当前位置:文档之家› 空间域滤波器(实验报告)

空间域滤波器(实验报告)

空间域滤波器(实验报告)
空间域滤波器(实验报告)

数字图像处理作业

——空间域滤波器

摘要

在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别

是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。

实验原理分析:

空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。

空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。

模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。

①中值滤波器的设计:

中值滤波器是一种非线性统计滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由统计排序的中间值代替中心像素的值。它比小尺寸的线性平滑滤波器的模糊程度明显要低,对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的主要功能是使拥有不同灰度的点看起来更接近于它的邻近值,去除那些相对于其邻域像素更亮或更暗,并且其区域小于滤波器区域一半的孤立像素集。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。

将中值滤波推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形等。本次作业使用正方形模板进行滤波,它的中心一般位于被处理点上。窗口的大小对滤波效果影响较大。

根据上述算法利用MATLAB软件编程,对源图像test1和test2进行滤波处理,结果如下图:

中值滤波后的test1.pgm (3x3

中值滤波后的test1.pgm (5x5

中值滤波后的test1.pgm (7x7)

中值滤波后的test2.tif(5x5)

可见,窗口的大小对滤波效果影响较大。窗口越大,平滑效果越明显,图像细节越模糊。

②高斯滤波器的设计:

高斯滤波是一种根据高斯函数的形状来选择模板权值的线性平滑滤波方法。高斯平滑滤波器对去除服从正态分布的噪声是很有效果的。一维零均值高斯函数

为。其中,高斯分布参数决定了高斯滤波器的宽度。对图像来说,常用二维零均值离散高斯函数作平滑滤波器,函数表达式如下:

(1)

高斯函数具有5个重要性质:

(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的。一般来说一幅图像的边缘方向是不知道的。因此,在滤波之前是无法确定一个方向比另一个方向上要更多的平滑的。旋转对称性意味着高斯滤波器在后续的图像处理中不会偏向任一方向。

(2)高斯函数是单值函数。高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点的权值是随着该点与中心点距离单调递减的。这一性质是很重要的,因为边缘是一种图像局部特征。如果平滑运算对离算子中心很远的像素点仍然有很大的作用,则平滑运算会使图像失真。

(3)高斯函数的傅立叶变换频谱是单瓣的。这一性质是高斯函数傅立叶变换等于高斯函数本身这一事实的直接推论。图像常被不希望的高频信号所污染,而所希望的图像特征,既含有低频分量,又含有高频分量。高斯函数傅立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需要的信号。

(4)高斯滤波器的宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的。σ越大,高斯滤波器的频带就越宽,平滑程度就越好。通过调节平滑程度参数σ,可在图像特征分量模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷。(5)由于高斯函数的可分离性,大高斯滤波器可以有效实现。通过二维高斯函数的卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积的结果与方向垂直的相同一维高斯函数进行卷积。因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长。这些性质使得它在早期的图像处理中特别有用,表明高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器。

根据上述分析,利用MATLAB软件设计高斯滤波器,对源图像test1和test2进行滤波处理,结果如下图:

50

100

150

200

250

50

100

150

200

250

高斯滤波平滑后的test1.pgm (5x5)

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250

高斯滤波平滑后的test2.tif (3x3)

50

100

150

200

250

300

350

400

450

500

50100150200250300350400450

500

可见,对于高斯滤波器,模板的大小对滤波效果影响不大。高斯滤波虽然能够在一定程度上去掉噪声,但也使得图象变得模糊不清,效果并不能令人满意。

50

100

150

200

250

300

350

400

450

500

50100150200250300350400450

500

高斯滤波平滑后的test2.tif (7x7)

50

100

150

200

250

300

350

400

450

500

50100150200250300350400450

500

2、利用高通滤波器滤波测试图像test3,4:包括unsharp masking, Sobel edge

detector, and Laplace edge detection;Canny algorithm.

实验原理分析:

锐化滤波能减弱或消除图像中的低频率分量,但不影响高频率分量。因为低频分量对应图像中灰度值缓慢变化的区域,因而与图像的整体特性,如整体对比度和平均灰度值等有关。锐化滤波将这些分量滤去可使图像反差增加,边缘明显。在实际应用中,锐化滤波可用于增强被模糊的细节或者低对比度图像的目标边缘。

图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分析奠定基础。

由于锐化使噪声受到比信号还要强的增强,所以要求锐化处理的图像有较高的信噪比;否则,锐化后图像的信噪比更低。

①反锐化掩膜图像增强(unsharp masking)

图像的反锐化掩蔽算法可以表示为:

(1)

其中fs(x,y)表示经过反锐化掩蔽得到的锐化图像,是f(x,y)的模糊形式。反锐化掩蔽进一步的普遍形式称为高提升滤波。在图像中任何一点(x,y)处,高提升滤波后的图像

f可定义如下:

hb

(2)

f

其中A≥1,与前式一样,是的模糊形式,此式也可以写成:

(3)

结合式(1),可以得到:

(4)

这一表达式可计算高提升滤波图像。

如果选择拉普拉斯变换,式(4)变成:

(5) 高提升滤波处理可以通过任何一个图1所示的掩模得以实现。当A=1时,高提升滤波处理就是标准的拉普拉斯变换。随着A 超过l 不断增大,锐化处理的效果越来越不明显。最终,当A 足够大时,高提升图像将近似等于经常数调制的图像。

图1 高频提升滤波技术可以用其中一种掩膜来实现(1A ) 本文采用的反锐化掩膜滤波器中A=1。根据以上分析,利用MATLAB 软件设计反锐化掩膜滤波器对test3和test4进行滤波,结果如下图:

原图像——test3c

orrupt.pgm

反锐化掩膜后的test3c orrupt.pgm

可见,经过反锐化掩膜滤波后,图像的边缘得到了增强,细节更加明显,但

同时也带来了高频噪声的影响。

②索贝尔边缘检测(Sobel edge detector )

索贝尔算子(Sobel operater )主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或其法矢量。

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

1012

02*10

1x G A -+?? ?=-+ ? ?-+?

?

1

210

00*

121y G A +++??

?

= ? ?---?

?

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的

大小。

G =

然后可用以下公式计算梯度方向。

arctan(

)

y x

G G Θ=

如果角度Θ等于零,即代表图像在该处拥有纵向边缘,左方较右方暗。

根据以上算法分析,利用MATLAB 软件设计Sobel 边缘检测滤波器,对源

图像test3和test4进行滤波,结果如下图示:

原图像

——test4 copy.bmp 反锐化掩膜后的test4 copy.bmp

③Laplacian 边缘检测(Laplacian edge detector )

拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数

的拉普拉斯变换是各向同性的二阶导数,定义为:

(6)

为了更适合于数字图像处理,将该方程表示为离散形式:

(7)

另外,拉普拉斯算子还可以表示成模板的形式,如图2所示。图2(a )表示离散拉普拉斯算子的模板,图2(b )表示其扩展模板,图2(c )和(d )则分别表示其他两种拉普拉斯的实现模板。从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮。因为图像中的边缘就是那些灰度发生跳变的区域,所以拉普拉斯锐化模板在边缘检测中很有用。

一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线

源图像——test3c

orrupt.pgm Sobel 边缘检测的test3c

orrupt.pgm

源图像——test3c

orrupt.pgm

Sobel 边缘检测——test4 copy.bmp

的位置。但该算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。同梯度算子一样,拉普拉斯算子也会增强图像中的噪声,有时用拉普拉

(a (

b

图2 拉普拉斯的4种模板

拉普拉斯锐化的基本方法可以由下式表示:

这种简单的锐化方法既可以产生拉普拉斯锐化处理的效果,同时又能保留背景信息,将原始图像叠加到拉普拉斯变换的处理结果中去,可以使图像中的各灰度值得到保留,使灰度突变处的对比度得到增强,最终结果是在保留图像背景的前提下,突现出图像中小的细节信息。

根据以上算法分析,利用MATLAB 软件设计Laplacian 边缘检测滤波器,

对源图像test3和test4进行滤波,结果如下图示:

源图像—test3c orrupt.pgm

Laplacian 边缘检测-test3c orrupt.pgm

由上图可知,运用Laplacian 算子对test4 copy.bmp 进行边缘检测后,图像的边缘信息没有被很好的检测出来。这是由于拉普拉斯梯算子会增强图像中的噪声,因此本文再用拉普拉斯算子对test4 copy.bmp 进行边缘检测时,先将图像进行高斯平滑滤波处理。处理结果如下图:

④Canny 算子边缘检测(Canny algorithm )

在图像边缘检测中,抑制噪声和边缘精确定位是无法同时满足的。边缘检测算法通过平滑滤波去除图像噪声的同时,也增加了边缘定位的不确定性;反之,提高边缘检测算子对边缘敏感性的同时,也提高了对噪声的敏感性。Canny 算子力图在抗噪声干扰和精确定位边缘之间寻求最佳折中方案。用Canny 算子检测图像边缘的步骤如下:

step1:用高斯滤波器平滑图象;

step2:用一阶偏导的有限差分来计算滤波后图像梯度的幅值和方向; step3:对梯度幅值进行非极大值抑制,其过程为找出图像梯度中的局部极大值点,把其他非局部极大值点置零以得到细化的边缘。

step4:用双阈值算法检测和连接边缘。使用两个阈值T1和T2(T1>T2),T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻找边缘的断裂处,并连接这些边缘。 利用上述原理和MATLAB 软件设计滤波器,对test3和test4进行边缘检测,结果如下图所示:

源图像

—test4 copy.bmp Laplacian 边缘检测(未滤波)

—test4 copy.bmp

源图像

—test4 copy.bmp

Laplacian 边缘检测(高斯滤波后)—test4 copy.bmp

可见,经过Canny 算子较好的检测出了图像的所有边缘信息,具有较强的去噪能力。

源图像-test3c

orrupt.pgm Canny 边缘检测-test3c

orrupt.pgm

Canny 边缘检测-test4 copy.bmp

附录

一、参考文献

[1] 冈萨雷斯著.数字图像处理(第三版).北京:电子工业出版社,2010

[2] 杨杰李庆著.数字图像处理及MATLAB实现——学习与实验指导.北京:电子

工业出版社,2010

[3] 苏金明王永利著.MATLAB图形图像. 北京:电子工业出版社,2005

[4] 朱习军隋思涟等著.MATLAB在信号与图像处理中的应用. 北京:电子工业

出版社,2009

[5] 张秀兰著.基于MATLAB的数字图像的边缘检测.吉林化工学院学报,2010

[6] 杨先花黎粤华著.基于MATLAB图像边缘检测算法效果对比.机电产品开发

与创新,2010

二、源代码:

第一题

(1)平滑滤波器

1.中值滤波器(以3x3的模板大小为例)

①I=imread(' E:\大三下\图像处理英文课件\作业\第四次作业\test1.pgm','pgm');

n=3;

a=ones(n,n);

p=size(I);

x1=double(I);x2=x1;

for i=1:p(1)-n+1

for j=1:p(2)-n+1

c=x1(i:i+(n-1),j:j+(n-1));

e=c(1,:);

for u=2:n

e=[e,c(u,:)];

end

mm=median(e);

x2(i+(n-1)/2,j+(n-1)/2)=mm;

end

end

I2=uint8(x2);

imshow(I2)

title('中值滤波后的test1.pgm(3x3)')

②I=imread('E:\大三下\图像处理英文课件\作业\第四次作业\test2.tif','tif');

n=3;

a=ones(n,n);

p=size(I);

x1=double(I);x2=x1;

for i=1:p(1)-n+1

for j=1:p(2)-n+1

c=x1(i:i+(n-1),j:j+(n-1));

e=c(1,:);

for u=2:n

e=[e,c(u,:)];

end

mm=median(e);

x2(i+(n-1)/2,j+(n-1)/2)=mm;

end

end

I2=uint8(x2);

imshow(I2)

title('中值滤波后的test2.tif(3x3)')

2、高斯滤波器(以3x3的模板大小为例)

①n1=3;sigma1=1.5;n2=3;sigma2=1.5;theta=0;

[I,map]=imread(' E:\大三下\图像处理英文课件\作业\第四次作业\test1.pgm','pgm');

r=[cos(theta) -sin(theta); sin(theta) cos(theta)];

for i = 1 : n2

for j = 1 : n1

u = r*[j-(n1+1)/2 i-(n2+1)/2]';

h(i,j)=exp(-u(1)^2/(2*sigma1^2))/(sigma1*sqrt(2*pi))*exp(-u(2)^2/(2

*sigma2^2))/(sigma2*sqrt(2*pi));

end

end

h = h / sqrt(sum(sum(h.*h)));

f1=conv2(I,h,'same');

figure(1);

imagesc(I);title('test1.pgm');

colormap(gray);

figure(2);

imagesc(f1);title(' '高斯滤波平滑后的test1.pgm(3x3)');

colormap(gray);

② n1=3;sigma1=1.5;n2=3;sigma2=1.5;theta=0;

[I,map]=imread(' E:\大三下\图像处理英文课件\作业\第四次作业\test2.tif','tif');

r=[cos(theta) -sin(theta); sin(theta) cos(theta)];

for i = 1 : n2

for j = 1 : n1

u = r*[j-(n1+1)/2 i-(n2+1)/2]';

h(i,j)=exp(-u(1)^2/(2*sigma1^2))/(sigma1*sqrt(2*pi))*exp(-u(2)^2/(2

*sigma2^2))/(sigma2*sqrt(2*pi));

end

end

h = h / sqrt(sum(sum(h.*h)));

f1=conv2(I,h,'same');

figure(1);

imagesc(I);title('test2.tif');

colormap(gray);

figure(2);

imagesc(f1);title(' '高斯滤波平滑后的test2.tif(3x3)');

colormap(gray);

(2)锐化滤波器:

①反锐化掩膜(以处理test3_corrupt.pgm为例)

pic = imread('E:\大三下\图像处理英文课件\作业\第四次作业\test4 copy.bmp','bmp'); I=pic;

picSize = size(pic);

pic = cast(pic,'int32');

t = zeros(picSize(1) + 2 , picSize(2) + 2);

t = cast(t,'int32');

t(2:picSize(1) + 1 , 2:picSize(2) + 1) = pic;

t(: , 1) = t(: , 2);

t(: , picSize(2) + 2) = t(: , picSize(2) + 1);

t(1 , :) = t(2 , :);

t(picSize(1) + 2 , :) = t(picSize(1) + 1 , :);

A = 1.0;

for i=2:1:picSize(1)+1

for j=2:1:picSize(2)+1

pic(i-1,j-1) = t(i,j)*A - (t(i,j)*(-8) + t(i,j-1) + t(i-1,j-1) + t(i-1,j) + t(i,j+1) + t(i+1,j) + t(i+1,j+1) + t(i+1,j-1) + t(i-1,j+1)); end

end

pic = cast(pic,'uint8');

imwrite(pic,['UnsharpMasking_A_', num2Str(10*A),'.png'],'png');

figure;

subplot(1,2,1)

imshow(I);

title('原图像——test4 copy.bmp');

subplot(1,2,2)

imshow(pic);

title('反锐化掩膜后的test4 copy.bmp');

②Sobel 边缘检测(以处理test4_corrupt.pgm为例)

I= imread('E:\大三下\图像处理英文课件\作业\第四次作业\test4 copy.bmp','bmp');

[N,M]=size(I)

I=double(I);

h1=[-1,0,1;-2,0,2;-1,0,1];

h2=[-1,-2,-1;0,0,0;1,2,1];

Gx=conv2(I,h1,'same');

Gy=conv2(I,h2,'same');

F=abs(Gx)+abs(Gy);

for i=1:N

for j=1:M

I(i,j)=F(i,j);

end

end

I=uint8(I);

figure;

imshow(I);

title('Sobel 边缘检测——test4 copy.bmp');

③Laplace边缘检测

a)Laplace边缘检测——test3_corrupt.pgm

I = imread('E:\大三下\图像处理英文课件\作业\第四次作业\test3_corrupt.pgm','pgm'); [N,M]=size(I);

figure;

subplot(1,2,1);

imshow(I);

title('?′í????atest3_corrupt.pgm');

t=ones(N,M);

t=I;

for i=2:N-1

for j=2:M-1

I(i,j)=t(i+1,j)+t(i-1,j)+t(i,j+1)+t(i,j-1)-4*t(i,j);

end

end

subplot(1,2,2);

imshow(I);

title('Laplacian边缘检测-test3_corrupt.pgm');

b)Laplace边缘检测——test4 copy.bmp

未进行高斯滤波:

I= imread('E:\大三下\图像处理英文课件\作业\第四次作业\test4 copy.bmp','bmp'); [N,M]=size(I);

figure;

subplot(1,2,1);

北科大数字图像处理实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称:《数字图像处理》课程实验 学生姓名:徐松松 专业:计算机科学与技术 班级:计1304 学号:41345053 指导教师:王志明 实验成绩: 实验时间:2016 年12 月15 日

一、实验目的与实验要求 1、实验目的 1. 熟悉图像高斯、脉冲等噪声的特点,以及其对图像的影响; 2. 理解图像去噪算法原理,并能编程实现基本的图像去噪算法,达到改善图像质量的效果,并能对算法性能进行简单的评价。 3. 理解图像分割算法的原理,并能编程实现基本的灰度图像分割算法,并显示图像分割结果。 2、实验要求 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg),设计或选择至少两种图像滤波算法对图像进行去噪。 2.利用给出的参考图像(org1.jpg, org2.jpg),对不同算法进行性能分析比较。 3. 对于给定的两幅数字图像(test.jpg,test 4.jpg),将其转换为灰度图像,设计或选择至少两种图像分割算法对图像进行分割,用适当的方式显示分割结果,并对不同算法进行性能分析比较。 二、实验设备(环境)及要求 1. Mac/Windows计算机 2. Matlab编程环境。 三、实验内容与步骤 1、实验1 (1)实验内容 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。 2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。(2)主要步骤 1. 打开Matlab编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’函数显示所读入的图像数据;

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

大学doc-实验二RLS的实验报告

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

基于RLS的语音去噪算法研究 课程名称现在数字信号处理及其应用 实验名称基于RLS的语音去噪算法研究 学院电子信息学院 专业电路与系统 班级电子2班 学号 20XXXX20XXXX0XX020XXXX7 学生姓名刘秀 指导老师何志伟

摘要:截取一段音频信号(初始信号),然后人为加入一个白噪声,然后将初始信号与白噪声混叠以后,再用RLS算法将这个白噪声信号滤除。RLS (递推最小二乘)算法是另一种基于最小二乘准则的精确方法,它具有快速收敛和稳定的滤波器特性,因而被广泛地应用于实时系统识别和快速启动的信道均衡等领域。 关键词:初始信号、白噪音、RLS算法。 Abstract:Intercept an audio signal (original signal) and add a white noise artificially, then after aliasing the initial signal and white noise , and using RLS algorithm to the white noise signal filtering.RLS (recursive least squares) algorithm is a kind of accurate method based on least squares criterion, it has a fast convergence and stability of the filter characteristics, and therefore is widely applied in the real-time system identification and fast start of equalization. Key words: Initial signal, white noise, RLS algorithm.

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

微波遥感实验报告

实验一:SAR图像下载与认识 一:实验目的 1掌握SAR图像的下载方法; 2了解不同地物在图像上的特性; 二、实验要求 1掌握雷达图像的成像原理与地物特性 2数据说明 3本实验采用Sentinel-1卫星拍摄于2014年12月5日的天山山脉的遥感影像三、实验步骤 打开地理空间数据云网站; 图1 找到Sentinel-1卫星下载有效数据; 图2

在ERDAS中打开影像; 图3 分析地物在影像上的特性; 1雷达图像的成像机理 雷达图像的获取系统不同于光学影像获取系统,它是采用有源主动式工作方法,其本质是一个距离测量系统雷达图像.上的信息是地物目标对雷达波束的反应,而且主要是目标后向散射形成的图像信息,以及朝向雷达天线那部分被散射的电磁波所形成的图像信息由于地物目标所处的位置地物结构表面形态和介电性能等不同,对雷达波束的反应是不一样的同时不同雷达波段极化方式入射角也会使地物产生不同的反应,使其图像具有近距离压缩透视收缩叠掩阴影和地面起伏引起的影像移位等现象,因此,在图像.上形成不同的色调纹理和图案,与中心投影的光学影像有很大的差别。 2雷达图像的信息特点 地物目标对雷达波束的反应是散射(或反射)穿透和吸收r种情况并存,波长不同,对地物的穿透性是不一样的;地物目标的类型本身的结构表面的粗糙度和介电性能不同,则会对电磁波的穿透反射(或散射)和吸收带来不同程度的效应同时,入射雷达波束和地物的相对方向也有关系,在一定方向的条件下,地物目标可以产生强回波,在另一方向,回波则可能很弱或无回波例如平行于飞行方向的铁丝网(电力线),会产生强回波,垂直于飞行方向回波则很弱或消失因此,在雷达图像解译时,尽可能采用多侧视方向的图像 3目视解译 就本实验的雷达图像而言,主要有以下几种地物; 雷达波束的穿透性对冰雪覆盖区地物的判读有着独特的优势例如雪上被覆盖区域,在光学影像上很难辨清究竟是雪,还是湖泊,在雷达图像上则表现极为清晰对于雪山区域冰斗湖碛尾湖的判断,应采用多侧视方向,避免将阴影误判为湖泊。

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

医学图像处理实验报告

医学图像处理实验报告 班级专业姓名学号 实验名称:图像增强 一、实验目的 1:理解并掌握常用的图像的增强技术。 2:熟悉并掌握MA TLAB图像处理工具箱的使用。 3:实践几种常用数字图像增强的方法,增强自主动手能力。 二、实验任务 对于每张图像(共三张图片),实现3种图像增强方法。根据图像的特点,分别选用不用的图像增强算法。 三、实验内容(设计思路) 1、artery_vessel (1)直方图均衡化 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。 图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。 直方图均衡化是指:采用累积分布函数(CDF)变化生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1],均衡化处理的结果是一幅扩展了动态范围的图像。直方图均衡化就是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。主要用途是:将一幅灰度分布集中在较窄区间,细节不够清晰的图像,修正后使图像的灰度间距增大或灰度分布均匀,令图像的细节清晰,达到图像增强的目的。 (2)中值滤波加直方图均衡化 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,

FIR滤波器设计实验报告

实验报告 课程名称:数字信号处理 实验项目:FIR滤波器设计 专业班级: 姓名:学号: 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

实验报告 专业班级: 学号: 姓名: 一、实验目的: 1、熟悉线性相位FIR 数字低通滤波器特性。 2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。 3、了解各种窗函数对滤波特性的影响。 要求认真复习FIR 数字滤波器有关内容实验内容。 二、实验原理 如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为 ωπ= ωππ -?d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得 到:(n)(n)h h(n)d w ?=。h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω 为∑-=ω= 1 n n j -j ω h(n)e )H(e N 。式中N 为所选窗函数(n)w 的长度。 用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。 选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ?=。验算 )()()]([)(ω?ωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函 数类型和长度N ,直至满足要求。 如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。例如要设计低通特性,可选择情况1、2,不能选择情况3、4。

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

实验报告基于MATLAB的数字滤波器设计

实验7\8基于MATLAB勺数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: 1 一6P 兰G(e^) ≤ 1 + 6P , for 国≤ ωP G(J") ≤ 6s, for 国s ≤ ⑷≤ ∏ 通带边缘频率:'P ,阻带边缘频率:'s, 通带起伏:J P,通带峰值起伏: C(P= —20 IOg io (^-OP )【d B 】阻带起伏.冠S PaSSband StOPband Tran Siti on band Fig 7.1 TyPiCaI magn itude SPeCifiCati On for a digital LPF :S = -20 log ιo(r)[dB 】 O 数字滤波器有IIR和FlR两种类型,它们的特点和设计方法不同。 在MATLAB^,可以用[b , a]=butter ( N,Wr)等函数辅助设计IIR数字滤波器,也可以用b=fir1(N,Wn, 'type ')等函数辅助设计FIR数字滤波器。 实验内容:利用MATLAB编程设计一个数字带通滤波器,指标要求如下: 通带边缘频率:??P1=0.45^,?? P2=0?65 二,通带峰值起伏:[dB】O 阻带边缘频率:'s1 0.3…,'s2 0.75…,最小阻带衰减:-S 4°[dB] O 分别用IIR和FlR两种数字滤波器类型进行设计。 实验要求:给出IIR数字滤波器参数和FIR数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。 实验内容: IRR代码: wp=[0.45*pi,0.65*pi]; ws=[0.3*pi,0.75*pi]; Ap=1; A S=40; [N,Wc]=buttord(wp∕pi,ws∕pi,Ap,As); [b,a]=butter(N,Wc)%[b,a] = butter( n, Wn,'ftype') 最小阻带衰减:

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

数字图像处理实验报告 (2)

数字图像处理试验报告 实验二:数字图像得空间滤波与频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26日 1、实验目得 1、掌握图像滤波得基本定义及目得. 2、?理解空间域滤波得基本原理及方法。 3、掌握进行图像得空域滤波得方法。 4、?掌握傅立叶变换及逆变换得基本原理方法。 5、?理解频域滤波得基本原理及方法。 6、掌握进行图像得频域滤波得方法。 2、实验内容与要求 1、?平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同 一图像窗口中。 2)?对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果, 要求在同一窗口中显示。 3) 使用函数 imfilter时,分别采用不同得填充方法(或边界选项,如 零填充、’replicate'、'symmetric’、’circular')进行低通滤波,显 示处理后得图像. 4)运用for循环,将加有椒盐噪声得图像进行10 次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial函数得’average’ 类型生成均值滤波器)。 5)?对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理, 要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。 2、锐化空间滤波 1)?读出一幅图像,采用3×3得拉普拉斯算子 w = [ 1, 1, 1;1– 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子, 如 5 ×5得拉普拉斯算子 w =[ 1 1 1 1 1 1 1 1 1 1 1 1 —24 1 1 1 1 1 1 1 1 1 1 1 1] 3)?分别采用5×5,9×9,15×15与25×25大小得拉普拉斯算子对blurry_moon、tif

实验四iir数字滤波器的设计实验报告

数 字信号处理 实验报告 实验四 IIR数字滤波器的设计 学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四IIR数字滤波器的设计 一、实验目的:

1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1. 脉冲响应不变法 用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则 )2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π 2.双线性变换法 S 平面与z 平面之间满足以下映射关系: );(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+ =+-?=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换 ,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期 (1)=, δ=, =, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h))); axis([0,500,-80,10]);

相关主题
文本预览
相关文档 最新文档