空域滤波和频域滤波的实现及比较
- 格式:doc
- 大小:48.50 KB
- 文档页数:11
1改变图像质量的几种滤波方法比较一、概述滤波是图像处理重要技术之一,是提高图像质量的主要手段。
对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。
二、图像处理过程1.直方图均衡化输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。
结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。
其中图像中灰度级出现的概率近似为:()n n r p kk r =,k=0,1,2,…,L -1。
而变换函数为:00()(),0,1,2,,1k k j k k r j j j n s T r p r k L n ======-∑∑2.巴特沃斯同态滤波器:图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y);fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。
一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。
由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。
2因此定义:z(x,y)=lnf(x,y)=lnfi(x,y)+lnfr(x,y)则Z(u,v)=Fi(u,v)+Fr(u,v)这里,Z(u,v)、Fi(u,v)和Fr(u,v)分别是lnf(x,y)、lnfi(x,y)和lnfr(x,y)的傅立叶变换。
测绘技术中的图像去噪和增强技巧图像去噪和增强是测绘技术中重要的一环。
随着科技的不断发展,图像采集设备的精度和灵敏度不断提高,但在实际应用中,图像中常常包含有噪声、模糊以及其他干扰因素,这些因素会影响图像的质量和准确性。
因此,提高图像的质量和清晰度,进行图像去噪和增强是测绘工作者必须面对的问题。
图像去噪是指通过一系列算法和方法,减少或消除图像中的噪声干扰。
在测绘技术中,图像去噪是十分关键的一项工作。
测绘图像中的噪声主要有模拟噪声和数字化噪声两类。
其中,模拟噪声是在图像采集和传输过程中产生的,包括了由于环境因素、光照等原因引起的噪声;数字化噪声则是由于图像传感器或数字化设备的非线性响应引起的。
在图像去噪的算法中,常用的有空间域滤波和频域滤波两种方法。
空间域滤波主要通过对图像像素周围进行统计分析,去除掉图像中的噪声,例如中值滤波、均值滤波等。
而频域滤波则是通过对图像进行傅里叶变换,将噪声从频域传输到空域,然后通过低通滤波去除噪声。
这些算法和方法能够有效地消除图像中的噪声,提高图像的质量和清晰度,从而减少误差和提高测绘数据的准确性。
另一方面,图像增强是指通过一系列的算法和方法,改善图像的质量和清晰度。
在测绘技术中,图像增强是为了更好地观察和分析图像中的地物和信息,提高测绘数据的可视化效果和解释能力。
图像增强的方法可以分为直方图均衡化、对比度增强和细节增强等。
直方图均衡化是一种常用的图像增强方法,通过将图像的灰度级分布均匀化,使得图像的对比度和亮度得到改善。
对比度增强是通过调整图像中的亮度差和灰度级之间的差异来改善图像,例如线性变换、非线性映射等。
细节增强是通过对图像中的细节进行突出和强化,例如锐化滤波、边缘增强等。
这些图像增强方法能够提升图像的可视化效果,使得图像更加清晰、鲜明,便于测绘数据的解释和分析。
除了上述常规的图像去噪和增强方法,近年来,基于深度学习的图像去噪和增强技术也取得了显著的进展。
深度学习是一种基于神经网络的机器学习方法,通过学习大量的数据,自动学习和提取图像中的特征和模式,从而实现图像的去噪和增强。
6.6 频域技术与空域技术
一方面,许多空域增强技术可借助频域概念来分析和帮助设计,另一方面,许多空域增强技术可转化到频域实现,而许多频域增强技术可转化到空域实现。
空域滤波主要包括平滑滤波和锐化滤波。
平滑滤波是要滤除不规则的噪声或干扰的影响,从频域的角度看,不规则的噪声具有较高的频率,所以可用具有低通能力的频域滤波器来滤除。
由此可见空域的平滑滤波对应频域的低通滤波。
锐化滤波是要增强边缘和轮廓处的强度,从频域的角度看,边缘和轮廓处都具有较高的频率,所以可用具有高通能力的频域滤波器来增强,由此可见,空域的锐化滤波对应频域的高通滤波。
频域里低通滤波器的转移函数应该对应空域里平滑滤波器的模板函数的傅里叶变换。
频域里高通滤波器的转移函数应该对应空域里锐化滤波器的模板函数的傅里叶变换。
即空域和频域的滤波器组成傅里叶变换对。
给定一个域内的滤波器,通过傅里叶变换或反变换得到在另一个域内对应的滤波器。
空域的锐化滤波或频域的高通滤波可用两个空域的平滑滤波器或两个频域的低通滤波器实现。
(P155)
在频域中分析图像的频率成分与图像的视觉效果间的对应关系比较直观。
空域滤波在具体实现上和硬件设计上有一定优点。
区别:
例如,空域技术中无论使用点操作还是模板操作,每次都只是基于部分像素的性质,而频域技术每次都利用图像中所有像素的数据,具有全局性,有可能更好地体现图像的整体特性,如整体对比度和平均灰度值等。
总结:
考虑到傅里叶变换的对称性,带通或带阻滤波器必须两两对称地工作以保留或消除不是以原点为中心的给定区域内的频率(对称性)。
空域滤波和频域滤波的关系空域滤波是一种基于像素级别的滤波方法,它通过直接处理图像中的像素值来实现滤波效果。
具体而言,空域滤波是基于图像的空间域进行操作,通过对图像中的像素进行加权平均或非线性处理,改变像素之间的关系来达到滤波的目的。
常见的空域滤波方法包括均值滤波、中值滤波和高斯滤波等。
频域滤波则是一种基于图像的频域进行操作的滤波方法,它通过对图像进行傅里叶变换,将图像从空域转换到频域,然后在频域中对图像进行滤波操作,最后再通过傅里叶反变换将图像转换回空域。
频域滤波方法主要利用了傅里叶变换的性质,通过滤波器的频率响应对图像的频谱进行调整,达到滤波的效果。
常见的频域滤波方法包括低通滤波、高通滤波和带通滤波等。
空域滤波和频域滤波有着密切的关系。
事实上,它们本质上是同一种滤波方法的不同表现形式。
在空域滤波中,滤波器直接作用于图像的像素值,通过对像素值进行处理来实现滤波效果;而在频域滤波中,滤波器则直接作用于图像的频谱,通过调整频谱的幅度和相位来实现滤波效果。
从这个角度来看,频域滤波可以看作是空域滤波在频域中的表现。
空域滤波和频域滤波各有其优点和适用场景。
空域滤波方法简单直观,易于理解和实现,适用于对图像的局部特征进行处理,例如去除噪声、平滑边缘等。
而频域滤波方法则适用于对图像的全局特征进行处理,例如图像增强、频谱分析等。
频域滤波方法通过傅里叶变换将图像转换到频域,可以更好地分析和处理图像的频域信息,对于频谱特征较为明显的图像处理问题具有较好的效果。
尽管空域滤波和频域滤波在原理和应用上有所差异,但它们并不是对立的关系。
事实上,这两种滤波方法常常结合使用,相互补充,以实现更好的滤波效果。
比如,在图像处理中,可以先使用空域滤波方法去除图像中的噪声和干扰,然后再将处理后的图像转换到频域进行进一步的滤波和增强。
这样的组合使用可以充分发挥两种滤波方法的优势,提高图像处理的效果和质量。
空域滤波和频域滤波是图像处理中常用的两种滤波方法。
LabVIEW中的像处理滤波和增强LabVIEW中的图像处理滤波和增强LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款功能强大的图形化编程环境,广泛应用于科学研究、工程设计、图像处理等领域。
在LabVIEW中,图像处理滤波和增强是常见而重要的任务,通过使用LabVIEW的图像处理工具箱,可以实现对图像的滤波和增强操作。
一、图像处理滤波1. 空域滤波在LabVIEW中,空域滤波是一种基于像素点的运算,通过对图像中每个像素点进行计算,达到滤波的效果。
常见的空域滤波算法包括均值滤波、中值滤波、高斯滤波等。
(这里可以继续详细介绍每种滤波算法的原理和在LabVIEW中的实现方法,可以配图示例)2. 频域滤波频域滤波是一种将图像从时域转换到频域进行处理的方法,通过对图像的频谱进行操作,可以实现滤波的效果。
常见的频域滤波算法包括快速傅里叶变换(FFT)、高通滤波、低通滤波等。
(同样可以详细介绍每种滤波算法的原理和LabVIEW中的实现方法,并配以图例)二、图像处理增强1. 灰度级转换LabVIEW提供了多种灰度级转换函数,可以实现将图像的灰度级进行转换的操作。
灰度级转换常用于增强图像的对比度、亮度等特征,常见的灰度级转换方法包括线性变换、非线性变换等。
(在这里可以展示LabVIEW中的灰度级转换函数的使用方法,并给出实际示例)2. 直方图均衡化直方图均衡化是一种通过重新分配图像的灰度级来增强图像对比度的方法。
LabVIEW中提供了直方图均衡化的函数,可以方便地对图像进行增强操作。
(类似地,可以给出直方图均衡化函数的使用范例)总结:通过LabVIEW中的图像处理工具箱,我们可以方便地实现图像的滤波和增强操作。
通过空域滤波和频域滤波,可以对图像进行模糊、锐化等处理,而灰度级转换和直方图均衡化则可以增强图像的对比度和亮度。
LabVIEW的图像处理功能的强大性和易用性使得它成为了科学研究和工程设计中不可或缺的工具之一。
空域处理方法和频域处理方法是数字图像处理中常见的两种基本处理方法,它们在处理图像时有着不同的特点和适用范围。
下面将从原理、应用和效果等方面对两种处理方法进行简要介绍,并对它们的区别进行分析。
一、空域处理方法1. 原理:空域处理是直接对图像的像素进行操作,常见的空域处理包括图像增强、平滑、锐化、边缘检测等。
这些处理方法直接针对图像的原始像素进行操作,通过像素之间的关系来改变图像的外观和质量。
2. 应用:空域处理方法广泛应用于图像的预处理和后期处理中,能够有效改善图像的质量,增强图像的细节和对比度,以及减轻图像的噪声。
3. 效果:空域处理方法对图像的局部特征和细节有很好的保护和增强作用,能够有效地改善图像的视觉效果,提升图像的清晰度和质量。
二、频域处理方法1. 原理:频域处理是通过对图像的频率分量进行操作,常见的频域处理包括傅立叶变换、滤波、频域增强等。
这些处理方法将图像从空间域转换到频率域进行处理,再通过逆变换得到处理后的图像。
2. 应用:频域处理方法常用于图像的信号处理、模糊去除、图像压缩等方面,能够有效处理图像中的周期性信息和干扰信号。
3. 效果:频域处理方法能够在频率域对图像进行精细化处理,提高图像的清晰度和对比度,对于一些特定的图像处理任务有着独特的优势。
三、空域处理方法和频域处理方法的区别1. 原理不同:空域处理方法直接对图像像素进行操作,而频域处理方法是通过对图像进行频率分析和变换来实现图像的处理。
2. 应用范围不同:空域处理方法适用于对图像的局部特征和细节进行处理,而频域处理方法适用于信号处理和频率信息的分析。
3. 效果特点不同:空域处理方法能更好地保护和增强图像的细节和对比度,频域处理方法能更好地处理图像中的周期性信息和干扰信号。
空域处理方法和频域处理方法是数字图像处理中常用的两种处理方法,它们在原理、应用和效果等方面有着不同的特点和适用范围。
在实际应用中,可以根据图像的特点和处理需求选择合适的方法,以获得更好的处理效果。
空域滤波器与频域滤波器的关系频域滤波和空域滤波有着密不可分的关系。
频域滤波器是通过对图像变化频率的控制来达到图像处理的⽬的,⽽空域滤波器是通过图像矩阵对模板进⾏卷积运算达到处理图像的效果。
由卷积定理可知,空域上的卷积数值上等于图像和模板傅⾥叶变换乘积的反变换。
也就是说如果将空域上的模板进⾏离散傅⾥叶变化得到频域上的模板,那么⽤空域模板进⾏空域滤波和⽤得到的频域模板进⾏频域滤波最后结果是⼀样的,两种⽅法有时可以互换。
但需要注意的⼀点是,将原始图像与空域模板进⾏卷积运算,得到卷积结果的长度要⽐原来的图像长,就算对图像和模板进⾏填充,得到的卷积结果的第⼀位也不是模板在原始图像第⼀个像素处的卷积。
⽐如假设p位原始图像长度为P,q为卷积模板长度为Q,则由卷积的运算公式易得不产⽣混淆下图像的最⼩填充后尺⼨为P+Q-1,填充后p,q为运⾏如下程序import numpy as np# 保留效数点后三位np.set_printoptions(precision=3)# 不使⽤科学计数法np.set_printoptions(suppress=True)p = np.array([[1,2,3,0,0],[4,5,6,0,0],[7,8,9,0,0],[0,0,0,0,0],[0,0,0,0,0]])q = np.array([[1,1,1,0,0],[1,-8,1,0,0],[1,1,1,0,0],[0,0,0,0,0],[0,0,0,0,0]])pp = np.fft.fft2(p)qq = np.fft.fft2(q)tt = pp*qqt = np.fft.ifft2(tt)print('p\n', p)print('q\n', q)print('t\n', t.real)利⽤卷积定理可以得到卷积后的结果t为从上述运⾏结果可知,虽然进⾏零填充可以有效避免混淆,但⽆法改变的⼀点是,卷积后图像的尺⼨会变⼤。
图像处理中的图像增强算法使用技巧在图像处理领域,图像增强是一项重要的任务。
图像增强的目标是提高图像的视觉质量,使得图像更加清晰、鲜明,以便更好地进行后续处理或者人眼观察。
为了实现这一目标,图像增强算法被广泛使用,并且不断发展。
下面将介绍一些常见的图像增强算法以及它们的使用技巧。
1. 线性滤波线性滤波是一种基础的图像增强算法,常用于对图像进行平滑和锐化。
常见的线性滤波算法包括均值滤波、高斯滤波和拉普拉斯滤波。
在使用线性滤波算法时,需要根据图像的特点选择合适的滤波器大小和参数设置,以达到最佳的增强效果。
2. 直方图均衡化直方图均衡化是一种常用的图像增强算法,用于提高图像的对比度。
它通过对图像的像素值进行重新分布,使得图像的直方图均匀分布在整个灰度范围内。
在应用直方图均衡化时,需要注意处理图像的局部对比度,以避免过度增强和失真。
3. 空域滤波空域滤波是一种基于像素的图像增强算法,通过对图像的像素进行运算来改变图像的外观。
常见的空域滤波算法包括锐化滤波、边缘增强和细节增强。
使用空域滤波算法时,需要选择合适的滤波器类型和参数,以获得理想的增强效果。
4. 频域滤波频域滤波是一种基于图像的频率分析的图像增强算法。
它通过对图像的傅里叶变换来分析图像的频谱特征,并根据需要对频谱进行修正,从而改变图像的视觉质量。
常用的频域滤波算法包括高通滤波和低通滤波。
在应用频域滤波算法时,需要注意选择合适的频率域区域和阈值,以避免引入噪声和失真。
5. 增强图像细节图像细节是图像中重要的信息之一,因此在图像增强过程中,保留和增强图像的细节是很重要的。
为了增强图像的细节,可以使用局部对比度增强算法、非局部均值算法、细节增强滤波器等。
这些算法可以根据图像的特点和需求来调整参数,以突出图像的细节。
6. 抑制噪声图像中常常存在各种类型的噪声,如高斯噪声、椒盐噪声等。
噪声会影响图像的视觉质量和后续处理的效果,因此在图像增强中需要考虑对噪声的抑制。
图像增强的原理
图像增强的原理主要包括以下几个方面:
1. 直方图均衡化:通过调整图像的灰度级分布,使得图像中的像素更加均匀地分布在整个灰度级范围内。
具体操作包括计算图像的累积直方图,并将其映射到期望的均匀分布上。
2. 空域滤波:利用不同的滤波器对图像进行滤波操作,以增强或抑制特定频率的信息。
例如,使用高通滤波器可以增强图像的边缘信息,而使用低通滤波器可以抑制噪声。
3. 空间域法:通过调整图像的像素值来增强图像的局部细节。
例如,使用直方图拉伸可以增加图像的对比度,而局部对比度增强可以突出图像中的细节。
4. 频域法:将图像转换到频域进行处理,然后再进行反变换得到增强后的图像。
例如,使用傅里叶变换可以将图像转换到频域进行滤波操作,然后再进行反变换得到增强后的图像。
5. 去噪处理:通过滤波等方法去除图像中的噪声,以提高图像的质量。
常用的去噪方法包括中值滤波、高斯滤波等。
总之,图像增强的原理是通过对图像的像素值、灰度级分布、频域信息等进行调整和处理,来改善图像的质量、对比度、细节等。
不同的增强方法适用于不同的图像特点和需求,可以根据具体情况选择合适的方法进行处理。
图像去除噪声方法图像去噪是数字图像处理的一种重要技术,在数字图像传输、存储和分析过程中都会遇到噪声的干扰。
目前图像去噪的方法主要分为基于空域的滤波方法和基于频域的滤波方法。
基于空域的滤波方法是指直接对图像的像素进行处理,常见的方法有均值滤波、中值滤波和高斯滤波等。
1. 均值滤波是一种简单的图像平滑方法,它通过对图像的每个像素值周围像素的平均值进行计算来减小噪声。
具体步骤是,对于图像中的每个像素,以该像素为中心取一个固定大小的窗口,然后计算窗口内所有像素的平均灰度值作为该像素的新值。
由于均值滤波是线性滤波器,因此它对于高斯噪声具有一定的去噪效果,但对于细节部分的保护能力较弱。
2. 中值滤波是一种非线性滤波方法,它通过在窗口内对像素值进行排序,将中间值作为该像素的新值来减小噪声。
相比于均值滤波,中值滤波更能保护图像的细节,对椒盐噪声(指图像中的黑白颗粒噪声)有较好的去噪效果。
3. 高斯滤波是基于高斯函数的一种线性滤波方法,它通过对图像像素的邻域像素进行加权平均来减小噪声。
高斯滤波的核函数是一个二维高斯函数,它具有旋转对称性和尺度不变性。
高斯滤波可通过调整窗口的大小和标准差来控制平滑程度,窗口越大、标准差越大,平滑程度越高。
高斯滤波对高斯噪声的去噪效果较好,但对于椒盐噪声则效果较差。
基于频域的滤波方法是指通过将图像进行傅立叶变换后,在频率域对图像进行滤波,然后再进行逆傅立叶变换得到去噪后的图像。
这种方法的优点是可以同时处理图像中的各种频率成分。
1. 傅立叶变换是一种将图像从空间域转换为频率域的方法,它将图像表示为了频率和相位信息的叠加。
在频率域中,图像可以分解为不同频率的成分,其中低频成分代表图像的平滑部分,高频成分代表图像的细节部分。
因此,通过滤除高频成分可以达到去噪的效果。
2. 基于小波变换的图像去噪方法利用小波变换的多分辨率分析特性来实现。
小波变换将图像分解成不同尺度的频带,通过选择合适的阈值来滤除噪声分量,然后再进行逆变换得到去噪后的图像。
里仁学院课程设计说明书题目:空域滤波和频域滤波的实现及比较学院(系):里仁学院年级专业:09工业自动化仪表2班学号: 09学生姓名:苏胜指导教师:赵彦涛、程淑红教师职称:讲师、副教授燕山大学课程设计(论文)任务书学号0120 学生姓名苏胜专业(班级)09工业自动化仪表2班设计题目5空域滤波和频域滤波的实现及比较设计技术参数要求用不同的滤波器分别实现图像的空域和频域滤波,然后比较结果。
设计要求数字信号处理中,图像的空域滤波和频域滤波可以实现相同的目的,用不同的滤波器实现其空域和频域滤波,然后比较其结果。
要求用不同的滤波器同时实现图像的空域和频域滤波。
设计中应具有自己的设计思想、设计体会。
工作量1周工作计划周一:分析题目,查阅相关资料,熟悉MATLAB程序设计方法。
周二至周三:方案设计周四:编写程序代码、调试、运行周五:答辩考核参考资料1.数字图像处理学电子工业出版社贾永红 20032.数字图像处理(Matlab版)电子工业出版社冈萨雷斯 20063.其他数字图像处理和matlab编程方面的书籍及相关学习资料指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
2012年6 月29日燕山大学课程设计评审意见表指导教师评语:成绩:指导教师:2012年6月29 日答辩小组评语:成绩:评阅人:2012年6月29 日课程设计总成绩:答辩小组成员签字:2012年6月29 日目录第一章摘要 (1)第二章引言 (2)第三章空域滤波和频域滤波 (3)3.1 空域滤波器的设计 (3)3.1.1 空域低通滤波器 (3)3.1.2 空域高通滤波器 (5)3.2 时域滤波器的设计 (5)3.2.1 时域低通滤波器 (6)3.2.2 时域高通滤波器 (6)3.3空域与时域滤波的比较 (12)第四章心得体会 (15)第五章参考文献 (16)一、摘要此次课程设计是在MATLAB软件下进行数字滤波技术的仿真分析,有助于我对数字图像处理技术的分析和理解。
MATLAB强大的图形处理功能及符号运算功能为此次分析图像的空域滤波和频域滤波提供了很好的视觉效果。
MATLAB是MATHWORK公司推出的一套高效率的数值计算和可视化软件,它集数值分析、矩阵计算、信号处理和图形显示于一体,构成了一个方便的用户环境。
掌握MATLAB分析图像的空域滤波和频域滤波,通过利用计算机来仿真和编程实现,然后对滤波结果进行比较与分析。
此次课程设计不仅提高了我的MATLAB的使用能力,同时还加深了我对所学的课程的理解。
关键词:空域滤波、频域滤波、高斯滤波器二、引言数字图像处理起源于20世纪20年代,此后,由于遥感等领域的应用,使图像处理技术逐步受到关注并得到发展。
由于技术手段的限制,图像处理科学与技术的发展相当缓慢,直到第三代计算机问世后数字图像处理才开始迅速发展并得到普遍应用,应用Matlab软件解决图像处理中的问题、难题,节省图像处理工作的时间,大大提高了图像处理的效率。
目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科学习和研究的对象。
随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,图像处理技术的需求与日俱增,图像处理科学无论是在理论上还是实践上都存在着巨大的潜力。
三、空域滤波和频域滤波3.1空域滤波器空域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。
空域低通滤波器是应用模板卷积方法对图像每一像素进行局部处理。
模板就是一个滤波器,设它的响应为H(r,s),于是滤波输出的数字图像g(x,y)可以用离散卷积表示g(x,y)=∑∑-=-=--ll s kk r s r H s y r x f ),(),( 式中:x,y=0,1,2,…,N-1;k 、l 根据所选邻域大小来确定。
1.平滑滤波器I=imread('man.bmp');J=imnoise(I,'salt & pepper',0.02);subplot(131),imshow(I);title('原图');subplot(132),imshow(J); title('加入椒盐噪声');k1=filter2(fspecial('average',3),J);%3×3模板平滑滤波subplot(133),imshow(uint8(k1));title('3×3模板平滑滤波');2.中值滤波器I=imread('man.bmp');J=imnoise(I,'salt & pepper',0.02);subplot(131),imshow(I);title('原图');subplot(132),imshow(J); title('加入椒盐噪声');k5=medfilt2(J); %进行3×3模板中值滤波subplot(133),imshow(uint8(k5));title('3×3模板中值滤波');3高斯滤波器t0=imread('man.bmp');subplot(131);imshow(t0); title('原图');t1=imnoise(t0,'gaussian');t1=im2double(t1);subplot(132);imshow(t1);title('加入噪声后');h1=fspecial('gaussian');g2=filter2(h1,t1,'same');subplot(133);imshow(g2);title('高斯滤波后');I=imread('man.bmp');%读入图像I=im2double(I);%转换数据类型,将uint8图像转为double类型,范围为0-1[height width R]=size(I);%返回矩阵I的行列for i=2:height-1for j=2:width-1R(i,j)=abs(I(i+1,j+1)-I(i,j))+abs(I(i+1,j)-I(i,j+1));endendT=R;for i=1:height-1for j=1:width-1if (R(i,j)<0.25)R(i,j)=1;else R(i,j)=0;endendendsubplot(121);imshow(I);title('原图');%显示原图subplot(122);imshow(R);title('高通滤波后');%显示后的图像3.2 频域滤波器频域滤波是图像经傅里叶变换以后,边缘和其他尖锐变化(如噪音)在图像的灰度级中主要处于傅里叶变换的高频部分。
因此,平滑可以通过衰减指定图像傅里叶变换中高频成分的范围来实现。
频域低通滤波的数学表达式为:G(u,v)= H(u,v)F(u,v)其中F(u,v)是原始图像f(x,y)的傅里叶变换;G(u,v)是低通滤波处理后的图像g(x,y)的傅里叶变换;H(u,v)是频域低通滤波器的传递函数,选择不同的H(u,v) 可产生不同的平滑效果。
t0=imread('man.bmp');subplot(2,2,1);imshow(t0);title('原图');t1=imnoise(t0,'gaussian');subplot(2,2,2);imshow(t1);title('加入噪音后');s=fftshift(fft2(t1));subplot(2,2,3);imshow(log(1+abs(s)),[]);title('fft变换');[M,N]=size(s);d0=50;n1=floor(M/2);n2=floor(N/2);for i=1:Mfor j=1:Nd=sqrt((i-n1)*2+(j-n2)*2);h(i,j)=1*exp(-1/2*(d^2/d0^2));s(i,j)=h(i,j)*s(i,j);endends=ifftshift(s);s=uint8(real(ifft2(s)));subplot(2,2,4);imshow(s);title('高斯滤波后');3.2.2 频域高通滤波器f1=imread('man.bmp');F= double(f1); % 数据类型转换,MATLAB不支持图像的无符号整型的计算G = fft2(F); % 傅立叶变换G = fftshift(G); % 转换数据矩阵[M,N]=size(G);nn = 2; % 二阶巴特沃斯(Butterworth)高通滤波器d0 = 5;m = fix(M/2);n = fix(N/2);for i = 1 : Mfor j = 1 : Nd = sqrt((i-m)^2+(j-n)^2);if (d == 0)h = 0;elseh=1/(1+0.414*(d0/d)^(2*nn));% 计算传递函数end;result(i,j) = h * G(i,j);end;end;result = ifftshift(result);J2= ifft2(result);J3= uint8(real(J2));subplot(121);imshow(f1);title('原图像');subplot(122);imshow(J3); % 滤波后图像显示title('高通滤波后');3.3空域、时域滤波的比较:空域与频域低通滤波器比较空域与频域高通滤波器比较通过比较以上空域、频域低通滤波器对同一图片的滤波效果可知,使用空间域滤波和频域滤波对存在图像噪声有一定的减弱作用和对边缘的检测效果。
而空域滤波和频域滤波之间有存在着各自的特点,从空域和频域低通滤波器对图片的滤波效果来看,空域滤波中,平滑滤波器算法简单,处理速度快,但在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。
而中值滤波器对椒盐噪声的抑制效果比较好,但对点,线等细节较多的图像却不太合适。