高光谱遥感影像混合像元分解算法研究
- 格式:doc
- 大小:12.44 KB
- 文档页数:2
高光谱遥感图像高效分类与解混方法研究高光谱遥感图像高效分类与解混方法研究摘要:高光谱遥感图像具有信息丰富且具体化的特点,被广泛应用于土地利用、环境监测、农业生产等领域。
然而,高光谱遥感图像面临诸多挑战,如高光谱数据的维度高、数据量大、类间互相重叠等。
因此,高效分类与解混方法的研究就显得尤为重要。
本文主要研究了高光谱遥感图像高效分类与解混方法,并探讨了其在实际应用中的优势和问题。
一、引言高光谱遥感图像是一种将地物不同光谱响应从可见光到近红外光谱范围内进行连续采样的遥感技术。
相比于传统的彩色遥感图像,高光谱遥感图像能够提供更为详细的地物光谱信息。
然而,由于高光谱数据的维度高、数据量大,传统的分类与解混方法在处理高光谱遥感图像时面临较大困难。
二、高光谱遥感图像分类方法研究为了高效地对高光谱遥感图像进行分类,研究者们提出了许多分类方法。
其中,基于光谱信息的分类方法是最常见的方法之一。
该方法通过提取光谱特征,并利用统计模型、聚类算法等来进行分类。
此外,基于空间信息的分类方法也得到了广泛应用。
这些方法结合了地物的空间分布特征,通过纹理分析等方法来提高分类效果。
此外,一些结合光谱和空间信息的联合分类方法也是当前的研究热点。
三、高光谱遥感图像解混方法研究高光谱遥感图像解混是指将混合像素分解为其组成物质的过程,是高光谱图像处理的核心问题之一。
目前,解混方法可以分为光谱解混方法和空间解混方法。
光谱解混方法主要是通过最小二乘法、线性光谱混合模型等来对单像元进行解混,适用于像元内部的光谱变化相对较小的情况。
而空间解混方法则利用相邻像元间的相关性,通过构建像元间的约束条件来实现解混。
四、高光谱遥感图像高效分类与解混方法的应用与挑战高光谱遥感图像高效分类与解混方法在土地利用、环境监测、农业生产等领域具有广泛的应用前景。
例如,在土地利用方面,高光谱遥感图像的分类结果能够提供准确的土地利用信息,为土地资源管理和规划提供重要的参考依据。
高光谱图像混合像元分类技术研究的开题报告一、研究背景和意义高光谱遥感图像是利用高光谱仪器获取的,具有大量连续波段的遥感图像。
每个波段都对应着物体表面的一种光谱响应,能够提取更为详细的物质特征信息。
在遥感与灾害监测等方面得到广泛应用。
然而,高光谱图像中存在着混合像元问题,即同一个像元所包含的多个物质的光谱响应会叠加在一起,导致光谱信息的混淆,使得对单个物质的判别变得困难。
因此,如何利用混合像元进行高精度的分类成为了研究的重点。
目前,高光谱图像混合像元分类技术已经成为了研究的热点和难点。
各种方法的研究可以加强高光谱图像数据的信息提取,更好地解决分类问题。
因此,开展高光谱图像混合像元分类技术的研究具有重要的理论意义和实践价值。
同时,该研究也可以在农业、林业、生态环境、城市规划等领域得到广泛的应用。
二、研究内容和方法本文将研究高光谱图像中的混合像元分类技术,具体内容包括以下几个方面:1、光谱特征提取对于高光谱图像中的每个像元,需要提取其光谱特征。
光谱特征是指不同材料的反射光谱特征,是进行分类的重要依据。
在本研究中,我们将采用主成分分析(PCA)和线性判别分析(LDA)等方法来进行光谱特征提取。
2、像元混合建模高光谱图像中同一像元所包含的物质可能有多种,因此需要对混合像元进行建模。
本研究中,将采用混合像元模型(MGM)对混合像元进行建模。
3、分类建模对于光谱数据,我们需要将其进行分类。
本研究中,将采用支持向量机(SVM)算法进行分类建模。
这是一种常用的分类方法,因其准确率高、精度高、鲁棒性好等特点得到广泛应用。
三、预期结果和创新之处通过本研究,预期可以实现对高光谱图像中混合像元的准确分类,提高其分类精度。
本研究的创新之处在于:采用混合像元模型(MGM)建模,使得分类结果更加精确;同时,采用支持向量机(SVM)算法进行分类建模,具有很好的运用环境和良好的预测性能。
四、研究计划本研究将分为以下几个阶段:1、资料检索与文献综述主要通过检索数据库,查阅相关论文、书籍和资料,全面掌握高光谱图像混合像元分类技术的国内外研究现状和最新进展。
第十讲高光谱遥感图象混合象元分析一.混合象元的概念:遥感器所获取的地面反射或发射光谱信号是以象元为单位记录的。
它是象元所对应的地表物质光谱信号的综合。
图象中每个象元所对应的地表,往往包含不同的覆盖类型,他们有着不同的光谱响应特征。
而每个象元则仅用一个信号记录这些“异质”成分。
若该象元仅包含一种类型,则为纯象元(pure pixel),也称为端元(endmember),它所记录的正是该类型的光谱响应特征或光谱信号;若该象元包含不止一种土地覆盖类型,则成为混合象元(mixed pixel),它记录的是所对应的不同土地覆盖类型光谱响应特征的综合。
由于传感器的空间分辨力限制以及自然界地物的复杂多样性,混合像元普遍存在于遥感图象中。
二.混合象元模型光谱混合形式上可以分为致密式(intrinsic)、聚合式(aggregate)和整合式(areal)三种情形(如图),本质上分可以分为线性混合和非线性混合两种模式。
线性混合模型假定到达传感器的光子只与一种物质发生作用[rast,1991];当混合元素尺寸小,入射光子与多于一种以上的物质发生作用时,导致非线性混合[smiths,1985;Mustard,1987]。
【图11.线性混合模型(通常情况下,高光谱图象中每个象元都可以近似认为是图象中各个端元的线性混合象元:n E c n e p +=+=∑=Ni i i c 1(1)11=∑=Ni ic(2)10≤≤i c (3)其中N 为端元数,p 为图象中任意一L 维光谱向量(L 为图象波段数),][21N e e e E =为N L ⨯矩阵,其中的每列均为端元向量。
t N c c c )(21 =c 为系数向量,i c 表示象元p 中端元i e 所占的比例,n 为误差项。
在误差项n 很小的情况下,满足(1)、(2)和(3)的所有点的集合正好构成一个高维空间的凸集,这些端元则坐落于这个凸面单形体的顶点。
以两个波段三个端元为例来说明它们之间的几何关系(图2).从图2可以看出,端元a,b,c 分别位于三角形体的顶点,三角形内部的点则对应着图象中的混合象元.这样,提取高光谱图象的端元问题就转化为求单形体的顶点的问题./图2 两个波段三个端元的散点图在空间上具有明显的三角形结构2. 非线性混合模型三. [端元c波段 i波段j四.端元提取1. PPI当把特征空间中的所有散点往一个单位向量u 上投影时,端元就会投影到u 的两侧,而混合象元则会投影到中部。
高光谱遥感图像的解混和波段选择方法研究高光谱遥感图像能够以纳米级的光谱分辨率提供海量数据信息,但是由于空间分辨率限制,图像中的一个像元可能包含有多种地物类型,形成混合像元,影响了对地表形态的精确测量和分析。
因此,在实际应用时经常需要将混合像元进行分解,从中得到典型地物的光谱(端元)及这些地物所占比例(丰度),以便充分发掘数据中的光谱信息,研究目标物质。
如何快速有效地进行混合像元的分解,是近年来高光谱图像处理中的一个热点问题。
本论文重点针对混合像元问题,分别从统计学和几何学的角度展开分析,并在此基础上提出相应的解混方法。
此外,针对数据的维数问题,我们还研究了复杂网络的方法,将其应用到高光谱波段选择问题中,用于数据的降维处理。
本论文的主要工作和创新点包括以下几个方面:1.提出一种有约束独立分量分析的解混方法。
该方法通过设计新的目标函数,选择符合高光谱图像物理意义的约束条件,在根本上克服了传统ICA的独立性假设,使算法能够适用于遥感数据的分析。
此外还设计了一种自适应的模型来描述数据的概率分布,能够利用蕴含在观测图像中的统计信息实现自动建模,在提高解混结果精度的同时,使算法对各种不同的遥感数据都表现出良好的适用性。
所提出的算法克服了基于独立分量分析的方法进行光谱解混时所出现的问题,能够得出更优的解。
而且,算法即使在端元数估计错误的情况下仍能得到正确结果,作为一种无需光谱先验信息的算法,为混合像元分解问题提供了一种有效的解决手段。
2.提出一种基于三角分解的端元提取框架。
这既是一种单形体类的几何方法,同时又建立在三角分解的代数原理之上。
我们通过最小化单形体体积寻找端元,在这一过程中引入了三角分解,利用递归操作,只需对数据做一轮体积比较便可完成端元提取任务,得到全局最优解。
该算法能够在原始高维数据上快速而稳定地运行,在实时处理领域有着很好的应用前景。
降维处理不是必要步骤,所以在实际应用中可以根据具体情况选择是否进行降维,具有很好的灵活性。
混合光谱分解模型研究摘要:对有限波段的混合光谱遥感数据而言,端元的选取及其端元数量对模型精度有重要的影响。
随着高光谱平台的发展和数据不断进入各种行业领域,研究人员开始使用高光谱影像进行混合像元分解提取不同组分。
但是由于高光谱相邻波段的高度相关性,导致不同地物光谱特征的可分维度没有得到实质性提高,因此在利用LSMA算法进行混合光谱分解时,端元光谱的数量还是受到一定的限制。
正是受限于混合像元分解的端元数量,导致LSMA在城市地表组分的分解精度不高,因此在探索如何阐明端元变化对模型精度影响方面有了很多探索性研究,如对端元进行归一化处理;多端元混合像元分解模型(MESAM)得以发展并被广泛应用。
混合光谱解析方法由于LSMA算法在解析的过程中不能使用过多的端元,端元过多或者过少都会引起模型精度大大降低。
而MESAM的出现恰恰是为了解决LSMA的弊端,其基本思想是每个像素在使用类似LSMA的算法进行混合像元分解的过程中,端元的数量和类型可根据需求进行组合。
换而言之,一个像素内的地物可能是由纯地物组成,也可能是由两种地物组成,或者是三种甚至是4中及其以上多的地物组成,在应用MESMA解析过程中,会根据像素内实际地物的多少进行端元选取(一个、两个、三个、四个的端元),最终实现混合像元解析。
于此对应,Maselli(1998, 2001)也发展了一种基于端元正交映射的多端元混合光谱分解模型(MSOD),其基本思想与MESMA相似,但是要对每个端元的光谱进行Gram-Schmidt投影转化,然后将每个像素的光谱进行同样的投影变换,最后光谱的分解在斯密特投影空间进行。
近来,Deng &Wu (2012, 2013)通过穗帽变换,构建了BCI光谱转化模型,并在BCI光谱转化空间内实现了混合光谱分解,并与其他模型反演效果进行了对照,该方法的应用前景还需要进一步验证。
混合光谱的解析方法的另一个发展方向就是采用智能算法进行像元内的地物组分反演。
混合光谱分解算法在遥感中的应用研究混合光谱分解算法是一种旨在揭示多种物质在一种光谱中的独立性、相互作用及其比例的建模方法。
它对于常见光谱分析中的水、油、气等多种物质的分解和混合有着广泛的研究应用,它能够以低成本的方式测量复杂环境中的物质,帮助更好地分析和解释数据。
遥感是运用辐射计、测量、测绘和计算机技术,通过发射的或反射的电磁能,对物体进行定位、识别和定量测量的技术,因此,遥感数据的获取主要依靠光谱应用,而混合光谱分解算法正是为了处理遥感数据中的复杂信息而设计的。
混合光谱分解法可以有效地用于遥感数据的处理,有助于更好地识别特定物质的分布和特征,进而可以推动研究发展。
例如,混合光谱分解方法以提取不同物质成分的统一系统为基础,可以用来识别和监测地表环境中的物质,例如树、草、植物。
此外,混合光谱分解算法可以用来检测臭氧层、污染物、冰川、海洋等特定的物质,从而加强环境监测和研究,进而使之推动环境保护措施的实施。
高光谱图像混合像元解混技术研究高光谱图像混合像元解混技术研究随着高光谱遥感技术不断发展,高光谱图像具有显著特点:光谱分辨高,图谱合一,并广泛应用到各个领域。
但遥感技术向定量化方向进一步发展的主要障碍是广泛存在着混合像元。
为了突破遥感图像空间分辨率低的障碍与地物具有复杂多样性的影响,多种类型的地物常包含于独立的单个像元中,要在亚像元级别的精度上得到混合像元的真实属性信息,提高图像分类精度。
在高光谱图像中,关键问题之一是如何有效地对混合像元进行分解已经得到了广泛关注,并一直进行着深入地研究。
本文首先对其所研究内的相关技术及应用进行了叙述,并阐述了高光谱解混的研究现状,混合像元分解存在的问题,如解混效果不理想,算法的目标函数收敛速度慢,图像分类不精确,耗时多等。
针对以上问题,本文在NMF算法的基础上,提出了3种混合像元分解算法:(1)基于图正则和稀疏约束半监督NMF的混合像元分解算法。
该算法加入了拉普拉斯图正则化约束和部分样本的类别信息,并对丰度矩阵施加稀疏约束,最后融合到同一目标函数中,能够改善解混效果;(2)基于图正则和稀疏约束的INMF高光谱解混。
该算法将稀疏非负矩阵分解与增量型学习相结合,既能降低平均运行时间又能提高图像分类精度;(3)基于双图正则的半监督NMF混合像元解混。
该算法不仅考虑了高光谱数据流形与特征流形的几何结构,还将已知的标签类别信息施加于非负矩阵分解中,极大加快了目标函数的收敛速度,改善效果得到进一步提高,耗时少。
本文分别对提出的3种算法在真实遥感数据集上进行仿真实验,在解混性能评价指标均方根误差和光谱角度距离上与NMF和改进的NMF算法作比较,实验结果表明本文提出的3种算法解混可靠性和有效性高。
最后,对3种解混算法进行比较,得到基于双图正则的半监督NMF 混合像元解混算法耗时最少,解混效果最优。
高光谱遥感图像高效分类与解混方法研究高光谱遥感兴起于20世纪80年代,是一种融合光谱学理论与成像技术的前沿技术。
高光谱遥感图像包含几十至几百个窄波段的光谱信息,能够为人类社会提供丰富且精细的观测数据。
地物识别与分析作为高光谱遥感图像的研究热点,是高光谱遥感图像处理的重要组成部分,主要可通过地物分类与像元解混两种技术实现。
地物分类技术是一种像元级处理技术,通过对观测像元进行类别标定与识别来完成对地物的分析与识别;而像元解混技术是一种亚像元级处理技术,通过对观测像元中所包含的不同纯地物进行分析并计算其含量来完成对地物的识别与分析。
虽然,高光谱图像具有光谱分辨率高及图谱合一的特点,可以为地物分类与像元解混处理提供丰富的细节信息,但同时给这两种技术带来了巨大的挑战和难度,主要原因有:(1)高光谱图像容易受到高光谱传感器在空间分辨率上的限制以及光照、大气、云层厚度等自然环境因素的影响,出现“同物异谱”和“异物同谱”的现象,这两种现象不同程度地增加了地物分类与像元解混的难度。
(2)高光谱图像光谱维度高,由小样本引起“Hughes”现象的出现,使高光谱图像地物识别性能呈现先增加后下降趋势。
(3)高光谱图像的大数据量给高光谱图像处理带来了极大的计算量。
针对上述高光谱图像在地物分类与像元解混中存在的问题,本文深入研究了基于人工神经网络的地物分类技术与基于稀疏回归的像元解混技术,提出了高效的地物分类方法和像元解混方法。
具体工作概括如下:一、基于优化极限学习机的高光谱图像分类方法研究针对高光谱图像数据量大,导致分类方法计算复杂度高、样本训练时间长等问题,本文开创性的将极限学习机方法应用在高光谱图像分类中,并提出了一种基于优化极限学习机的高效高光谱图像分类方法。
该方法研究并发掘出训练样本数目与隐层神经元数目之间存在一种经验的线性关系,且这种线性关系可从小样本数据集延伸至大样本数据集,因此避免了大样本数据集所带来的大计算量。
高光谱遥感图像光谱解混方法研究及其应用近年来,随着遥感技术的发展,所获取的高光谱遥感图像的光谱分辨率和空间分辨率都得到进一步的提高,其处理手段也得到了长足的发展。
高光谱遥感图像不仅可以得到所观测区域物质的光谱特性,同时可以在视觉上直接观看图像的空间信息,以其图谱合一的特性,受到了各领域研究学者的关注。
在高光谱遥感图像获取过程中,遥感传感器以像元的形式来记录地物所反射、散射以及其他各种形式的作用所产生的光谱信息。
遥感传感器一般都是从遥远的空间距离来进行地物观测,所获取的高光谱遥感图像的空间分辨率会受到一定影响,同时,由于自然界地物的复杂多样性,所获取的高光谱遥感图像中单像元得到的光谱不一定只是一种物质的光谱,可能是几种不同物质光谱的组合。
这样的像元被称为混合像元。
相对应的,如果所获取的单像元中只有一种物质的光谱,这样的像元被称为纯像元。
所以,混合像元的存在导致无法直接获取所需要的光谱信息,这制约了高光谱遥感图像的分析及应用,进而影响了高光谱遥感技术领域的发展。
光谱解混技术就是用来解决混合像元问题的一项技术。
它将高光谱图像的混合像元分解为端元和丰度的组合,为更精细的光谱应用提供了可能。
因此,光谱解混技术是实现高光谱遥感技术定量化研究和应用的重要条件。
本文所做的主要研究工作如下:1.对高光谱遥感图像进行了线性混合模型下的解混方法研究。
针对假设图像中存在纯像元的情形,采用基于吉文斯旋转的QR 分解方法,获得高光谱数据的正交子空间,提出了一种基于吉文斯旋转的端元提取方法(Endmember Extraction Algorithm base on QR Factorization usingGivens Rotations,EEGR),进而对获取的端元,采用全约束的最小二乘法对丰度进行了估计。
采用模拟高光谱数据和真实高光谱图像进行实验分析,其端元提取精度相对于经典的同类型端元提取算法来说更为精确。
并且,由于吉文斯旋转本身的固有特性,更适合于用高性能计算来实现,这也是后续的研究内容。
高光谱遥感影像光谱解混算法研究高光谱遥感将表征地物辐射属性的光谱与反映地物空间分布和几何特性的图像有机结合在一起为地物的准确识别和精细分类提供了强有力的手段。
随着应用领域的不断拓展和应用需求的逐步升级,高光谱遥感体现出信息定量化的趋势。
然而,混合像元的广泛存在不仅影响地物的识别和分类精度,而且严重阻碍高光谱遥感技术向定量化方向深入发展。
光谱解混作为解决混合像元问题的关键技术之一,已经成为当今高光谱遥感应用领域里的一个研究热点。
本文基于线性光谱混合模型对光谱解混涉及到的端元提取和丰度估计算法进行了系统深入的研究,研究工作主要包括以下几个方面:1.端元提取是光谱解混的关键步骤。
传统的端元提取方法仅分析影像数据的光谱信息,忽略了遥感影像的二维空间特性,这类方法易受噪声和异常信号的影响进而导致端元提取精度下降。
为此,本文提出一种结合正交子空间投影和局部空间信息的端元提取算法。
该算法立足于凸面单体理论,将正交子空间投影和单体体积分析方法结合实现序列地提取端元。
在端元提取过程中,引入局部空间光谱相似性限制以提高算法对噪声及异常信号的稳健性,同时避免了利用整个二维影像空间信息进行端元提取带来的巨大运算量。
此外,在单体体积计算过程中,使用了无需降维的体积计算公式,以避免降维带来的信息损失。
实验结果表明,与传统的基于光谱的端元提取算法相比,本文算法可以有效提高端元提取的精度,对于噪声和异常信号都具有较强的鲁棒性。
2.全约束线性光谱解混通常归结为凸优化问题,需要高级的优化技术求解,从而导致较高的时间复杂度。
高光谱遥感影像涵盖地物类型多、光谱数据量大的特点进一步增加了解混的计算量。
为了解决此问题,本文提出一种基于子空间投影的几何解混算法,该算法将像元的丰度解译为该像元向量关于端元单体的重心坐标确保了丰度的全加性约束,并将行列式Laplace展开应用于重心坐标计算过程以降低算法的运算量。
对于不满足丰度非负性约束的混合像元,该算法利用子空间投影方法以迭代的方式实现全约束丰度估计。
高光谱图像的光谱解混模型与算法研究
高光谱成像是将成像技术与光谱技术相结合的技术,是遥感应用中一个快速发展的领域。
高光谱图像在军事目标辨别、远程控制、生物医学、食品安全以及环境监测等领域都有重要应用。
但由于高光谱成像光谱仪空间分辨率较低,使得每个高光谱像元可能由多种不同物质的光谱混合构成,因此混合像元广泛存在于高光谱图像中。
混合像元导致科研实践中一些应用分类不准确,因此对混合像元进行分解是高光谱遥感应用亟待解决的核心问题。
本文中首先介绍了两种光谱混合模型:线性和非线性光谱混合模型。
线性模型假设观察到的像元信号是所有的纯光谱信号的线性组合。
与之相反,非线性模型则考虑到多种物质反射光之间的物理相互影响。
其次,本文对高光谱图像解混的几种经典模型进行介绍。
在这些模型中详细介绍了本文的对比模型全变分模型(SUnSAL-TV),该模型利用高光谱图像空间关系构建了对端元丰度的正则项,这使高光谱图像解混问题在数值结果和视觉效果上都有较大提升。
但全变分模型的缺点是解混后丰度图中原平滑区域中伴有阶梯效应现象,视觉效果欠佳。
本文采用重叠组稀疏全变分作为端元丰度正则项,并采用交替方向乘子法对模型进行求解,将原问题转化为一系列较易求解的子问题,进而得到原问题的全局解。
在应用交替方向乘子法进行求解过程中,关于梯度域重叠组稀疏的子问题采用采用优化最小化方法进行求解。
通过合成数据和真实数据的实验证明,采用本文提出的新方法处理后图像视觉效果和数值效果相比SUnSAL-TV方法有明显提升,并且可以有效减弱
SUnSAL-TV模型的阶梯效应,使处理后丰度图更加平滑,视觉效果更佳。
基于限制性线性光谱分解模型的高光谱影像混合像元分解摘要:高光谱影像的光谱分辨率在10nm以下,会产生大量的混合像元,因此解决混合像元分解问题对处理高光谱图像有着重要作用。
本文主要论述了高光谱混合像元分解。
其中包括:混合像元分解的概念和物理基础,混合像元线性模型,线性光谱分解模型。
利用线性光谱分解模型进行混合像元分解时有两个步骤:1、端元的提取。
2、混合像元线性分解。
本文将采用纯像元指数法提取端元,采用限制性线性混合模型进行混合像元分解,并以实例进行展现。
关键词:高光谱遥感混合像元分解线性光谱分解模型端元提取纯像元指数法0、引言遥感影像中的像元很少是由单一均匀的地表覆盖类组成,一般都是几种地物类型的混合体。
因此影像中像元的光谱特征并不是单一地物的光谱特征,而是几种地物光谱特征的混合反映,而每个像元则仅用一个信号记录这些“异质”成分。
若该像元仅包含一种类型,则为纯像元,它所记录的正是该类型光谱响应特征;若该像元包含不止一种土地覆盖类型,则形成混合像元[1]。
1、混合像元光谱模型线性模型[2],它基于以下假设:在瞬时视场下,各组分光谱线性混合,其比例由相关光谱的丰度决定。
通过分析残差,使残差最小,完成对混合像元的分解。
因此,第i波段像元反射率可以表示为:(1)式中:i=1,2,…,n;j=1,2,…,m;γi是混合像元的反射率;pij表示第i个波段第j个端元组分的反射率;f j是该像元第j个端元组分的丰度;是第i波段的误差;n表示波段数;m表示选定的端元组分数。
2、采用线性光谱分解模型分解混合像元线性光谱解混是在高光谱图像分类中针对混合像元经常采用的一种方法[3],该方法由两步构成,第一步是提取“纯”地物的光谱,即端元提取;第二步是用端元的线性组合来表示混合像元,即混合像元分解。
2.1端元提取纯净像元指数是一种在多波谱和高光谱影像中寻找波谱最纯净的像元的方法。
通常,波谱最纯净的像元与混合端元相对应。
像元纯净指数通过迭代将N 维散点图映射为一个随机单位向量来计算。
高光谱图像解混算法研究
由于高光谱图像的空间分辨率较低,图像中存在大量的混合像元,因此研究亚像元级的混合像元分解技术,分离出像元中的端元及其丰度能够更好地帮助我们进行物质的分类与探测,研究者们也由此开始了高光谱图像的解混算法研究。
本文所研究的高光谱解混算法基于线性混合模型,在针对性地研究并分析了解混算法的数学基础之后,提出了三类改进的解混算法。
在凸面几何学类的解混算法中,放宽了模型的非负约束与纯像元假设,加入了负数惩罚正则项,提出了鲁棒最小外包单纯形算法(RMVES),求解此算法时采用循环最小化思想,将非凸优化问题分解为两个凸优化子问题,在ADMM框架下进行了求解。
同时,还给出了一种自适应调整正则化的算子的方法,实验验证了该算法的有效性。
研究了基于非负矩阵分解类解混算法,为改善此类算法陷入局部最小解的情况,引入了基于物质相关性的约束,同时进一步引入1l图确定性地刻画出物质的相关性关系,提出了一种基于1l图的物质相关性非负矩阵分解解混算法(1l SDSNMF),实验结果验证了该算法能够得到更好的解混效果,此外,还对求解方法的收敛性进行了证明。
稀疏回归理论同样能够被应用于解混问题,为改善字典相干性带来的解混困难,同时为了更深入地挖掘图像的空间信息,引入了超图来描述像元之间的关系,构造了描述图像空间结构的超图正则项,将其加入稀疏回归模型中,提出了一种基于超图正则项的稀疏解混算法(HGSU)。
在证明了模型目标函数为凸函数后,本文给出了ADMM框架下求解此模型的具体细节,从而得到相比其他稀疏回归算法具有更高精度的解混算法。
高光谱遥感影像混合像元分解算法研究
高光谱遥感影像相比多光谱遥感在波段数量和波段范围上提供了更多的信息,利用这些丰富的光谱信息可以更好对地物进行检测和识别。
然而,混合像元的存在严重影响了高光谱数据的使用价值。
混合像元分解方法是解决混合像元问题最有效的手段。
本文是在NLSMA (Non-Local Spectral Mixture Analysis)方法的基础上进行研究。
针对文中使用Kd-tree方法寻找非局部相似块占用内存过大,运算时间长的缺点,提出了基于低秩分解的联合稀疏解混方法。
低秩分解模型将矩阵分解为低秩矩阵,稀疏矩阵和误差矩阵,其约束是稀疏矩阵和误差矩阵的?<sub>?</sub>-范数小于阈值,该模型的优化算法较少且耗时过长,适当放松约束条件,
以?<sub>2</sub>-范数来替代约束项中的?<sub>?</sub>-范数,实验表明该方法可以取得同样的效果,并且极大地提高了运算效率。
对图像进行低秩分解后得到许多由许多相似像素构成的相似块,假定相似块中的像素点含有相同种类地物,但是对应的比例不同。
NLSMA方法通过使用联合稀疏方法对每一个相似块进行全限制非负和一求解,即先通过T-MSBL (Transform-Multiple Sparse Bayesian Learning)方法来对多观测向量问题MMV(Multiple Measurement Vectors)进行求解,得到相似块中可能包含的地物种类,再根据FCLS(Fully Constrained Least Squares)方法求得相似块中每一个像素对应的丰度向量。
观察该方法得到的水体丰度图,可以看到有许多非水体的地方丰度系数并不为零。
因此,考虑通过NDWI指标来先把水体提出来,这为以后可以单独提取某种特定地物提供一个框架。
T-MSBL方法相比较其他的MMV算法考虑了观测向量之间的时间相关性。
但是该方法耗时长,因此采用不考虑时间相关性的MSBL(Multiple Sparse Bayesian Learning)方法近似求解,实验表明该方法运算速度快,精度基本与T-MSBL方法相近。
利用改进后的方法在公开的高光谱遥感数据集上进行实验,实验结果表明该方法9类分类平均精度达到93.35%,依据V-I-S模型将9类地物合并为5类,其总体分类精度达到96.88%,与NLSMA方法相比,所提方法在能够取得相似结果精度的情况下,运算速度得到了较大的提高。