沪科版九年级数学教案
- 格式:docx
- 大小:3.23 KB
- 文档页数:3
沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。
本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。
通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。
但是,对于反比例函数这一抽象的概念,学生可能难以理解。
因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。
2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,让学生运用反比例函数解决。
3.教学设备:投影仪、计算机、黑板等。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。
写作是培养人的观察、联想、想象、思维和记忆的重要手段。
相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
九年级下册数学教学设计沪科版篇一1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具ppt课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称. 同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4×40=96 两个内项的积是1.6×60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。
第26章概率初步26.3 用频率估计概率教学目标教学反思1.能用试验的方法估计一些复杂的随机事件的概率,理解当试验次数足够大时,试验频率将稳定于理论概率.2.通过试验、统计等活动,进一步发展学生合作交流的意识和能力.3.积极参与数学活动,通过试验提高学生学习数学的兴趣,鼓励学生思维的多样性.教学重难点重点:体会用频率估计概率的必要性和合理性,学会依据问题特点用频率来估计事件发生的概率.难点:理解频率与概率的关系,会用频率估计概率解决实际问题.教学过程导入新课《红楼梦》第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同……袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作揖,笑道:“原来今儿也是姐姐的芳诞.”……探春忙问:“原来邢妹妹也是今儿?我怎么就忘了.”……探春笑道:“倒有些意思,一年十二个月,月月有几个生日.人多了,便这等巧,也有三个一日的,两个一日的……问题:为什么会“便这等巧”?设计意图:以小说情节开篇引人入胜,直接引入与生日有关的话题,激发学生的学习兴趣,学生置身于情境之中,并陷入思考:为什么“便这等巧”?由此引出本节要研究的课题.探究新知预习新知400个同学中一定有2个同学的生日相同(可以不同年)吗?300个同学呢?50个同学中,很有可能就有2个同学的生日相同.你同意这个说法吗?对于上面三个问题,先让学生独立思考回答并阐述理由,然后同学们各抒己见讨论这几个问题.反思:如果50个同学中有2人生日相同,能否说明50人中有2人生日相同的概率为1?如果50个同学中没有2人生日相同,能否说明50人中有2人生日相同的概率为0?设计意图:通过这三个问题的提问让学生从一个必然事件过渡到一个不确定事件,在最后一个问题中很好地引发学生认知矛盾,从而激发学生浓厚的研究兴趣.合作探究教师组织学生通过自己班级的实际情况来验证第3个问题.(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选取50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,(.活动提示:①为了节约时间,可以对生日的表示方式简化并以小组的形式参与收集、整理数据,以保证时间的充分利用. ②鼓励学生大胆讨论、交流、发言,从大量重复试验中初步感受到本问题的概率. ③在活动和分析的基础上,激励学生提出更好的活动方案. 在学生交流汇报之后,教师总结: 人们往往觉得两个人生日相同是一件可能性不大的事情,但计算结果告诉我们,如果人数达到50人,那么这种可能性就会非常大. 设计意图:让学生完整地经历一次从收集数据到整理数据,再到利用试验频率估计概率的过程,同时借助一个很有认知矛盾的问题很好地调动学生的积极性. 用频率估计概率:一般地,在大量重复试验下,随机事件A 发生的频率m n(这里n 是总试验次数,它必须相当大,m 是在n 次试验中随机事件A 发生的次数)会稳定到某个常数p.于是,我们用p 这个常数表示随机事件A 发生的概率,即 P (A )=p . 例1 判断正误: (1)连续掷一枚质地均匀的硬币10次,结果10次全部是正面,则正面向上的概率是1. (2)小明掷硬币10 000次,则正面向上的频率在0.5附近. (3)设一大批灯泡的次品率为0.01,那么从中抽取1 000只灯泡,一定有10只次品. 【解】(1)错误 (2)正确 (3)错误 例2 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得(1(2)估计该麦种的发芽概率. (3)如果播种该种小麦每公顷所需麦苗4 181 818颗,种子发芽后的成秧率为87%,该麦种的千粒质量为35 g ,那么播种3公顷该种小麦,估计需麦种的质量为多少? 【问题探索】(引发学生思考)已知试验总数和频数,怎样计算频率?已知频率,怎样估计概率?【解】(1)0.8 0.9 0.92 0.94 0.952 0.951 0.95 0.95(2)估计该麦种的发芽概率为0.95.(3)设需x kg 麦种.由题意,得x ·1 000×1 00035×0.95×87%=3×4 181 818.解得x ≈531.即播种3公顷该种小麦,估计需531 kg 麦种. 【归纳总结】估计概率不能随便取其中一个频率,也不能以为最后的频率就是概率,而要看频率随试验次数的增加是否趋于稳定.教学反思【思考】频率与概率的关系 联系:复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与每次试验无关.课堂练习1.下列说法正确的是 ( )A.不透明袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机摸出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么买这种彩票1 000张一定会中奖D.连续掷一枚均匀的硬币,若5次都是正面朝上,则第6次仍然可能正面朝上2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,这些玻璃球除颜色外其他完全相同.小李通过多次摸玻璃球试验后,发现其中摸到红色玻璃球和黑色玻璃球的频率分别稳定在15%和45%,则口袋中白色玻璃球的个数很可能是( )A. 16B. 15C.18D. 21 3.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一个球记下颜色,再把它放回口袋中摇匀,记为1次试验,共试验200次,其中120次摸到黄球,由此估计口袋中的黄球有______个.4.在一个有10万人的小镇上,随机调查了2 000人,其中有250人看早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看早间新闻的大约有多少人?)由上表可知:柑橘损坏率是 ,完好率是 .(2)某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适? 参考答案 1.D 2.A3.154.解:根据概率的意义,可以认为在该镇随便问一个人,他看早间新闻的概率大约等于2502 000=0.125.该镇看早间新闻的大约有100 000×0.125=12 500(人). 5.(1)0.10 0 .90教学反思(2)根据估计的完好率可以知道,在10 000千克柑橘中完好柑橘的质量为10 000×0.9=9 000(千克),完好柑橘的实际成本为2100002090009⨯=≈2.22(元/千克).设每千克柑橘的定价为x 元,则应有 (x -2.22)×9 000=5 000, 解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获得利润5 000元.布置作业教材第108页练习板书设计26.3 用频率估计概率教学反思。
沪科版数学九年级上册《黄金分割》教学设计一. 教材分析沪科版数学九年级上册《黄金分割》是学生在学习几何知识的基础上,进一步了解和掌握黄金分割的概念、性质和应用。
教材从生活实例出发,引出黄金分割的概念,并通过几何图形让学生深入理解黄金分割的性质。
本节课的内容对于学生来说既有趣又具有挑战性,能够激发学生的学习兴趣和探究欲望。
二. 学情分析学生在学习本节课之前,已经掌握了基本的几何知识,如相似三角形、平行线等。
他们对几何图形的观察和分析能力较强,但可能对黄金分割的概念和性质理解不够深入。
因此,在教学过程中,教师需要注重引导学生从生活实例中发现黄金分割,并通过几何图形让学生深入理解黄金分割的性质。
三. 教学目标1.知识与技能:让学生了解黄金分割的概念,掌握黄金分割的性质,并能运用黄金分割解决实际问题。
2.过程与方法:通过观察生活实例和几何图形,培养学生的观察能力、分析能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念和性质。
2.难点:黄金分割在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现黄金分割,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考和探究,培养学生的分析能力和推理能力。
3.合作学习法:分组讨论,让学生在合作中交流、思考,提高学生的团队协作能力。
六. 教学准备1.准备生活实例和几何图形的图片,用于导入和呈现。
2.准备相关的教学PPT,展示黄金分割的概念和性质。
3.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活实例和几何图形的图片,如建筑设计、艺术作品等,引导学生发现这些图形中都存在一种特殊的美感。
提问:这种美感是如何产生的?引出黄金分割的概念。
2.呈现(10分钟)介绍黄金分割的定义:将一条线段分为两部分,使其中一部分与整体的比例等于另一部分与这部分的比例,这个比例约为1:1.618。
沪科版九年级数学上册教案5篇沪科版九年级数学上册教案5篇教案是以系统方法为指导。
教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
下面小编给大家带来关于沪科版九年级数学上册教案,方便大家学习沪科版九年级数学上册教案1教学目标1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3遇到不理解或不懂的地方,用下划线和?标记出来。
便于交流时提出。
4自己的建议体会方法可以在旁边作好批注。
教学重难点1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具课件教学过程一快乐自学你喜欢运动吗?调查本班同学喜欢的运动项目。
根据下面的统计图:六(1)班最喜欢的运动项目统计图1说一说:从这幅统计图中你能获取哪些信息?2我知道这是一幅( )统计图,它的特点是( )。
3我最喜欢的运动项目是( ),它占全班人数的百分比是( )。
要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?(3)你还能提出什么问题?二合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?1我发现扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2扇形统计图的特点是( )。
3生活中,你还从()见到过扇形统计图?三学习小结我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。
我们今天又学习了扇形统计图,它的特点是(),四智勇大闯关,我是小擂主1第一关:小练兵。
完成练习二十五的第12题。
2第二关完成练习二十五的第4题。
五学后反思1我的收获:2自我评价:我对我的课堂表现( ),因为()。
第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。
比例线段-沪科版九年级数学上册教案一、教学目标1.了解比例线段的概念和性质。
2.学习比例线段的计算方法。
3.掌握应用比例线段解决实际问题的方法。
二、教学重点1.比例线段的概念和性质。
2.比例线段的计算方法。
三、教学难点应用比例线段解决实际问题的方法。
四、教学过程1. 导入环节(5分钟)教师通过黑板、投影等方式,介绍比例线段的概念和性质,并与学生一起探讨比例线段与比例关系的联系。
2. 讲解过程(30分钟)(1)比例线段的概念和性质教师通过示意图和例题,讲解比例线段的定义和基本性质,并引导学生思考比例线段的特点和规律。
(2)比例线段的计算方法教师通过例题和练习题,讲解比例线段的计算方法,并帮助学生理解计算过程和方法步骤。
3. 练习环节(20分钟)教师在课堂上进行练习题的讲解和指导,然后让学生在课堂上完成相应的练习题。
4. 拓展环节(10分钟)教师通过实际应用例题,引导学生将比例线段的知识应用到实际问题的解决中,并加深学生的理解。
5. 总结环节(5分钟)教师对本节课的重点和难点进行总结,并引导学生回顾本节课的知识点和方法步骤。
五、教学方法1.讲解与练习相结合的教学方法。
2.同步演示和个别辅导的教学方法。
六、教学评估1.在课堂练习中进行教学评估。
2.通过作业和考试进行教学评估。
七、板书设计•比例线段的概念和性质•比例线段的计算方法八、教学资源准备1.教材。
2.讲义、作业、练习题。
九、教学反思本课采用了讲解、练习、拓展和总结等多种教学方法,让学生在实践中学习掌握比例线段的知识和方法,提高了教学效果。
同时,还需要在课堂中针对学生的不同情况进行差异化教学,提高教学质量和效果。
沪教版九年级数学下教案3篇沪教版九年级数学下教案篇1配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1用配方法解下列关于x的方程:(1)x2-8x+1=0(2)x2-2x-21=0三、巩固练习教材第9页练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业教材第17页复习巩固2,3.(1)(2).沪教版九年级数学下教案篇2二次根式的乘除法教学目标1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
第25章投影与视图25.2 三视图第2课时棱柱的三视图教学反思教学目标1.了解棱柱的有关概念,进一步提高空间想象能力.2.画含有看不见棱的几何体的三视图.3.由三视图想象出立体图形后能进行简单的面积或体积的计算.教学重难点重点:棱柱的有关概念及其三视图.难点:由三视图想象出立体图形后能进行简单的面积或体积的计算.教学过程导入新课问题:小明学习了三视图的画法后,画出了一个几何体的三视图,如图所示.你能想象这个这个几何体的形状吗?师生活动:学生观察图片,思考,并进行口答.师生活动:学生思考,讨论,交流,教师引出本节课的课题.探究新知合作探究1.棱柱的定义相对的两个面是平行且全等的多边形的多面体叫做棱柱.侧棱与底面垂直的棱柱称为直棱柱.侧棱与底面不垂直的棱柱称为斜棱柱.底面是正多边形的直棱柱称为正棱柱.棱柱的底面是几边形,就称这个棱柱是几棱柱.2.棱柱的分类棱柱是按照什么特征进行分类的?例1 根据物体的三视图,描述物体的形状.【分析】由主视图可知,物体的正面是正五边形;由俯视图可知,由上向下看到物体有两个面的视图是矩形,它们的交线是一条棱(中间的实线表示),可见到,另有两条棱(虚线表示)被遮挡;由左视图可知,物体左侧有两个面是矩形,它们的交线是一条棱(中间的实线表示),可见到.综合各视图可知,物体的形状是正五棱柱.【归纳总结】虑整体图形.3.三视图的有关计算例2 按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:师生活动:的侧面展开图,然后进行面积的计算.【解】由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm ,底面正六边形的直径为如图,是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin 60°=6×502×1⎛ ⎝≈27 990(mm 2).教学反思【归纳总结】1.三种图形的转化:.↔↔三视图立体图展开图2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高. (2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分. (3) 最后根据已知数据,求出展开图的面积.【新知应用】例3 如图是一个几何体的三视图,根据所标数据,求该几何体的表面 积和体积.师生活动:学生根据求立体图形面积的方法,独立解决,并展示.教师根据学生展示情况进行讲解:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们的表面积和体积,然后相加即可.【解】该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm 2),体积为25×30×40+102×32π=(30 000+3 200π)(cm 3).课堂练习1.( )第1题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱2. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )教学反思第2 A. 6B. 8C. 12D. 24 3. 一个物体的俯视图是圆,则该物体有可能是_______.4. 在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.箱.第4题图5. 如图是一个由若干个棱长为1 cm 的正方体构成的几何体的三视图. (1) 请写出构成这个几何体的正方体的个数为_______; (2) 计算这个几何体的表面积为_______.第5题图6. (1) 一个几何体的主视图和左视图如图所示,请补画这个几何体的俯视图.第6(2) 一个直棱柱的主视图和俯视图如图所示.描述这个直棱柱的形状,并补画它的左视图.第6题图(2)教学反思7.如图是一个几何体的三视图,试描述这个零件的形状,并求出此三视第7题图参考答案1.D2.B3.圆柱,球4.95.(1)5 (2)20 cm 26.解:(1第6题答图(1)(2第6题答图(2)7.解:由三视图知该几何体是一个组合体,上面是一个圆锥,下面是一个圆柱.该几何体的表面积为π×22+2π×2×2+π×2×4=20 π.课堂小结学生先自主回顾本节课所学主要内容,然后师生共同总结.布置作业教材第89页复习题B 组1~2题板书设计25.2 三视图 第2课时 棱柱的三视图教学反思2.三视图的有关计算教学反思(1)三种图形的转化:三视图立体图展开图.(2)由三视图求立体图形的面积的方法:①先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.②将立体图形展开成一个平面图形(展开图),观察它的组成部分.③最后根据已知数据,求出展开图的面积.。
沪科版数学九年级下册教案doc一、教学目标1.掌握九年级下册数学的重点内容,包括函数、圆、相似等。
2.能够运用所学知识解决实际问题,提高数学应用能力。
3.培养学生的数学思维能力和创新意识,提高数学素养。
二、教学内容本节课主要内容包括:1.圆的基本概念和性质2.与圆有关的位置关系3.函数的基本概念和性质4.相似三角形的判定与性质三、教学过程1.导入新课:通过复习九年级上册的数学知识,引出圆和函数的相关内容,引导学生进入学习状态。
2.讲解新知:分别讲解圆、函数和相似三角形的相关概念和性质,结合实际例子进行说明。
同时,通过练习题让学生掌握相关解题方法。
3.小组讨论:让学生分组讨论与圆有关的问题,引导学生运用所学知识解决实际问题,培养学生的数学应用能力。
4.课堂小结:回顾本节课的重点内容,强调相似三角形的判定与性质的应用,让学生明确自己的收获。
5.布置作业:布置与本节课内容相关的作业,包括书面作业和开放性作业,以巩固所学知识,培养学生的创新意识。
四、教学反思通过本节课的学习,学生是否掌握了圆、函数和相似三角形的相关概念和性质,是否能够运用所学知识解决实际问题。
同时,也要关注学生的学习态度和方法,是否能够积极参与课堂活动,是否能够独立思考问题,是否能够运用所学知识进行创新性思考。
根据学生的反馈情况,对教学方法和内容进行改进和完善。
五、课后作业1.书面作业:完成课后练习题和相关试卷,重点掌握圆、函数和相似三角形的判定与性质的应用。
2.开放性作业:搜集实际生活中的数学问题,运用所学知识解决这些问题,并撰写一份报告。
六、教学建议1.在讲解新知的过程中,要注意结合生活实际,让学生更好地理解相关知识。
2.课堂活动的设计要能够激发学生的学习兴趣和积极性,让他们积极参与课堂活动。
3.在讲解相似三角形的判定与性质的应用时,要注重培养学生的数学应用能力和创新意识。
可以通过开放性作业的形式,让学生自主探究实际问题,提高他们的数学素养。
24.1 旋转第1课时旋转的概念和性质1.了解图形旋转的有关概念并理解它的基本性质(重点);2.了解旋转对称图形的有关概念及特点(难点).一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的概念和性质【类型一】旋转的概念下列事件中,属于旋转运动的是()A.小明向北走了4米B.小朋友们在荡秋千时做的运动C.电梯从1楼上升到12楼D.一物体从高空坠下解析:A.是平移运动;B.是旋转运动;C.是平移运动;D.是平移运动.故选B.方法总结:本题考查了旋转的概念,图形的旋转即是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】旋转的性质如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是()A.40°B.50°C.60°D.70°解析:∵△ABC绕点A顺时针旋转80°得到△AEF,∴△ABC≌△AEF,∠C=∠F=50°,∠BAE=80°.又∵∠B=100°,∴∠BAC=30°,∴∠α=∠BAE-∠BAC=50°.故选B.方法总结:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点——旋转中心;②旋转方向;③旋转角度.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】与旋转有关的作图在图中,将大写字母A绕它上侧的顶点按逆时针方向旋转90°,作出旋转后的图案,同时作出字母A向左平移5个单位的图案.解:方法总结:此题主要考查了旋转变换以及平移变换,得出对应点的位置是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:旋转对称图形【类型一】认识旋转对称图形下图中不是旋转对称图形的是()解析:A.360°÷5=72°,图形旋转72°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误;B.不是旋转对称图形,故本选项正确;C.360°÷8=45°,图形旋转45°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误;D.360°÷4=90°,图形旋转90°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误.故选B.方法总结:本题考查了旋转对称图形的概念及性质,把一个旋转对称图形绕着一个定点旋转一个角度后与初始图形重合,可据此判定一个图形是否为旋转对称图形.【类型二】旋转对称图形的特点如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心按逆时针方向旋转的度数为()A.30°B.60°C.120°D.180°解析:图形可看作是正六边形被平分成六部分,故每部分被分成的角是60°,故旋转60°的整数倍就可以与自身重合.故选B.方法总结:解题关键在于对旋转对称图形的旋转角的概念的理解,通过计算旋转角可得出答案.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计1.旋转的概念(1)旋转中心;(2)旋转角;(3)对应点.2.旋转的性质在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中线的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.3.旋转对称图形本课时所学习的内容概念性较强,在教学时可借助多媒体软件,形象生动的展示旋转的性质,使学生能够深刻理解,为接下来的学习打下基础.在教学设计中,应突出学生在课堂学习中的主体地位,强调学生自主探索和合作交流,增强动手能力,培养探究精神.24.1 旋转第2课时中心对称和中心对称图形1.理解中心对称和中心对称图形的定义,掌握中心对称图形的性质(重点);2.能够依据中心对称图形的定义判断某图形是否为中心对称图形(难点).一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称的性质如图,已知△AOB 与△DOC 成中心对称,△AOB 的面积是12,AB =3,则△DOC中CD 边上的高是( )A .3B .6C .8D .12解析:设AB 边上的高为h ,因为△AOB 的面积是12,AB =3,所以12×3×h =12,所以h =8.又因为△AOB 与△DOC 成中心对称,△COD ≌△AOB ,所以△DOC 中CD 边上的高是8.故选C.方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.变式训练:见《学练优》本课时练习“课堂达标训练”第3题探究点二:中心对称图形的性质与识别【类型一】 中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是( )解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A 是中心对称图形,不是轴对称图形;选项B 既是中心对称图形,又是轴对称图形;选项C 是轴对称图形,不是中心对称图形;选项D 既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 与中心对称图形有关的作图如图,网格中有一个四边形和两个三角形.(1)请你分别画出三个图形关于点O 的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.方法总结:作中心对称图形的一般步骤:(1)确定具有代表性的点(如线段的端点);(2)作出每个代表性点的对称点;(3)按照原图形的形状顺次连接各个对称点.变式训练:见《学练优》本课时练习“课后巩固提升”第5题 【类型三】 中心对称图形的性质及应用如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,试求图中阴影部分的面积.解析:观察图中阴影部分,可以利用中心对称图形的性质进行转化,将复杂问题简单化. 解:因为矩形ABCD 是中心对称图形,所以△BOF 与△DOE 关于点O 成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC 中.又因为AB =2,BC =3,所以Rt △ADC 的面积为12×3×2=3,即图中阴影部分的面积为3. 方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型四】 平面直角坐标系中的中心对称已知:如图,E (-4,2),F (-1,-1),以O 为中心,作△EFO 的中心对称图形,则点E 的对应点E ′的坐标为________.解析:由中心对称可得到新的点与原来的点关于原点对称.∵E (-4,2),∴点E 的对应点E ′的坐标为 (4,-2),故答案为(4,-2).方法总结:两点关于原点中心对称,横纵坐标均互为相反数.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计1.中心对称的定义与性质成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.2.中心对称图形把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.在教学过程中,应该鼓励学生进行自主探究,自己动手去探索中心对称和中心对称图形的特点,加深对新知识的认识和理解.教师在课堂上起辅助作用,引导学生自己解决问题,注重培养学生的独立意识.24.1 旋转第3课时 旋转的应用1.理解并掌握旋转变化的特点,能够解决坐标平面内的旋转变换问题(重点,难点);2.能够运用旋转、轴对称或平移进行简单的图案设计(难点).一、情境导入2016年里约热内卢奥运会会徽是由三人牵手相连的标志,以代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力,在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点一:坐标平面内的旋转变换【类型一】坐标平面内图形的旋转变换如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A′的坐标为()A.(3,1) B.(3,2)C.(2,3) D.(1,3)解析:根据网格结构找出点A、B旋转后的对应点A′、B′的位置,然后与点O顺次连接即可,再根据平面直角坐标系写出点A′的坐标.如图,点A′的坐标为(1,3),故选D.方法总结:本题考查了坐标与图形旋转,根据网格结构作出旋转后的三角形,利用数形结合的思想求解.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】坐标平面内线段的旋转变换如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是__________.解析:过点A作AC⊥x轴,过点A′作A′D⊥x轴,垂足分别为C、D,显然Rt△ABC≌Rt△BA′D.∵点A的坐标为(a,b),点B的坐标是(1,0),∴OD=OB+BD=OB+AC=1+b,A′D=BC=OC-OB=a-1.∵点A′在第四象限,∴点A′的坐标是(b+1,-a+1).故答案为(b+1,-a+1).方法总结:本题考查了坐标与线段的变化,作出全等三角形,利用全等三角形对应边相等求出点A′到坐标轴的距离是解题的关键,书写坐标时要注意点所在的象限.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:动态图形的操作与图案设计【类型一】图形的变换用四块如图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.【类型二】图案设计如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.解析:所给左上角的三角形的面积为12×1×1=12,故设计图案总共需要三角形4÷12=8(个),以O为对称中心的中心对称图形,同时又是轴对称图形的设计方案有很多.答案:答案不唯一,以下各图供参考:方法总结:在读清要求后,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.变式训练:见《学练优》本课时练习“课堂达标训练”第8题三、板书设计1.坐标平面内的旋转变换2.动态图形的操作与图案设计教学过程中,强调学生自主探索和合作交流,鼓励学生自己动手操作,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图形的欣赏与设计的奇妙.24.2 圆的基本性质第1课时与圆有关的概念及点与圆的位置关系1.认识圆及圆有关的概念,并了解它们之间的区别和联系(重点);2.理解并掌握点与圆的位置关系,并能够进行简单的证明和计算(重点,难点).一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点一:与圆相关的概念【类型一】圆的有关概念的理解有下列五个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆;⑤任意一条直径都是圆的对称轴.其中错误的说法个数是( )A .1B .2C .3D .4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤的说法是错误的.故选C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型二】 利用圆的相关概念进行线段的证明如图所示,OA 、OB 是⊙O 的半径,点C 、D 分别为OA 、OB 的中点,求证:AD=BC .解析:先挖掘隐含的“同圆的半径相等”“公共角”两个条件,再探求证明△AOD ≌△BOC 的第三个条件,从而可证出△AOD ≌△BOC ,根据全等三角形对应边相等得出结论.证明:∵OA 、OB 是⊙O 的半径,∴OA =OB .∵点C 、D 分别为OA 、OB 的中点,∴OC =12OA ,OD =12OB ,∴OC =OD .又∵∠O =∠O ,∴△AOD ≌△BOC (SAS),∴BC =AD . 方法总结:“同圆的半径相等”“公共角”“直径是半径的2倍”等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,将复杂问题简单化,使问题迎刃而解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型三】 利用圆的相关概念进行角的计算如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于点E .已知AB =2DE ,∠E =18°,求∠AOC 的度数.解析:要求∠AOC 的度数,由图可知∠AOC =∠C +∠E ,故只需求出∠C 的度数,而由AB =2DE 知DE 与⊙O 的半径相等,从而想到连接OD 构造等腰△ODE 和等腰△OCD .解:连接OD ,∵AB 是⊙O 的直径,OC ,OD 是⊙O 的半径,AB =2DE ,∴OD =DE ,∴∠DOE =∠E =18°,∴∠ODC =∠DOE +∠E =36°.∵OC =OD ,∴∠C =∠ODC =36°,∠AOC =∠C +∠E =36°+18°=54°.方法总结:本题考查了圆的相关概念与等腰三角形的综合,解题时结合题设条件,运用半径构造出等腰三角形,根据等腰三角形的性质求解.变式训练:见《学练优》本课时练习“课后巩固提升”第5题探究点二:点与圆的位置关系【类型一】 判断点和圆的位置关系如图,已知矩形ABCD 的边AB =3cm ,AD =4cm.(1)以点A为圆心,4cm为半径作⊙A,则点B,C,D与⊙A的位置关系如何?(2)若以点A为圆心作⊙A,使B,C,D三点中至少有一点在圆内且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)∵AB=3cm<4cm,∴点B在⊙A内.∵AD=4cm,∴点D在⊙A上.∵AC=32+42=5cm>4cm,∴点C在⊙A外;(2)由题意得,点B一定在圆内,点C一定在圆外,∴3cm<r<5cm.方法总结:平面上一点P与⊙O(半径为r)的关系有以下三种情况:(1)点P在⊙O上,OP=r;(2)点P在⊙O内,OP<r;(3)点P在⊙O外,OP>r.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】点和圆的位置关系的应用如图,点O处有一灯塔,警示⊙O内部为危险区,一渔船误入危险区点P处,该渔船应该按什么方向航行才能尽快离开危险区?试说明理由.解:渔船应沿着灯塔O过点P的射线OP方向航行才能尽快离开危险区.理由如下:设射线OP交⊙O与点A,过点P任意作一条弦CD,连接OD,在△ODP中,OD-OP<PD,又∵OD=OA,∴OA-OP<PD,∴P A<PD,即渔船沿射线OP方向航行才能尽快离开危险区.方法总结:解决实际问题时,应选取合适的数学模型,结合所学知识求解.本题应用到的是点和圆及三角形三边关系的相关知识.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.与圆有关的概念圆心、半径、弦、直径、圆弧、半圆、优弧、劣弧、等圆、等弧.2.点和圆的位置(1)点P在⊙O上,OP=r;(2)点P在⊙O内,OP<r;(3)点P在⊙O外,OP>r.教学过程中,应鼓励学生自己动手画圆,探究圆形成的过程,同时小组讨论、交流各自发现的圆的有关性质,使学生成为课堂的主人,进一步提升学生独立思考问题的能力及探究能力.24.2 圆的基本性质第2课时垂径分弦1.理解并掌握垂径定理及其推论,并能应用其解决一些简单的计算和证明问题(重点,难点);2.认识垂径定理及其推论在实际问题中的应用,会用添加辅助线的方法解决实际问题(难点).一、情境导入你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605~618年)由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?二、合作探究探究点一:垂径定理及应用 【类型一】 利用垂径定理求线段长如图所示,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm解析:∵直径AB ⊥DC ,CD =6cm ,∴DP =3cm.连接OD ,∵P 是OB 的中点,设OP 为x ,则OD 为2x ,在Rt △DOP 中,根据勾股定理列方程32+x 2=(2x )2,解得x = 3.∴OD =23cm ,∴AB =43cm.故选D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】 垂径定理的实际应用如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是________m.解析:本题考查垂径定理的应用,∵OC ⊥AB ,AB =300m ,∴AD =150m.设半径为R ,在Rt △ADO 中,根据勾股定理可列方程R 2=(R -50)2+1502,解得R =250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题 【类型三】 动点问题如图,⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解析:当点P 处于弦AB 的端点时,OP 最长,此时OP 为半径的长;当OP ⊥AB 时,OP 最短,利用垂径定理及勾股定理可求得此时OP 的长.解:作直径MN ⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4cm.又∵⊙O 的直径为10cm ,连接OA ,∴OA =5cm.在Rt △AOD 中,由勾股定理,得OD =OA 2-AD 2=3cm.∵垂线段最短,半径最长,∴OP 的长度范围是3cm ≤OP ≤5cm .方法总结:解题的关键是明确OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.变式训练:见《学练优》本课时练习“课后巩固提升”第5题探究点二:垂径定理的推论的应用【类型一】 利用垂径定理的推论求角如图所示,⊙O 的弦AB 、AC 的夹角为50°,M 、N 分别是AB ︵、AC ︵的中点,则∠MON的度数是( )A .100°B .110°C .120°D .130°解析:已知M 、N 分别是AB ︵、AC ︵的中点,由“平分弧的直径垂直平分弧所对的弦”得OM ⊥AB 、ON ⊥AC ,所以∠AEO =∠AFO =90°,而∠BAC =50°,由四边形内角和定理得∠MON =360°-∠AEO -∠AFO -∠BAC =360°-90°-90°-50°=130°.故选D.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型二】利用垂径定理的推论求边如图,⊙O的直径CD过弦AB的中点E,且CE=2,DE=8,则AB的长为()A.9 B.8 C.6 D.4解析:∵CE=2,DE=8,∴CD=10,∴OB=OC=5,OE=5-2=3.∵直径CD过弦AB的中点E,∴CD⊥AB,∴AE=BE.在Rt△OBE中,∵OE=3,OB=5,∴BE=OB2-OE2=4,∴AB=2BE=8.故选B.方法总结:垂径定理的推论虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.垂径定理垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.2.垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.教学过程中,引导学生探究垂径定理及其推论时,强调垂径定理的得出跟圆的轴对称密切相关.在练习过程中,引导学生结合实际运用垂径定理,使学生养成良好的思维习惯.24.2 圆的基本性质第3课时圆心角、弧、弦、弦心距间关系1.结合图形了解圆心角的概念,掌握圆心角的相关性质;2.能够发现圆心角、弧、弦、弦心距间关系,并会初步运用这些关系解决有关问题(重点,难点).一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点:圆心角定理及其推论 【类型一】 圆心角与弧的关系如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE=60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C. 方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】 圆心角与弦、弦心距间的关系如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型三】 圆心角定理及其推论的应用如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB ,又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt△DNO ,∴∠1=∠2,∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OA =OB ,OM =12OA ,ON =12OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵,∴AC ︵=BD ︵. 图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND=90°,∴Rt △AMC ≌Rt △BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.2.圆心角定理推论在同圆或等圆中,如果两个圆心角以及这两个角所对的弧、所对的弦、所对的弦的弦心距中,有一组量相等,那么其余各组量都分别相等.教学过程中,向学生强调弧、弦、圆心角及弦心距之间的关系,引导学生探究时,要鼓励学生大胆猜想,使其体会数学中转化思想的魅力之处,进而培养学生的逻辑思维能力.24.2 圆的基本性质第4课时圆的确定1.理解并掌握确定圆的条件;2.理解三角形的外接圆,三角形外心的概念,能够运用其性质进行计算(重点,难点);3.理解反证法的思想,能够运用反证法证明命题(难点).一、情境导入小明不慎把家中的一块圆形玻璃打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃应该是哪一块?二、合作探究探究点一:确定圆的条件已知:不在同一直线上的三个已知点A,B,C(如图),求作:⊙O,使它经过点A,B,C.解析:根据线段垂直平分线上的点到线段两端点的距离相等,作出边AB、BC的垂直平分线相交于点O,以O为圆心,以OA为半径,作出圆即可.解:(1)连接AB、BC;(2)分别作出线段AB、BC的垂直平分线DE、GF,两垂直平分线相交于点O,则点O 就是所求作的⊙O的圆心;(3)以点O为圆心,OC长为半径作圆,则⊙O就是所求作的圆.方法总结:作经过三点的圆,即作这三点构成的三角形的外接圆,根据三角形的外接圆的性质可知,其圆心为三边垂直平分线的交点,依据此作图即可求解.变式训练:见《学练优》本课时练习“课后巩固提升”第5题探究点二:三角形的外接圆【类型一】与圆的内接三角形有关的坐标的计算。
沪科版数学九年级上册全册教案初级中学电子教案邵庙初级中学电子教案第单元.第课时.总第课课题21.2 二次函数y=ax2的图象和性质教学目标1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教法教具问题探究法直尺课时安排一课时课前准备复习上节课的内容并预习二次函数的画法,同一次函数的相关内容相联系教学过一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:程x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
21.1二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好学习习惯重点难点:能够据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? (10-8-x);(100+100x)4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
沪科版九年级数学下教学设计一、单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系, 圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、 弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念, 探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用; 理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动. 了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中, 让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系, 使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、 圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.二、教学重点1.平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等, 都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90 °的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8. 经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等, 这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n Rπ,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.三、教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导, 并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n Rπ及S 扇形=2360n R π的公式的应用.12.圆锥侧面展开图的理解.四、教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、 性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法, 发展学生有条理的思考能力及语言表达能力.24.1旋转第一课时教学目标:1、了解图形旋转的有关概念,并理解它们的基本性质。
沪科版九年级数学教案
教案标题:解一元二次方程
教学目标:
1. 理解一元二次方程的定义和基本形式。
2. 掌握解一元二次方程的方法,包括因式分解法、配方法和求根公式法。
3. 运用所学方法解决实际问题。
教学重点:
1. 理解一元二次方程的定义和基本形式。
2. 掌握因式分解法、配方法和求根公式法的步骤和技巧。
3. 运用所学方法解决实际问题。
教学难点:
1. 运用所学方法解决实际问题。
2. 理解配方法和求根公式法的推导过程。
教学准备:
1. 教材:沪科版九年级数学教材。
2. 教具:黑板、彩色粉笔、教学PPT、习题集。
教学过程:
Step 1:导入新知
1. 引入一元二次方程的概念,通过举例说明一元二次方程在实际生活中的应用。
2. 提问学生是否了解一元二次方程的定义和基本形式。
Step 2:讲解因式分解法
1. 通过教学PPT讲解因式分解法的步骤和技巧。
2. 指导学生通过因式分解法解决一元二次方程的例题。
Step 3:讲解配方法
1. 通过教学PPT讲解配方法的推导过程和步骤。
2. 指导学生通过配方法解决一元二次方程的例题。
Step 4:讲解求根公式法
1. 通过教学PPT讲解求根公式法的推导过程和公式的含义。
2. 指导学生通过求根公式法解决一元二次方程的例题。
Step 5:综合运用
1. 提供一些实际问题,要求学生运用所学方法解决。
2. 分组讨论,学生之间互相交流解题思路和方法。
3. 部分学生上台展示解题过程和答案。
Step 6:课堂小结
1. 总结一元二次方程的解法,强调因式分解法、配方法和求根公式法的应用场景和特点。
2. 复习解题步骤和技巧。
Step 7:作业布置
1. 布置习题集中与一元二次方程相关的练习题。
2. 鼓励学生自主学习,解决问题时灵活运用所学方法。
教学反思:
本节课通过引入一元二次方程在实际生活中的应用,激发了学生的学习兴趣。
因式分解法、配方法和求根公式法的讲解结合了具体的例题,有助于学生理解和掌握解一元二次方程的方法。
通过综合运用和小组讨论,培养了学生的解题
能力和合作意识。
在教学过程中,要注重与学生的互动和引导,及时发现和纠正他们的错误,加强巩固和拓展练习,提高教学效果。