车控制器是电动汽车的核心控制装置,负责对电动汽车的电池、电机、变速器等关键组件进行控制和协调,以实现电动汽车的各种功能和性能要求。
本文将从整车控制器的工作原理、主要功能以及电动汽车整车控制系统的组成等方面进行介绍。
一、整车控制器的工作原理电动汽车整车控制器的工作原理与传统汽车的发动机控制系统有所不同。
整车控制器通过接收来自车载传感器和控制单元的输入信号,对电池组、电机和变速器等关键组件进行精确的控制和调节。
整车控制器通过对电池组进行电流和电压的监测和控制,以确保电池组的工作状态处于最佳状态,延长电池组的寿命。
同时,整车控制器可以实时监测电机的转速、扭矩和温度等参数,通过对电机的控制,实现电动汽车的加速、制动和行驶等功能。
二、整车控制器的主要功能1. 电池管理:整车控制器可以对电池组进行电流和电压的监测和控制,以确保电池组的工作状态处于安全范围内,并延长电池组的使用寿命。
2. 电机控制:整车控制器可以实时监测电机的转速、扭矩和温度等参数,并根据车辆的需求对电机进行精确的控制,实现电动汽车的加速、制动和行驶等功能。
3. 能量管理:整车控制器可以根据电池组的状态和车辆的需求,对能量的分配和利用进行优化,以提高电动汽车的能源利用效率。
4. 故障诊断:整车控制器可以实时监测车辆的各种参数和状态,并通过故障诊断功能,对车辆的故障进行判断和排除,提高车辆的可靠性和安全性。
5. 通信与互联:整车控制器可以与车载传感器、控制单元和车辆网络进行通信和互联,实现信息的传递和共享,提高车辆的智能化和互联化水平。
三、电动汽车整车控制系统的组成电动汽车整车控制系统由整车控制器、车载传感器、控制单元和车辆网络等多个组成部分组成。
整车控制器作为系统的核心控制装置,负责对车辆的关键组件进行控制和协调。
车载传感器负责对车辆的各种参数和状态进行实时监测和采集。
控制单元负责对采集到的数据进行处理和分析,并生成相应的控制指令。
纯电动汽车整车控制器原理及功能解析整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。
整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。
现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。
整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。
集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。
集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。
分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。
整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。
分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。
典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。
电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。
典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。
整车控制器的硬件电路包括微控制器、开关量调理、模拟量调理、继电器驱动、高速CAN总线接口、电源等模块。
某公司开发的纯电动汽车整车控制器组成原理图1.微控制器模块微控制器模块是整车控制器的核心,综合考虑纯电动汽车整车控制器的功能及其运行的外界环境,微控制器模块应该具有高速的数据处理性能、丰富的硬件接口、低成本和可靠性高的特点。
新能源汽车案例整车控制器的更换(吉利EV 近年来,随着环境污染和能源危机的日益严重,新能源汽车逐渐成为解决方案之一、作为一家新能源汽车制造商,吉利汽车积极推出各类电动车型,以满足市场需求。
然而,随着电动汽车的普及和使用,一些问题也开始浮现,其中之一就是整车控制器故障。
本文将以吉利EV为例,探讨整车控制器更换的必要性和过程。
首先,我们需要了解整车控制器的定义和作用。
整车控制器是电动汽车的核心控制设备,通过控制电动机、电池和其他相关设备的工作状态,以控制车辆行驶和性能。
如果整车控制器发生故障,将导致车辆无法正常运行或性能下降,影响用户体验和安全。
因此,及时更换故障控制器是保证车辆正常运行的关键。
其次,我们来研究吉利EV整车控制器故障的原因。
整车控制器作为一个复杂的电子设备,其中包含大量的电路板和元器件。
长时间的使用和恶劣的环境条件可能导致控制器内部元器件老化、电路板腐蚀、电容变形等问题。
此外,控制器也容易受到外部物理冲击或电压干扰的影响,进而引发故障。
最后,我们来分析整车控制器更换的影响和效果。
通过更换整车控制器,可以解决吉利EV控制器故障导致的车辆无法行驶或性能下降问题。
这将保证用户的使用体验和安全。
同时,新的控制器可能还具有更高的性能和功能,提升车辆的驱动性和续航里程。
此外,整车控制器更换还可以延长车辆的使用寿命,提升车辆的整体价值。
综上所述,整车控制器的更换对于吉利EV以及其他电动汽车来说,具有重要的意义。
它能够解决控制器故障带来的问题,保证车辆的正常运行和性能。
吉利汽车应进一步加强对整车控制器质量的控制,提高其可靠性和稳定性,以提升用户对吉利EV的满意度和信赖度。
同时,吉利汽车还应完善售后服务体系,提供快速、高效的整车控制器更换服务,满足消费者的需求。
新能源汽车整车控制器系统结构和功能说明书新能源汽车作为一种绿色的运输工具在环保、节能以及驾驶性能等方面具有诸多内燃机汽车无法比拟的优点,其是由多个子系统构成的一个复杂系统,主要包括电池、电机、制动等动力系统以及其它附件(如图1所示)。
各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。
为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。
基于总线的分布式控制网络是使众多子系统实现协同控制的理想途径。
由于CAN总线具有造价低廉、传输速率高、安全性可靠性高、纠错能力强和实时性好等优点,己广泛应用于中、低价位汽车的实时分布式控制网络。
随着越来越多的汽车制造厂家采用CAN协议,CAN逐渐成为通用标准。
采用总线网络可大大减少各设备间的连接信号线束,并提高系统监控水平。
另外,在不减少其可靠性前提下,可以很方便地增加新的控制单元,拓展网络系统功能。
图1 新能源汽车控制系统硬件框架一、整车控制器控制系统结构公司自行设计开发的新能源汽车整车控制器包括微控制器、模拟量输入和输出、开关量调理、继电器驱动、高速CAN总线接口、电源等模块。
整车控制器对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进行分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
该整车控制器还具有综合仪表接口功能,可显示整车状态信息;具备完善的故障诊断和处理功能;具有整车网关及网络管理功能。
其结构原理如图2所示。
图2 整车控制器结构原理图下面对每个模块功能进行简要的说明:1、开关量调理模块开关量调理模块,用于开关输入量的电平转换和整型,其一端与多个开关量传感器相连,另一端与微控制器相接;2、继电器驱动模块继电器驱动模块,用于驱动多个继电器,其一端通过光电隔离器与微控制器相连,另一端与多个继电器相接;3、高速CAN总线接口模块高速CAN总线接口模块,用于提供高速CAN总线接口,其一端通过光电隔离器与微控制器相连,另一端与系统高速CAN总线相接;4、电源模块电源模块,可为微处理器和各输入和输出模块提供隔离电源,并对蓄电池电压进行监控,与微控制器相连;5、模拟量输入和输出模块模拟量输入和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。
简述电动汽车整车控制器的组成模块
电动汽车整车控制器主要由以下几个模块组成:
1. 电机驱动模块:负责控制电动汽车的电机,包括启动、停止、加速、制动等操作。
通过控制电机的转速、转向和扭矩输出,实现汽车的前进、倒车和转弯等功能。
2. 电池管理系统:用于监控和管理电动汽车的电池组。
包括电池的充放电控制、温度管理、电量监测、保护等功能,以提高电池的寿命和安全性。
3. 车辆控制单元(VCU):作为电动汽车整车控制的中枢,负责收集和处理车辆各个部件的数据,并根据车辆状态和用户操作提供相应的控制指令。
VCU还负责监控车辆系统的运行状况,并对异常情况进行处理和报警。
4. 故障诊断系统:用于检测和诊断电动汽车整车系统的故障。
通过采集和分析车辆各个部件的数据,判断是否存在故障,并提供相应的故障码和故障信息,以便修复车辆故障。
5. 通信模块:用于与其他车辆系统进行通信,包括车载终端、车载网络和远程监控平台等。
通过与外部系统的通信,实现车辆的远程控制、定位、数据传输等功能。
6. 辅助系统控制模块:包括空调系统、制动系统、转向系统等辅助系统的控制模块。
通过控制这些辅助系统的工作状态,实现对整车性能的调节和优化。
总之,电动汽车整车控制器是一个复杂的系统,由多个模块组成,每个模块都扮演着重要的角色,协同工作,以实现电动汽车的安全、高效和智能控制。
纯电动汽车整车控制器VCU技术要求目录1. 概述 (5)2. 术语 (5)3.1定义 (5)3.2缩略语 (5)3. 开发流程 (5)4.1VCU控制策略开发流程 (5)4.2VCU控制策略开发需求输入 (6)4.3VCU控制策略开发交付物 (6)4. VCU软件功能需求 (6)5.上下电功能需求 (7)6.1功能概述 (7)6.2功能实现描述 (7)6.2.1上电功能逻辑图 (7)6.2.2上电功能需求 (8)6.2.3下电功能逻辑图 (9)6.2.4下电功能需求 (10)6.挡位管理功能需求 (10)7.1功能概述 (10)7.2功能实现描述 (10)7.2.1功能逻辑图 (10)7.2.2功能需求 (11)7.驾驶员需求扭矩计算功能需求 (11)8.1功能概述 (11)8.2功能实现描述 (11)8.2.1功能逻辑图 (11)8.2.2功能需求 (12)8.蠕行功能需求 (14)9.1功能概述 (14)9.2功能实现描述 (14)9.2.1功能逻辑图 (14)9.2.2功能需求 (14)9.驱动扭矩控制功能需求 (15)10.1功能概述 (15)10.2功能实现描述 (15)10.2.1功能逻辑图 (15)10.2.2功能需求 (15)10.高压能量管理功能需求 (16)11.1功能概述 (16)11.2功能实现描述 (16)11.2.1功能逻辑图 (16)11.2.2功能需求 (16)11.充电管理功能需求 (17)12.1功能概述 (17)12.2功能实现描述 (17)12.2.1充电上电功能逻辑图 (17)12.2.2充电上电功能需求 (18)12.2.3充电下电功能逻辑图 (18)12.2.4充电下电功能需求 (19)12.滑行能量回收功能需求 (19)13.1功能概述 (19)13.2功能实现描述 (19)13.2.1功能逻辑图 (19)13.2.2功能需求 (20)13.制动能量回收功能需求 (21)14.1功能概述 (21)14.2功能实现描述 (21)14.2.1功能逻辑图 (21)14.2.2功能需求 (21)14.最高车速计算功能需求 (22)15.1功能概述 (22)15.2功能实现描述 (22)15.2.1功能逻辑图 (22)15.2.2功能需求 (22)15.辅助控制功能需求 (23)16.1功能概述 (23)16.2功能实现描述 (23)16.2.1功能逻辑图 (23)16.2.2功能需求 (23)16.故障诊断功能需求 (24)16.1功能概述 (24)16.2功能实现描述 (24)16.2.1功能逻辑图 (24)16.2.2功能需求 (24)1.概述该技术要求书定义了整车控制策略的技术要求,仅作为纯电动汽车策略开发技术交流的依据,同时指导自主开发整车控制策略方案制定及实施。
纯电动汽车整车控制器是电动汽车的关键部件之一,负责控制电动汽车的动力传动系统、能量管理系统以及车辆各部分的协调运行。
整车控制器的控制逻辑关乎着电动汽车的性能、能效和安全性。
下面将从控制逻辑的设计原则、各部分功能模块的控制逻辑和控制逻辑的效能优化等方面简述纯电动汽车整车控制器的控制逻辑。
一、控制逻辑的设计原则纯电动汽车整车控制器的控制逻辑设计要满足以下几个原则:1. 安全性原则:控制逻辑设计应确保车辆在各种工况下能够保持稳定、安全的运行。
2. 效能原则:控制逻辑设计应确保车辆在各种工况下能够保持最佳的能效。
3. 灵活性原则:控制逻辑设计应确保车辆在不同工况下能够有良好的响应能力和适应能力。
二、功能模块的控制逻辑整车控制器包括能量管理系统、动力传动系统和车辆管理系统等功能模块。
各功能模块的控制逻辑如下:1. 能量管理系统的控制逻辑:能量管理系统负责管理电池的充放电过程、能量回收过程和能量分配过程。
其控制逻辑主要包括电池状态估计、SOC控制、能量管理策略等。
2. 动力传动系统的控制逻辑:动力传动系统负责驱动电动汽车的电机进行运转。
其控制逻辑主要包括电机转速控制、电机扭矩控制、换挡控制等。
3. 车辆管理系统的控制逻辑:车辆管理系统负责监测车辆各部分的状态,并根据需要进行控制。
其控制逻辑主要包括车载通信、车辆监测、车载诊断等。
三、控制逻辑的效能优化控制逻辑的效能优化是整车控制器设计的重要环节。
控制逻辑的效能优化包括控制算法的优化、参数的优化和系统的协同优化等方面。
1. 控制算法的优化:通过不断改进控制算法,提高整车控制器的响应速度和控制精度,使车辆在各种工况下都能保持最佳的运行状态。
2. 参数的优化:对整车控制器的各种参数进行优化调整,确保整车控制器在各种工况下都能有最佳的性能表现。
3. 系统的协同优化:通过整车控制器各功能模块之间的协同优化,提高车辆的能效和安全性。
纯电动汽车整车控制器的控制逻辑设计是电动汽车技术创新的重要组成部分,对整车性能、能效和安全性起着关键作用。