自动控制原理阻尼比计算公式
- 格式:doc
- 大小:12.74 KB
- 文档页数:2
自动控制原理(非自动化类)教材书后第1章——第3章练习题1。
2 根据题1。
2图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与C,d 用线连接成负反馈系统; (2) 画出系统框图。
解:1)由于要求接成负反馈系统,且只能构成串联型负反馈系统,因此,控制系统的净输入电压△U 与U ab 和U cd 之间满足如下关系: 式中,U ab 意味着a 点高,b 点低平,所以,反馈电压U cd 的c 点应与U ab 的a 点相连接,反馈电压U cd 的d 点应与U ab 的b 点相连接.2)反馈系统原理框图如图所示。
1.3题1.3图所示为液位自动控制系统原理示意图。
在任何情况下,希望液面高度c 维持不变,说明系统工作原理并画出系统框图。
题1.3图第二章 习 题2.1 试求下列函数的拉氏变换,设f<O 时,z(f)=0: (1) (2)(3) (4)2。
2试求下列象函数x(s )的拉氏反变换X (t ): 解:(1) 其中(2)2.3 已知系统的微分方程为式中,系统输入变量r(f )=6(£),并设,,(O)=),(0)=O ,求系统的输出y (£)。
题1.2图2.4 列写题2。
4图所示RLC 电路的微分方程。
其中,u i 为输入变量,u o 为输出变量。
解:根据回路电压方程可知2.5 列写题2。
5图所示RLC 电路的微分方程, 其中,u.为输入变量,u 。
为输出变量。
解:由电路可知, 2。
6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。
求题2。
6图所示运 算放大电路的传递函数。
其中,u i 为输入变量,u o 为输出变量.解:根据运算放大器的特点有2.7 简化题2.7图所示系统的结构图,并求传递函数C (s ) / R (s )。
题2.7图解:根据梅逊公式得: 前向通道传递函数P K :回路传递函数L K :(注意到回路中含有二个负号)特征方程式: 余子式:于是闭环传递函数为:2.8 简化题2.8图所示系统的结构图,并求传递函数C (s ) / R (s )。
自动控制原理公式自动控制系统最常用的数学描述是利用控制工程中的数学模型。
数学模型是通过分析和建立系统的动态行为方程、传输函数或状态空间方程来描述系统的数学形式。
以下是一些常用的控制原理公式:1.闭环系统传递函数公式闭环系统传递函数是表示控制器输出信号C(s)与参考输入信号R(s)之间的关系的函数。
通常表示为T(s)或G(s)。
2.开环传递函数公式开环传递函数是表示控制器输出信号和系统输入信号之间的关系的函数。
通常表示为G(s)。
3.比例控制器公式比例控制器是最简单的控制器之一,其输出信号与误差信号之间的关系为:C(t)=Kp*e(t),其中Kp为比例增益,e(t)为误差信号。
4.积分控制器公式积分控制器输出信号与误差信号的时间积分之间的关系为:C(t) = Ki * ∫e(t)dt,其中Ki为积分增益。
5.微分控制器公式微分控制器输出信号与误差信号的时间微分之间的关系为:C(t) = Kd * de(t)/dt,其中Kd为微分增益。
6.传递函数的极点和零点公式传递函数的极点和零点是指传递函数的分母和分子中令传递函数等于零的根。
传递函数的极点和零点对系统的稳定性、阻尼比、过渡特性等有重要影响。
7.控制系统稳定性判据公式控制系统稳定性判据是通过判断传递函数的极点位置来评估系统的稳定性。
例如,对于一阶系统,系统稳定的条件是极点实部小于零;对于二阶系统,系统稳定的条件是极点实部均小于零。
8.级联控制系统公式级联控制系统是由两个或多个控制回路组成的系统。
级联控制系统的传递函数可以通过将各个回路的传递函数相乘来获得。
9.PID控制器公式PID控制器是包含了比例控制器、积分控制器和微分控制器的三个组成部分的控制器。
PID控制器的输出信号与误差信号的线性组合关系为:C(t) = Kp*e(t) + Ki∫e(t)dt + Kd *de(t)/dt。
以上是一些常见的自动控制原理公式,用于描述和分析控制系统的特性和行为。
自动控制原理习题一、(20分)试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,四.(121m -=222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω五.(20分)某最小相角系统的开环对数幅频特性如下图所示。
要求(1) 写出系统开环传递函数; (2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。
(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率10101==c c ωω而相角裕度︒=+︒=85.2)(18011c ωϕγγ= 故系统稳定性不变。
由时域指标估算公式可得)11(4.016.0-+=σoo=o o 1σ(1(2(2)121)(=s G 2函数。
1、的输出量不会对系统的控制量产生影响。
开环控制结构简单、成本较低、系统控制精度取决于系统元部件、抗干扰能力较差。
(2分)2、根轨迹简称为根迹,它是开环系统某一参数从零变到无穷时,闭环特征方程式的根在s 平面上变化的轨迹。
(3分)系统根轨迹起始于开环极点,终至于开环零点。
(2分)二、看图回答问题(每小题10分,共20分)1、解:结论:稳定(2分)理由:由题意知系统位于s 右半平面的开环极点数0=P ,且系统有一个积分环节,故补画半径为无穷大,圆心角为2122πππ-=⨯-=-v 的圆弧,则奈奎斯特曲线如图1示,(3分)由图可知系统奈奎斯特曲线包围(-1,j0)点的圈数为000=-=-=-+N N N ,(3分)由奈奎斯特稳定判据,则系统位于s 右半平面的闭环极点数02=-=N P Z ,(2分)故闭环系统稳定。
词汇第一章自动控制 ( Automatic Control) :是指在没有人直接参与的条件下,利用控制装置使被控对象的某些物理量(或状态)自动地按照预定的规律去运行。
开环控制 ( open loop control ):开环控制是最简单的一种控制方式。
它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。
也就是说,控制作用的传递路径不是闭合的,故称为开环。
闭环控制 ( closed loop control) :凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制 Feedback Control 系统。
这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。
复合控制 ( compound control ):是开、闭环控制相结合的一种控制方式。
被控对象:指需要给以控制的机器、设备或生产过程。
被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。
控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。
被控量 (controlled variable ) :指被控对象中要求保持给定值、要按给定规律变化的物理量。
被控量又称输出量、输出信号。
给定值 (set value ) :是作用于自动控制系统的输入端并作为控制依据的物理量。
给定值又称输入信号、输入指令、参考输入。
干扰 (disturbance) :除给定值之外,凡能引起被控量变化的因素,都是干扰。
干扰又称扰动。
第二章数学模型 (mathematical model) :是描述系统内部物理量(或变量)之间动态关系的数学表达式。
传递函数 ( transfer function) :线性定常系统在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比,称为传递函数。
零点极点 (z ero and pole) :分子多项式的零点(分子多项式的根)称为传递函数的零点;分母多项式的零点(分母多项式的根)称为传递函数的极点。
导线阻尼比
导线的阻尼比是指传输信号时,导线内部电流振荡的能量损失与储存能量的比值。
阻尼比可用以下公式表示:阻尼比(Damping Ratio)= (电流振荡的能量损失) / (储存能量)
阻尼比反映了导线内能量损失的程度。
具体来说,当阻尼比为0时,没有能量耗散,电流将以振荡的方式无限制地在导线中流动;当阻尼比为1时,电流将被完全吸收和耗散,不会发生振荡。
在实际应用中,通常会使用具有合适阻尼比的电路来确保信号的稳定传输。
阻尼比的值取决于电路的电阻、电感和电容等参数。
较低的阻尼比可能导致振荡信号失真或干扰,而较高的阻尼比可能导致信号衰减。
因此,根据具体的电路要求和信号特性,需要选择适当的阻尼比值。
1-10:C D A A A C B C D C; 11-20:BDAAA BCDBA;21-30:AACCB CBCBA;31-40:ACADC DAXXB;41-50:ACCBC AADBB;51-60:BADDB CCBBX;61-70:DDBDA AACDB;71-80:ADBCA DCCAD;81-90:CAADC ABDCC;91-100:BCDCA BCAAB;101-112:CDBDA CCDCD CA《自动控制原理》考试说明(一)选择题1单位反馈控制系统由输入信号引起的稳态误差与系统开环传递函数中的下列哪个环节的个数有关?( )A.微分环节B.惯性环节C.积分环节D.振荡环节2 设二阶微分环节G(s)=s2+2s+4,则其对数幅频特性的高频段渐近线斜率为( )A.-40dB/dec B.-20dB/decC.20dB/dec D.40dB/dec3设开环传递函数为G(s)H(s)=K(s+1),其根轨迹( )s(s+2)(s+3)A.有分离点有会合点B.有分离点无会合点C.无分离点有会合点D.无分离点无会合点4 如果输入信号为单位斜坡函数时,系统的稳态误差e为无穷大,则此系统为ss( )A.0型系统B.I型系统C.Ⅱ型系统D.Ⅲ型系统5 信号流图中,信号传递的方向为( )A.支路的箭头方向B.支路逆箭头方向C.任意方向D.源点向陷点的方向6 描述RLC电路的线性常系数微分方程的阶次是( )A.零阶B.一阶C.二阶D.三阶7 方框图的转换,所遵循的原则为( )A.结构不变B.等效C.环节个数不变D.每个环节的输入输出变量不变8 阶跃输入函数r(t)的定义是( )A.r(t)=l(t)B.r(t)=x0C.r(t)=x0·1(t)D.r(t)=x0.δ(t)9 设单位负反馈控制系统的开环传递函数为G0(s)=()()B sA s,则系统的特征方程为( )A.G(s)=0 B.A(s)=0C.B(s)=0D.A(s)+B(s)=010 改善系统在参考输入作用下的稳态性能的方法是增加( )A.振荡环节B.惯性环节C.积分环节D.微分环节11当输入信号为阶跃、斜坡函数的组合时,为了满足稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥1 C.N≥2D.N≥312 设开环系统的传递函数为G(s)=1(0.21)(0.81)s s s ++,则其频率特性极坐标图与实轴交点的幅值|G (jω)|=( ) A.2.0 B.1.0 C.0.8D.0.1613设某开环系统的传递函数为G(s)=210(0.251)(0.250.41)s s s +++,则其相频特性θ(ω)=( )A.1124tg 0.25tg 10.25ωωω----- B.1120.4tg 0.25tg 10.25ωωω---+- C.1120.4tg 0.25tg 10.25ωωω---++ D.1120.4tg 0.25tg 10.25ωωω----+ 14设某校正环节频率特性G c (j ω)=1011j j ωω++,则其对数幅频特性渐近线高频段斜率为( )A.0dB /decB.-20dB /decC.-40dB /decD.-60dB /dec15 二阶振荡环节的对数幅频特性的低频段的渐近线斜率为( ) A.0dB /dec B.-20dB /dec C.-40dB /deCD.-60dB /dec16 根轨迹法是一种( ) A.解析分析法 B.时域分析法 C.频域分析法D.时频分析法 17 PID 控制器是一种( ) A.超前校正装置 B.滞后校正装置 C.滞后—超前校正装置D.超前—滞后校正装置 18 稳态位置误差系数K ρ为( ) A .)s (H )s (G 1lim0s →B. )s (H )s (sG lim 0s →C. )s (H )s (G s lim 20s →D. )s (H )s (G lim 0s →19 若系统存在临界稳定状态,则根轨迹必定与之相交的为( ) A .实轴B .虚轴C .渐近线D .阻尼线20 下列开环传递函数中为最小相位传递函数的是( ) A.)2s 2s )(1s (12+++B.2s 1-C.16s 4s 12+-D. 10s 1-21 当二阶系统的阻尼比ξ在0<ξ<l 时,特征根为( )A .一对实部为负的共轭复根B .一对实部为正的共轭复根C .一对共轭虚根D .一对负的等根22 二阶振荡环节对数幅频特性高频段的渐近线斜率为( ) A .-40dB /dec B .-20dB /dec C .0dB /decD .20dB /dec23 已知单位负反馈控制系统的开环传递函数为G(s)=2s49,则该闭环系统为( )A .稳定B .条件稳定C .临界稳定D .BIBO 稳定24 设系统的开环传递函数为G(s)H(s) =)4s )(2s ()3s 2(K +++,其在根轨迹法中用到的开环放大系数为( ) A .K /2B .KC .2KD .4K25 PI 控制器属于下列哪一种校正装置的特例( ) A .超前 B .滞后 C .滞后—超前 D .超前—滞后26 设系统的G(s)=1s 5s 2512++,则系统的阻尼比ξ为( )A .251B .51C .21D .127 设某系统开环传递函数为G(s)= )5s )(2s )(1s (10+++,则其频率特性的奈氏图起点坐标为( ) A .(0,j10) B .(1,j0) C .(10,j0)D .(0,j1)28 单位负反馈系统的开环传递函数G(s)= )1Ts (s )1s )(1s 2(K 2+++,K>0,T>0,则闭环控制系统稳定的条件是( ) A .(2K+1)>T B .2(2K+2)>T C .3(2K+1)>TD .K>T+1,T>229 设积分环节频率特性为G(jω)=j ω1,当频率ω从0变化至∞时,其极坐标中的奈氏曲线是( )A.正实轴B.负实轴C.正虚轴D.负虚轴30 控制系统的最大超调量σp反映了系统的( ) A.相对稳定性B.绝对稳定性C.快速性D.稳态性能31 当二阶系统的阻尼比ζ>1时,特征根为( )A.两个不等的负实数B.两个相等的负实数C.两个相等的正实数D.两个不等的正实数32 稳态加速度误差数Ka=( )A.G(s)H(s)lims→B.sG(s)H(s)lims→C.G(s)H(s)slim2s→D.G(s)H(s)1lims→33 信号流图中,输出节点又称为( ) A.源点B.陷点C.混合节点D.零节点34 设惯性环节频率特性为G(jω)=1j ω1.01+,则其对数幅频渐近特性的转角频率为ω= ( ) A .0.01rad /s B .0.1rad /s C .1rad /sD .10rad /s35 下列开环传递函数中为非最小相位传递函数的是( )A .)1s 10)(1s 4(1++B .)1s 5(s 1+C .)1s 5(s )1s (10+-D .2s 2s 12++36 利用开环奈奎斯特图可以分析闭环控制系统的( ) A .稳态性能 B .动态性能 C .精确性D .稳定性37 要求系统快速性好,则闭环极点应距( ) A .虚轴远 B .虚轴近 C .实轴近D .实轴远38 已知开环传递函数为G(s)=1)ζs 0.2s(0.01s k2++ (ζ>0)的单位负反馈系统,则闭环系统稳定时k 的范围为( )A .0<k<20ζB .3<k<25ζC .0<k<30ζD .k>20ζ39 设单位反馈控制系统的开环传递函数为G o (s)=)4s (s 1+,则系统的阻尼比ζ等于( )A .21B .1C .2D .440 开环传递函数G(s)H(s)=10)2)(s (s 5)k(s +++,当k 增大时,闭环系统( )A .稳定性变好,快速性变差B .稳定性变差,快速性变好C .稳定性变好,快速性变好D .稳定性变差,快速性变差41 一阶系统G (s )=1Ts K +的单位阶跃响应是y (t )=( )A.K (1-Tt e -)B.1-Tt e -C.T te TK - D.K Tt e -42 当二阶系统的根为一对相等的负实数时,系统的阻尼比ζ为( )A. ζ=0B. ζ=-1C. ζ=1D.0<ζ<143 当输入信号为阶跃、斜坡、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥l C.N≥2D.N≥344 设二阶振荡环节的频率特性为164j )j (16)j (G 2+ω+ω=ω,则其极坐标图的奈氏曲线与负虚轴交点频率值=ω ( ) A.2 B.4C.8D.1645 设开环系统频率特性为)14j )(1j (j 1)j (G +ω+ωω=ω,当频率ω从0变化至∞时,其相角变化范围为( ) A.0°~-180° B.-90°~-180° C.-90°~-270°D.-90°~90°46 幅值条件公式可写为( )A.∏∏==++=m1i in1j j|zs ||p s |KB. ∏∏==++=m1i in1j j|zs ||p s |KC. ∏∏==++=n1j jm1i i|ps ||z s |KD. ∏∏==++=n1j jm1i i|ps ||z s |K47 当系统开环传递函数G (s )H (s )的分母多项式的阶次n 大于分子多项式的阶次m 时,趋向s 平面的无穷远处的根轨迹有( ) A.n —m 条 B.n+m 条 C.n 条D.m 条48 设开环传递函数为G (s )H (s )=)5s )(3s ()9s (K +++,其根轨迹( )A.有会合点,无分离点B.无会合点,有分离点C.无会合点,无分离点D.有会合点,有分离点49 采用超前校正对系统抗噪声干扰能力的影响是( ) A.能力上升 B.能力下降 C.能力不变D.能力不定50 单位阶跃函数r (t )的定义是( ) A.r (t )=1B.r (t )=1(t )C.r (t ) =Δ(t )D.r (t )=δ(t )51 设惯性环节的频率特性1101)(+=ωωj j G ,则其对数幅频渐近特性的转角频率为( ) A.0.01rad /s B.0.1rad /s C.1rad /sD.10rad /s52 迟延环节的频率特性为ωτωj e j G -=)(,其幅频特性M (ω)=( ) A.1 B.2 C.3D.453 计算根轨迹渐近线的倾角的公式为( ) A.m n l ++=πϕ)12( B. m n l ++-=πϕ)12(C. mn l ++=πϕ)12(D. mn l -+=πϕ)12(54 已知开环传递函数为)1()3()(-+=s s s k s G k 的单位负反馈控制系统,若系统稳定,k 的范围应为( ) A.k<0 B.k>0 C.k<1D.k>155 设二阶系统的4394)(2++=s s s G ,则系统的阻尼比ζ和自然振荡频率n ω为( )A.2191、 B. 3241、C. 9231、D. 4121、56 一阶系统11)(+=Ts s G 的单位斜坡响应y (t )=( )A.1-e -t/TB.T1e -t/TC.t-T+Te -t/TD.e -t/T57 根轨迹与虚轴交点处满足( ) A.0)()(=ωωj H j G B. 0)]()(Re[=ωωj H j G C. 1)()(-=ωωj H j G D. 0)]()(Im[=ωωj H j G58 开环传递函数为)(4p s s +,讨论p 从0变到∞时闭环根轨迹,可将开环传递函数化为( ) A.42+s ps B. 42+s pC. 42-s psD.42-s p59 对于一个比例环节,当其输入信号是一个阶跃函数时,其输出是( ) A.同幅值的阶跃函数 B.与输入信号幅值成比例的阶跃函数 C.同幅值的正弦函数 D.不同幅值的正弦函数60 对超前校正装置TsTss G c ++=11)(β,当φm =38°时,β值为( )A .2.5B .3C .4.17D .561 决定系统传递函数的是系统的( ) A .结构 B .参数 C .输入信号D .结构和参数62 终值定理的数学表达式为( ) A .)(lim )(lim )(0s X t x x s t →∞→==∞B .)(lim )(lim )(s X t x x s t ∞→∞→==∞C .)(lim )(lim )(0s sX t x x x t ∞→→==∞D .)(lim )(lim )(0s sX t x x s t →∞→==∞63 梅森公式为( )A .∑=∆nk k k p 1B .∑=∆∆nk kk p11C .∑=∆∆nk k11D .∑∆∆k k p 164 斜坡输入函数r(t)的定义是( ) A .t t r =)( B .)(1·)(0t x t r = C .2)(at t r = D .vt t r =)(65 一阶系统1)(+=Ts Ks G 的时间常数T 越小,则系统的响应曲线达到稳态值的时间( ) A .越短 B .越长 C .不变D .不定66 设微分环节的频率特性为ωωj j G =)(,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是( ) A .正虚轴 B .负虚轴 C .正实轴D .负实轴67 设某系统的传递函数110)(+=s s G ,则其频率特性)(ωj G 的实部=)(ωR ( )A .2110ω+ B .2110ω+-C .Tω+110D .Tω+-11068 若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T ,则此系统的稳定性为( ) A .稳定 B .临界稳定 C .不稳定D .无法判断69 设惯性环节的频率特性为110)(+=ωωj j G ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限70 开环传递函数为)2()5()()(++=s s s k s H s G 的根轨迹的弯曲部分轨迹是( )A .半圆B .整圆C .抛物线D .不规则曲线71 开环传递函数为)106)(1()()(2++-=s s s ks H s G ,其根轨迹渐近线与实轴的交点为( )A .35-B .53-C .53D .3572 频率法和根轨迹法的基础是( ) A .正弦函数 B .阶跃函数 C .斜坡函数D .传递函数73 方框图化简时,并联连接方框总的输出量为各方框输出量的( ) A .乘积 B .代数和 C .加权平均D .平均值74 求取系统频率特性的方法有( ) A .脉冲响应法B .根轨迹法C .解析法和实验法D .单位阶跃响应法75 设开环系统频率特性为G (jω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/sD .2rad/s76 某单位反馈控制系统开环传递函数G (s )=21ss +α,若使相位裕量γ=45°,α的值应为多少?( ) A .21B .21C .321D .42177 已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s 的频率作等幅振荡,则a 的值应为( )A .0.4B .0.5C .0.75D .178 设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定79 设开环传递函数为G(s)=)1(+s s k,在根轨迹的分离点处,其对应的k 值应为( ) A .41B .21C .1D .480 单位抛物线输入函数r(t)的数学表达式是r(t)=( ) A .at 2 B .21Rt 2C .t 2D .21t 281 当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为( ) A .ζ<0 B .ζ=0 C .0<ζ<1D .ζ≥182 已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为( ) A .0型系统 B .I 型系统 C .Ⅱ型系统D .Ⅲ型系统83 设某环节的传递函数为G(s)=121+s ,当ω=0.5rad /s 时,其频率特性相位移θ(0.5)=( )A .-4πB .-6πC .6πD .4π84 超前校正装置的最大超前相角可趋近( ) A .-90° B .-45° C .45°D .90°85 单位阶跃函数的拉氏变换是( ) A .31sB .21sC .s1D .186 同一系统,不同输入信号和输出信号之间传递函数的特征方程( ) A .相同 B .不同 C .不存在D .不定87 2型系统对数幅频特性的低频段渐近线斜率为( ) A .-60dB /dec B .-40dB /dec C .-20dB /decD .0dB /dec88 已知某单位负反馈系统的开环传递函数为G(s)=)1(24+s s ,则相位裕量γ的值为( ) A .30° B .45° C .60°D .90°89 设开环传递函数为G(s)H(s)=)3)(2()1(+++s s s s k ,其根轨迹渐近线与实轴的交点为( ) A .0 B .-1 C .-2D .-390 惯性环节又称为( ) A .积分环节 B .微分环节 C .一阶滞后环节 D .振荡环节91 没有稳态误差的系统称为( ) A .恒值系统 B .无差系统 C .有差系统 D .随动系统 92 根轨迹终止于( ) A .闭环零点 B .闭环极点C .开环零点D .开环极点93 若某系统的传递函数为G (s )=1)s s(T K1+,则相应的频率特性G (jω)为( )A .1)ω(jωT K 1+B .1)ω(jωT j K1+-C .1)ω(jωT K1+-D .1)ω(jωT j K1+94 若劳斯阵列表中某一行的参数全为零,或只有等于零的一项,则说明在根平面内存在的共轭虚根或共轭复根对称于( ) A .实轴 B .虚轴 C .原点D .︒45对角线95 滞后校正装置最大滞后相角处的频率ωm 为( )A .βT 1B .βTC .βT D .T β96 已知α+jβ是根轨迹上的一点,则必在根轨迹上的点是( ) A .-α+jβ B .α-jβC .-α-jβD .β+jα97 当原有控制系统已具有满意的动态性能,但稳态性能不能满足要求时,可采用串联 ( )A .超前校正B .滞后校正C .反馈校正D .前馈校正98 设l 型系统开环频率特性为G (jω)=1)(j10ωj 0.1+ω,则其对数幅频渐近特性低频段(0ω→)的L (ω)为( ) A .-20-20lgω B .20-20lgω C .40-20lgωD .20+20lgω99 设某开环系统的传递函数为G (s )=1)0.4s 1)(0.25s (0.25s 102+++,频率特性的相位移(θω)为( )A .-tg-10.25ω-tg-120.25ω10.4ω- B .tg-10.25ω+tg-120.25ω10.4ω-C .tg-10.25ω-tg-120.25ω10.4ω-D .-tg-10.25ω+tg -120.25ω10.4ω-100 线性定常系统传递函数的变换基础是A.齐次变换B.拉氏变换C.富里哀变换D.Z 变换101 在电气环节中,可直接在复域中推导出传递函数的概念是 A.反馈 B.负载效应 C.复阻抗D.等效变换102 不同的物理系统,若可以用同一个方框图表示,那么它们的 A.元件个数相同B.环节数相同C.输入与输出的变量相同D.数学模型相同103 设某函数x (t )的数学表达式为()00,0,0t x t x t <⎧=⎨≥⎩,式中x 0为常数,则x (t )是A.单位阶跃函数B.阶跃函数C.比例系数D.常系数104 通常定义当t ≥t s 以后,系统的响应曲线不超出稳态值的范围是 A.±1%或±3% B.±1%或±4% C.±3%或±4%D.±2%或±5%105 若要改善系统的动态性能,可以增加A.微分环节B.积分环节C.振荡环节D.惯性环节106 当输入信号为阶跃、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为 A.N≥0 B.N≥1 C.N≥2D.N≥3107 设开环系统传递函数为0.5()(101)(0.11)G s s s s =++,则其频率特性的奈氏图与负实轴交点的频率值ω= A.0.1rad /s B.0.5 rad /s C.1 rad /sD.10 rad /s108 设某开环系统的传递函数为24(101)()(1)s G s s s +=+,其频率特性的相位移θ(ω)=A.-90°+tg -1ω- tg -110ωB. -90°+ tg -1ω+ tg -110ωC. -180°- tg -110ω+ tg -1ωD. -180°+ tg -110ω- tg -1ω109 设II 型系统开环幅相频率特性为21()()(10.1)j G j j j ωωωω+=+,则其对数幅频渐近特性与ω轴交点频率为 A.0.01 rad /s B.0.1 rad /s C.1 rad /sD.10 rad /s110 0型系统对数幅频特性的低频段渐近线斜率为A.-60 dB/decB.-40 dB/decC.-20 dB/decD.0 dB/dec111 系统的根轨迹关于A.虚轴对称B.原点对称C.实轴对称D.渐近线对称112 PD控制器具有的相位特征是A.超前B.滞后C.滞后-超前D.超前一滞后113 控制系统采用负反馈形式连接后,下列说法正确的是()A 一定能使闭环系统稳定B 系统的动态性能一定会提高C 一定能使干扰引起的误差逐渐减少,最后完全消除D 一般需要调整系统的结构和参数,才能改善系统的性能114 单输入单输出的线性系统其传递函数与下列哪些因素有关()A 系统的外作用信号B 系统或元件的结构和参数C 系统的初始状态D 作用于系统的干扰信号115 一阶系统()1+=Ts Ks G 的放大系数K 愈小,则系统的输出响应的稳态值( ) A 不变B 不定C 愈小D 愈大116 当二阶系统的根分布在根平面的虚轴上时,则系统的阻尼比ξ为( ) A ξ<0B 0<ξ<1C ξ =0D ξ>1117 高阶系统的主导极点越靠近虚轴,则系统的( ) A 准确度越高 B 准确度越低 C 响应速度越快 D 响应速度越慢118 下列哪种措施达不到提高系统控制精度的目的( ) A 增加积分环节 B 提高系统的开环增益K C 增加微分环节 D 引入扰动补偿119 若二个系统的根轨迹相同,则二个系统有相同的( ) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应120 若某最小相位系统的相角裕度γ>00,则下列说法正确的是( ) A 系统不稳定 B 只有当幅值裕度k g >1 时系统才稳定 C 系统稳定 D 不能用相角裕度判断系统的稳定性121 进行串联超前校正后,校正前的穿越频率ωc 与校正后的穿越频率'c ω 的关系,通常是( )A ωc = 'c ωB ωc > 'c ωC ωc < 'c ωD ωc 与'c ω无关。
固有频率和阻尼比是描述振荡系统特性的两个重要参数。
对于
一个二阶线性常微分方程,它的一般形式是:
m*d²x/dt²+ c*dx/dt + k*x = 0
其中,m 是质量,c 是阻尼系数,k 是刚度系数。
1. **固有频率ω**: 固有频率是描述系统振动特性的一个参数,它与系统的质量和刚度有关,而与阻尼无关。
对于上述的二阶方程,固有频率ω可以通过以下公式计算:
ω= sqrt(k/m)
其中,sqrt表示平方根函数。
2. **阻尼比ξ**: 阻尼比是描述系统阻尼特性的一个参数,它
与系统的阻尼系数和质量有关。
对于上述的二阶方程,阻尼比ξ可以通过以下公式计算:
ξ= c/2*sqrt(m*k)
需要注意的是,当阻尼比ξ的值在0和1之间时,系统的阻尼
是有效的;当ξ=0时,系统无阻尼;当ξ>1时,系统可能会发生共振。
因此,要得到二阶方程的固有频率和阻尼比,首先需要知道系
统的质量m、刚度系数k和阻尼系数c。
然后通过上述的公式进行计算即可。
习题3-1.选择题:(1)已知单位负反馈闭环系统是稳定的,其开环传递函数为:)1(2)s )(2+++=s s s s G (,系统对单位斜坡的稳态误差是: 3-2 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+001251253-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
图 题3-3图解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s 令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。
3-4 设二阶控制系统的单位阶跃响应曲线如图 所示。
如果该系统为单位反馈控制系统,试确定其开环传递函数。
图 题3-4图 解:由图知,开环传递函数为3-5 设角速度指示随动统结构图如图3-40所示。
若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少图3-40 题3-5图解:依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。
写出系统闭环传递函数Ks s Ks 101010)(2++=Φ闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-6 图所示为某控制系统结构图,是选择参数K 1和K 2,使系统的ωn =6,ξ=1.3-7 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。
自动控制原理阻尼比计算公式阻尼比(damping ratio)是描述振动系统衰减能力的重要参数,它对于系统的稳定性和响应性能具有重要影响。
在自动控制原理中,阻尼比的计算通常基于系统的传递函数。
本文将介绍阻尼比的计算公式及其推导过程。
首先,我们考虑一个具有阻尼的二阶振动系统,其传递函数为:G(s) = ωn^2 / (s^2 + 2ξωns + ωn^2)其中,ωn表示系统的固有频率,ξ表示阻尼比。
传递函数的分母为二次方程,根据解方程的一般公式可以得到两个根:s1,2=-ξωn±ωn√(ξ^2-1)由于阻尼比通常为非负实数,因此ξ^2 - 1 ≥ 0。
令ξ = cos(θ),其中θ为一个角度,那么上式可以改写为:s1, 2 = -ωnξ ± ωn√(ξ^2 - 1) = -ωn cos(θ) ± ωnsin(θ)我们可以看到,当ξ^2-1=0时,根为实数且相等;当ξ^2-1>0时,根为复数共轭,由此可见,阻尼比的大小直接决定了根的分布。
根据阻尼比的定义,我们可以将其表达为:ξ=-(1/ωn)(Re(s1)+Re(s2))其中,Re(s1)和Re(s2)分别表示根的实部。
将s1,2代入上式可以得到:ξ = -(1 / ωn)(-ωn cos(θ) + ωn cos(θ)) = cos(θ)因此,我们可以得到阻尼比与角度θ的关系为:ξ = cos(θ)以上推导过程是针对一个具有阻尼的二阶振动系统的情况。
在实际应用中,阻尼比的计算公式可能会因系统模型的不同而有所差异。
需要注意的是,阻尼比的范围通常为0到1之间。
当阻尼比等于1时,系统的阻尼达到临界阻尼,此时系统的响应最为快速而不会产生振荡。
当阻尼比小于1时,系统的阻尼较小,可能会导致系统的振荡。
当阻尼比大于1时,系统的阻尼较大,可能会使系统的响应较为缓慢。
综上所述,阻尼比的计算公式可通过系统的传递函数进行推导,通常为ξ = cos(θ)。
第二部分控制理论实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBCC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用方法。
2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。
3.测量各典型环节的阶跃响应曲线,了解参数变化对其动态特性的影响。
二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台2.PC机1台(含上位机软件) 37针通信线1根3.双踪慢扫描示波器1台(可选)三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。
四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。
熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益。
在附录中介绍了典型环节的传递函数、理论上的阶跃响应曲线和环节的模拟电路图。
五、实验步骤1.熟悉实验台,利用实验台上的模拟电路单元,构建所设计的(可参考本实验附录)并连接各典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。
2.对相关的实验单元的运放进行调零(令运放各输入端接地,调节调零电位器,使运放输出端为0V)注意:积分、比例积分、比例积分微分实验中所用到的积分环节单元)不需要锁零(令积分电容放电)时,需将锁零按钮弹开,使用锁零按扭时需要共地,则需要把信号发生器的地和电源地用导线相连。
3.测试各典型环节的阶跃响应,并研究参数变化对输出响应的影响1) 不用上位机时,将实验平台上 “阶跃信号发生器”单元的输出端与相关电路的输入端相连,选择“正输出”然后按下按钮,产生一个阶跃信号(用万用表测试其输出电压,并调节电位器,使其输出电压为“1”V ,用示波器x-t 显示模式观测该电路的输入与输出曲线如果效果不好要做新做则只要按一下锁零开关对电容放电,在重新做即可。
第三章3-3 已知各系统的脉冲响应,试求系统的闭环传递函数()s Φ:()()1.25(1)()0.0125;(2)()510sin 445;(3)()0.11t t k t e k t t t k t e --==++=-解答: (1) []0.0125()() 1.25s L k t s Φ==+(2)[])222223222()()5sin 4cos 425452442142511616116s L k t L t t t s s s s s s s s ⎡⎤Φ==++⎢⎥⎣⎦⎫=++⎪++⎭⎛⎫+++ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭(3)[]()111()()0.1110313s L k t s s s s ⎡⎤⎢⎥Φ==-=⎢⎥+⎢⎥+⎣⎦ 3-4 已知二阶系统的单位阶跃响应为)6.1sin(5.1210)(1.532.1︒-+-=t t h et试求系统的超调量σ%,峰值时间tp和调节时间ts.解答:因为0<ξ<1,所以系统是欠阻尼状态。
阻尼比ξ=cos(1.53︒)=,自然频率26.0/2.1==w n,阻尼振荡频率wd=6.16.01212=-⨯=-=ξw w n d 1. 峰值时间tp的计算96.16.1===ππwt dp2. 调节时间ts的计算9.226.05.35.3=⨯==w t ns ξ3. 超调量σ%的计算%48.9%1006.0%100%221/6.01/=⨯=⨯=-⨯---eeππξξσ3-5设单位反馈系统的开环传递函数为)6.0(14.0)(++=s s s s G ,试求系统在单位阶跃输入下的动态性能。
解答:方法一:根据比例-微分一节推导出的公式)135(6.014.0)12/()1()(+⨯⨯+=++=s s s s s s K s G w T n d ξ1)5.2(4.0114.0)6.0(14.01)6.0(14.0)2()(1)()(22222+++=+++=+++++=+++=+=s s s s s s s s s s s zs z S G s G s s s w w s w nn dn ξφ)1()](1[12)1sin(1)(222222ξξξξξξξπψξddnddndnn ddn tarctg z arctg z r t w r t h www w zw e n d -+--+-=-+-=ψ+-+=-把z=1/Td=,1=wn,5.0=ξd代入可得)3.8323sin(5.005.11)7.9623sin(5.005.11)( ---=--+=t e t t e t t h峰值时间的计算0472.1)1(2=-=ξξβdddarctg ,-1.6877=ψ158.312=--=ξβψdndpwt超调量得计算%65.21%10011%22=⨯--=-ξξξσddetrpd调节时间得计算29.6)ln(21ln )2ln(2131222=--+-+=-ww w z t ndn n d sd z ξξξ方法二:根据基本定义来求解闭环传递函数为114.0)6.0(14.01)6.0(14.0)(1)()(2+++=+++++=+=s s s s s s s s S G s G s s φ当输入为单位阶跃函数时 )232()21(21.0)232()21(2)21(116.01)1(14.0)(22++-++++-+=++--+=+++=s s s s s s s s s s s C s s 得单位阶跃响应)23sin(1.0)23cos(1)(2121t t t h e et --⨯--=)3.8423sin(121 +-=-t et )0(≥t 1. 峰值时间tp的计算 对h(t)求导并令其等于零得023)23cos()23sin(3.843.842121=⨯+-+︒-︒-t e t epp t t p p 3)23tan(3.84=+︒t p t p = 2. 超调量σ%的计算 %100)()()(%⨯∞∞-=h h h t p σ=%3. 调节时间ts得计算05.0)84.523sin(21≤-⨯-t est s5.33=t s3-6.已知控制系统的单位阶跃响应为6010()10.2 1.2t t h t e e --=+- ,试确定系统的阻尼比ζ和自然频率n ω。
自动控制原理公式汇总松鼠学长自动控制原理涉及的公式有很多,以下列举一些常见的公式:1.控制器传递函数:H(s) = Kp + Ki/s + Kds其中,Kp为比例增益,Ki为积分增益,Kd为微分增益,s为Laplace变量。
2.开环传递函数:G(s) = H(s) * P(s)其中,G(s)为开环传递函数,P(s)为系统传递函数。
3.闭环传递函数:T(s) = G(s) / (1 + G(s) * H(s))其中,T(s)为闭环传递函数。
4.稳态误差公式:e_ss = 1 / (1 + G(0))其中,e_ss为稳态误差,G(0)为开环传递函数的静态增益。
5.频率响应公式:G(jω) = |G(jω)| * exp(jθ)其中,G(jω)为频率响应,|G(jω)|为增益,θ为相位。
此外,控制系统还有一些特殊情况下的公式,如1.一阶惯性环节的传递函数:P(s) = K / (Ts + 1)其中,K为增益,T为时间常数。
2.二阶惯性环节的传递函数:P(s) = K / (T^2s^2 + 2ζTs + 1)其中,K为增益,T为时间常数,ζ为阻尼比。
以上只是一些常见的公式,实际上,自动控制原理还涉及到了更多的公式和理论,如PID控制算法的具体公式等等。
在不同的控制问题和应用中,还会涉及到更多的特定公式。
补充拓展:自动控制原理还包括了许多其他重要的概念和原理,如采样定理、校正方法、反馈控制系统等。
此外,还有针对不同类型系统的特定控制方法,如模糊控制、自适应控制、最优控制等。
这些方法也涉及到特定的公式和算法。
总之,自动控制原理是一个复杂而庞大的学科,其公式和理论涉及到多个方面。
在应用中,需要根据具体的问题和系统来选择适当的公式和方法。
自动控制原理阻尼比计算公式
在自动控制领域,阻尼比是一个非常重要的概念。
阻尼比是指系统的阻尼与临界阻尼的比值。
它是一个无量纲的参数,通常用ζ表示。
阻尼比的大小与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
因此,阻尼比的计算是自动控制中的一个重要问题。
在本文中,我们将介绍阻尼比的定义、计算公式及其应用。
首先,我们来看看阻尼比的定义。
阻尼比的定义
阻尼比是指系统的阻尼与临界阻尼的比值。
临界阻尼是指系统在达到稳态时,振动的幅值最小的阻尼。
当阻尼比为1时,称为临界阻尼。
当阻尼比小于1时,称为欠阻尼;当阻尼比大于1时,称为过阻尼。
阻尼比的计算公式
阻尼比的计算公式如下:
ζ = c / c_c
其中,ζ表示阻尼比,c表示系统的阻尼,c_c表示临界阻尼。
系统的阻尼可以通过测量系统的阻尼系数来得到。
阻尼系数是指系统在受到外力作用后,系统所受到的阻力与其速度之比。
阻尼系数可以通过实验测量来得到。
一般来说,阻尼系数与系统的阻尼成正比。
因此,我们可以通过测量系统的阻尼系数来得到系统的阻尼。
临界阻尼可以通过系统的固有频率来计算。
固有频率是指系统在无外力作用下,自由振动的频率。
当系统的阻尼等于临界阻尼时,系
统的固有频率就等于系统的自然频率。
因此,我们可以通过测量系统的固有频率来计算系统的临界阻尼。
阻尼比的应用
阻尼比是自动控制中的一个重要参数,它与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
在控制系统的设计中,我们需要根据实际情况来选择合适的阻尼比。
当阻尼比小于1时,系统处于欠阻尼状态。
在这种情况下,系统的振幅会不断增大,直到系统失稳。
因此,我们需要加大系统的阻尼,以提高系统的稳定性。
当阻尼比大于1时,系统处于过阻尼状态。
在这种情况下,系统的响应速度会变慢,因为阻尼会抑制系统的振荡。
因此,我们需要适当减小系统的阻尼,以提高系统的响应速度。
当阻尼比等于1时,系统处于临界阻尼状态。
在这种情况下,系统的响应速度和稳定性都达到了最优值。
因此,我们需要尽可能地使系统接近临界阻尼状态,以达到最优的控制效果。
总结
阻尼比是自动控制中的一个重要概念,它与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
阻尼比的计算可以通过测量系统的阻尼系数和固有频率来得到。
在控制系统的设计中,我们需要根据实际情况来选择合适的阻尼比,以达到最优的控制效果。