(C)无实数根 (D)方程的根有无个
2.
把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.
交流与概括
对于方程(1),可以这样想:
∵ χ2=4
根据平方根的定义可知:χ是4的( 平方根 ).
∴ χ= 4
即: χ=±2 这时,我们常用χ1、χ2来表示未知数为χ 的一元二次方程的两个根。
得这种解一元二次方程的方法叫做直接开平方法.
2.把一元二次方程的左边配成一个完全平方式,然后 用开平方法求解,这种解一元二次方程的方法叫做配 方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
2.方程(x-1)2=4的根是( ).
(A)3,-3
(B)3,-1
(C)2,-3
(D)3,-2
知识回顾 利用直接开平方法解下列方程:
求解:解一元一次方程;
解方程: x2+8x-9=0
这时,我们常用χ1、χ2来表示未知数为χ的一元二次方程的两个根。
求解:解一元一次方程;
体现了从特殊到一般的数学思想方法
解方程: x2+8x-9=0 (χ-a)2=b(b≥0)类的一元二次方程。
∴ χ1+1=2,χ2+1=-2
(2) 3(2-χ)2-27=0
如果
,则 =
。
求解:解一元一次方程;
(3). χ2+1=0 这时,我们常用χ1、χ2来表示未知ቤተ መጻሕፍቲ ባይዱ为χ的一元二次方程的两个根。
的实数根
,
;
(A)x=±3 (B)x=-3
(3)当p<0 时,因为任何实数x,都有 x2 0 ,所以方
程无实数根.