数学理卷·2015届四川省成都市高三摸底考试扫描版
- 格式:doc
- 大小:746.50 KB
- 文档页数:9
四川省成都市2015届高三毕业班摸底测试理科数学试卷(解析版)一、选择题1.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则()U S T ð等于( )A 、{2,4}B 、{4}C 、ΦD 、{1,3,4} 【答案】A 【解析】试题分析:因为全集U ={1,2,3,4},集合S ={1,3},故U S ð={2,4},于是()U S Tð={2,4},选A考点:集合的概念及基本运算,并集、补集. 2.已知命题:,25xp x R ∀∈=,则p ⌝为( ) A 、,25x x R ∀∉= B 、,25xx R ∀∈≠ C 、00,25x x R ∃∈= D 、00,25x x R ∃∈≠【答案】D 【解析】试题分析:根据全称命题的否定是特称命题,以及否命题的特征,可知选D 考点:全称命题的否定.3.计算664log log 4的结果是( )A 、6log 2B 、2C 、6log 3D 、3 【答案】B 【解析】试题分析:666664log log 4log 9log 4log 362=+==,选B 考点:对数基本运算.4.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =4x +y 的最大值为( )A 、10B 、8C 、2D 、0 【答案】B 【解析】试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8考点:线性规划.5.已知,a b 是两条不同的直线,α是一个平面,则下列说法正确的是( ) A 、若//,a b b α⊂,则//a α B 、若//,a b αα⊂,则//a b C 、若,a b αα⊥⊥,则//a b D 、若,a b b α⊥⊥,则//a α 【答案】C 【解析】试题分析:对于A ,当//,a b b α⊂时,可能有a α⊂,故A 错误; 对于B ,//a α时,不能保证a 与α内任意的直线平行,故B 错误; 对于C ,垂直于同一平面的两条直线相互平行,故C 正确; 对于D ,当,a b b α⊥⊥时,可能有a α⊂,故D 错误考点:空间直线与平面的位置关系,平行的判定.6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,一般情况下PM2.5的浓度越大,大气环境质量越差.右边的茎叶图表示的是成都市区甲乙两个监测站某10日内每天的PM2.5浓度读数(单位:3/g m μ),则下列说法正确的是( ) A 、这10日内甲、乙监测站读数的极差相等B 、这10日内甲、乙监测站读数的中位数中,乙的较大C 、这10日内乙监测站读数的众数与中位数相等D 、这10日内甲、乙监测站读数的平均数相等【答案】C 【解析】试题分析:甲的极差是98-43=55,乙的极差是94-37=57,两者不相等,A 错误; 甲的中位数是73752+=74,乙的中位数是68,甲的中位数较大,B 错误;乙的众数为68,与中位数相同,C 正确;甲的平均数是(43+63+65+72+73+75+78+81+86+98)×110=73.4乙的平均数是(37+58+61+65+68+68+71+77+82+94)×110=68.1,可知D 错误考点:统计,茎叶图,极差,中位数,众数,平均数.7.已知函数()cos f x x x ωω+(ω>0)的图象与直线y =-2的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是( )A 、2,,63k k k Z ππππ⎡⎤++∈⎣⎦B 、,,36k k k Z ππππ⎡⎤-+∈⎣⎦C 、42,2,33k k k Z ππππ⎡⎤++∈⎣⎦D 、52,2,1212k k k Z ππππ⎡⎤-+∈⎣⎦ 【答案】A 【解析】试题分析:因为()cos 2sin()6f x x x x πωωω+=+最小值为-2,可知y =-2与f(x)两个相邻公共点之间的距离就是一个周期,于是2T ππω==,即ω=2,即()2s i n (2)6f xxπ=+ 令322,2622x k k πππππ⎡⎤+∈++⎣⎦,k ∈Z ,解得x ∈2,,63k k k Z ππππ⎡⎤++∈⎣⎦,选A考点:三角函数恒等变形,三角函数的图象及周期、最值、单调性.8.已知定义在R 上的偶函数f(x)满足f(4-x)=f(x),且当x ∈(-1,3]时,f(x)=2,(1,1]1cos ,(1,3]2x x x x π⎧∈-⎪⎨+∈⎪⎩,则函数g(x)=f(x)-|lgx|的零点个数是( ) A 、7 B 、8 C 、9 D 、10 【答案】D 【解析】试题分析:由f(x)是定义在R 上的偶函数,知x =0是它的一条对称轴 又由f(4-x)=f(x),知x =2是它的一条对称轴 于是函数的周期为(2-0)×2=4画出f(x)的草图如图,其中y =|lgx|在(1,+∞)递增且经过(10,1)点函数g(x)的零点,即为y =f(x)与y =|lgx|的交点 结合图象可知,它们共有10个交点,选D.考点:函数的奇偶性、周期性,分段函数,函数的零点.9.如图,已知椭圆221:111x C y +=,双曲线22222:1y x C a b-=(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为( )A 、5 B【答案】C 【解析】试题分析:由已知,|OA|=a设OA 所在渐近线的方程为y =kx(k >0),于是A 点坐标可表示为A(x 0,kx 0)(x 0>0) 于是0,即A(),进而AB 的一个三分点坐标为()该点在椭圆C 1上,有222119(1)111119(1)k k k ++=+,即2211119(1)k k +=+,得k =2即b a =2,于是c,所以离心率c e a=C考点:圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.二、填空题10.已知(0,)2πα∈,4cos 5α=,则sin()πα-=_____________.【答案】35【解析】试题分析:因为α是锐角所以sin(π-α)=sin α35考点:同角三角函数关系,诱导公式.11.当1x >时,函数11y x x =+-的最小值是_______________.【答案】3 【解析】试题分析:因为1x >,11(1)11311y x x x x =+=-++≥=--,当且仅当111x x -=-,且x >1,即x =2时等号成立,故函数y 的最小值为3. 考点:均值不等式求最值.12.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+ 【解析】试题分析:这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(12×2×2)+(2+2+)×6=28+.考点:三视图,几何体的表面积.13.运行如图所示的程序框图,则输出的运算结果是_____________【答案】45【解析】试题分析:因为211(1)i i i i =++第一次进入循环,运算后S =12,i =1<4第二次进入循环,运算后S =111223+⨯⨯,i =2<4第三次进入循环,运算后S =111122334++⨯⨯⨯,i =3<4第四次进入循环,运算后S =111112233445+++⨯⨯⨯⨯,i =4≥4跳出循环输出S =11111411223344555+++=-=⨯⨯⨯⨯.考点:算法,框图,数列求和,裂项法.14.已知直线1()4y k x =+与曲线y k 的所有可能取值构成集合A ;P(x ,y)是椭圆221169y x +=上一动点,111(,)P x y 与点P 关于直线y =x +1对称,记114y -的所有可能取值构成集合B ,若随机的从集合A ,B 中分别抽出一个元素12,λλ,则12λλ>的概率是___________【答案】34【解析】1()4k x +,当x ≥0时,显然k >0,两边平方得2222216k k x k x x =++,即2222(1)0216k k k x x +-+=由题意,该方程有两个不相等的正实数根即22222102(1)40216k k k k ⎧-<⎪⎨⎪--⋅>⎩即221210k k ⎧<⎪⎨⎪-+>⎩结合k >0解得k ∈(0,1),即A =(0,1) 对于椭圆221169y x +=,由于原点关于y =x +1的对称点为(-1,1)所以,椭圆关于y =x +1的对称椭圆为22(1)(1)1169y x -++=,111(,)P x y 在改椭圆上,可知y 1-1∈[-4,4]于是114y -∈[-1,1],即B =[-1,1] 【方法一】由12,A B λλ∈∈,分别以12,λλ为横坐标和纵坐标, 可知点(12,λλ)构成一个面积为2的矩形 其中满足12λλ>的是图中阴影部分,面积为32所以,满足12λλ>的概率是34【方法二】当12,[1,0]A λλ∈∈-时,此事件发生的概率为12,此时必有12λλ>当12,(0,1]A λλ∈∈时,此事件发生的概率为12,此时12λλ>与12λλ≤概率相等,各占12,于是此时满足12λλ>的概率为14.以上两事件互斥,且[-1,0]与(0,1]的区间长度相等,故满足12λλ>的概率为311244+=.考点:直线与曲线的交点,轴对称图形,坐标的取值范围,几何概型.三、解答题15.已知等差数列{}n a 的前n 项和为n S ,且*273,49,a S n N ==∈ (1)求数列{}n a 的通项公式;(2)设1(1)2n n n a b n -+⋅=,求数列{}n b 的前n 项和T n .【答案】(1)21n a n =-;(2)122n n T +=- 【解析】试题分析:(1)根据等差数列的性质以及*273,49,a S n N ==∈可以求出首项和公差,进而求得数列{}n a 的通项公式;(2)结合(1)可得{}n b 是一个等比数列,利用等比数列求和公式可以求得T n .试题解析:(1)设公差为d ,则113767492a d a d +=⎧⎪⎨⨯+=⎪⎩ 3分 解得:{112a d == ∴*1(1)21()n a a n d n n N =+-=-∈所以数列{}n a 的通项公式为*21()n a n n N =-∈; 6分1(2)由(1)得11(1)2(211)22n n n n n a n b n n --+⋅-+⋅===, 9分∴11*(1)2(12)22()112n n n n b q T n N q +--===-∈--. 12分 考点:等差数列,等比数列,通项公式,前n 项和公式.16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量(,)m a b c a =--,(,)n a b c =+,且0m n ⋅=(1)求角B 的大小;(2)求函数()sin()6f x A π=+的值域.【答案】(1)3B π=;(2)1(,1]2【解析】试题分析:(1)由已知,利用向量的数量积,结合余弦定理可得角B 的大小;(2)利用B 的大小,得到6A π+的取值范围,进而可求得函数f(x)的值域.试题解析:(1)由0m n ⋅=,得222a c b ac +=+根据余弦定理,有2221cos 22a cb B ac +-== 4分又因为(0,)2B π∈,所以3B π=; 6分 (2)由(1)得2(0,)33A C πππ=--∈∴5(,)666A πππ+∈ 8分∴1sin()(,1]62A π+∈∴函数()sin()6f x A π=+的值域为1(,1]2. 12分考点:平面向量的数量积,余弦定理,三角函数的值域.17.某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本.统计数据如下:(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(2)在A ,B ,C ,D ,E ,F 六名学生中,仅有A ,B 两名学生认为作业多.如果从这六名学生中随机抽取两名,求至少有一名学生认为作业多的概率. 【答案】(1)7650名;(2)35【解析】试题分析:(1)利用样本估计总体,可求得喜欢电脑游戏并认为作业不多的人数;(2)用列举法,并利用古典概型即可求得至少有一名学生认为作业多的概率 试题解析:(1)36425007650200⨯=(名) 5分(2)【方法一】从这六名学生中随机抽取两名的基本事件有:{A ,B},{A ,C},{A ,D},{A ,E},{A ,F},{B ,C},{B ,D},{B ,E},{B ,F},{C ,D},{C ,E},{C ,F},{D ,E},{D ,F},{E ,F}共15个 7分其中至少有一个学生认为作业多的事件有{A ,B},{A ,C},{A ,D},{A ,E},{A ,F},{B ,C},{B ,D},{B ,E},{B ,F}共9个 9分 ∴93155P ==即至少有一名学生认为作业多的概率为35. 12分【方法二】6名学生中随机抽取2名的选法有2615C =种, 7分 其中至少有一名学生认为作业多的选法有112242C C C +=9种, 9分∴93155P ==即至少有一名学生认为作业多的概率为35. 12分【方法三】6名学生中随机抽取2名的选法有2615C =种, 7分 其中没有人认为作业多的选法有246C =种 9分 ∴693115155P =-==即至少有一名学生认为作业多的概率为35. 12分考点:统计,随机抽样,用样本估计总体,古典概型.18.如图,已知O 的直径AB =3,点C 为O 上异于A ,B 的一点,VC ⊥平面ABC ,且VC =2,点M 为线段VB 的中点. (1)求证:BC ⊥平面VAC ;(2)若AC =1,求二面角M -VA -C 的余弦值.【答案】(1)见解析;【解析】 试题分析:(1)证明直线与平面垂直的关键是证明该直线与平面内两条相交直线都垂直;(2)求二面角可以利用几何法,先找出二面角的平面角,也可以利用空间坐标系,找出平面的法向量求解.试题解析:(1)∵VC ⊥平面ABC ,BC ⊂平面ABC ∴VC BC ⊥ 2分∵点C 为O 上一点,且AB 为直径 ∴AC BC ⊥ 4分又,VC AC ⊂平面VAC ,VC AC C = ∴BC ⊥平面VAC ; 6分(2)由(1)得,,,BC VC VC AC AC BC ⊥⊥⊥分别以CA ,CB ,CV 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz 如图所示. 7分则A(1,0,0),V(0,0,2),B(0,,0)设平面VAC 的法向量为(0,0)m CB == 8分VA =(1,,,,-2),AB =(-1,,0)设平面VAM 的法向量为n =(x ,y ,z) 由00n VA n AB ⎧⋅=⎨⋅=⎩,得20x x -⎧⎨-+=⎩取y x =4,z =2即(4,2)n = 9分∴cos ,||||m n m n m n ⋅<>=⋅ 11分∴二面角M -VA -C . 12分考点:空间直线与平面垂直的判定,二面角的计算,空间直角坐标系,空间向量的应用. 19.在平面直角坐标系xOy 中,点P 是圆224x y +=上一动点,PD ⊥x 轴于点D.记满足1()2OM OP OD =+的动点M 的轨迹为Γ.(1)求轨迹Γ的方程;(2)已知直线:l y kx m =+与轨迹Γ交于不同两点A ,B ,点G 是线段AB 中点,射线OG 交轨迹Γ于点Q ,且,OQ OG R λλ=∈.①证明:22241m k λ=+②求△AOB 的面积S(λ)的解析式,并计算S(λ)的最大值.【答案】(1)2214x y +=;(2)max ()(1),1S S λλ>= 【解析】试题分析:(1)由已知M 是PD 的中点,利用P 点在圆上,可以求出M 的点轨迹方程为2214x y +=;(2)点Q 在(1)中的椭圆上,G 是OQ 上的分点,利用直线与椭圆的关系,可以找到λ与m 和k 的关系,并进一步将三角形AOB 的面积表示成λ的函数关系式,再求出它的最大值.试题解析:(1)设00(,),(,)M x y P x y ,则点0(,0)D x ,且22004x y += (1) ∵1()2OM OP OD =+ ∴{002x x y y== (2) 将(2)代入(1),得2244x y +=∴轨迹Γ的方程为2214x y +=; 5分 (2)①令1122(,),(,)A x y B x y由2244y kx m x y =+⎧⎨+=⎩消去y 得222(14)8440k x kmx m +++-= 6分 ∴2221222122(8)4(14)(44)08144414km k m km x x k m x x k ⎧⎪=-+->⎪⎪-+=⎨+⎪-⎪=⎪⎩+△,即221222122148144414m k km x x k m x x k ⎧⎪<+⎪⎪-+=⎨+⎪-⎪=⎪⎩+ (3) ∴121222(8)2()221414k km my y k x x m m k k-+=++=+=++ 又由中点坐标公式,得224(,)1414kmmG k k-++ 根据OQ OG λ=,得224(,)1414kmm Q k k λλ-++ 将其代入椭圆方程,有22222222241(14)(14)k m m k k λλ+=++化简得:22214m k λ=+ (4) 9分②由(3)(4)得0,1m λ≠>∵12||x x - (5) 在△AOB 中,121||||2AOB S m x x =-△ (6)∴由(4)(5)(6)可得()(1)S λλ> 12分(0,)t ∈+∞则222111t S t t t==++(当且仅当t =1时,即λ)∴当λ()S λ取得最大值,其最大值为1. 13分 考点:动点轨迹,直线与椭圆的位置关系,中点坐标,平面向量的坐标运算,基本不等式,范围与最值.20.已知函数21()ln ,()3f x x xg x ax bx ==-,其中a ,b ∈R (1)求函数f(x)的最小值;(2)当a >0,且a 为常数时,若函数h(x)=x[g(x)+1]对任意的x 1>x 2≥4,总有1212()()0h x h x x x ->-成立,试用a 表示出b 的取值范围; (3)当23b a =-时,若3(1)()2f xg x +≤对x ∈[0,+∞)恒成立,求a 的最小值.【答案】(1)1e -;(2)1016a <<时,(,b ∈-∞,116a ≥时,1(,2]8b a ∈-∞+;(3)1 【解析】试题分析:(1)利用导数判断出函数()f x 的单调性,即可求出()f x 的最小值;(2)解决本题的关键是由“对任意的x 1>x 2≥4,总有1212()()0h x h x x x ->-成立”得出“()h x 在[4,)x ∈+∞上单调递增”,从而再次转化为导函数大于0的问题求解;(3)通过构造函数231()(1)()(1)l n (1),[0,)22G x f x g x x x ax ax x =+-=++--∈+∞,转化为()0Gx ≤对[0,)x ∈+∞恒成立,于是转化为求()G x 在[0,)x ∈+∞上的最大值问题求解.解题过程中要注意对参数的合理分类讨论.试题解析:(1)∵'()ln 1,(0,)f x x x =+∈+∞,令'()0f x =,得1x e= ∴()f x 在(0,1e )上单调递减,在(1e,+∞)上单调递增 ∴()f x 在1x e=处取得最小值即min 1111[()]()ln f x f e e e e===-; 4分 (2)由题意,得321()()3h x xg x x ax bx x =+=-+在[4,)x ∈+∞上单调递增 ∴2'()210h x ax bx =-+≥在[4,)x ∈+∞上恒成立 ∴2112ax b ax x x+≤=+在[4,)x ∈+∞上恒成立 5分 构造函数1()(0),(0,)F x ax a x x=+>∈+∞ 则22211'()axF x a x x-=-=∴F(x)在(0,上单调递减,在,)+∞上单调递增(i)4,即1016a <<时,F(x)在[4,上单调递减,在,)+∞上单调递增∴[]min ()F x F ==∴[]min 2()b F x ≤,从而(,b ∈-∞ 7分(ii)4,即116a ≥时,F(x)在(4,+∞)上单调递增 12(4)44b F a ≤=+,从而1(,2]8b a ∈-∞+ 8分综上,当1016a <<时,(,b ∈-∞,116a ≥时,1(,2]8b a ∈-∞+; 9分 (3)当23b a =-时,构造函数 231()(1)()(1)ln(1),[0,)22G x f x g x x x ax ax x =+-=++--∈+∞ 由题意,有()0G x ≤对[0,)x ∈+∞恒成立∵'()ln(1)1,[0,)G x x ax a x =++--∈+∞(i)当0a ≤时,'()ln(1)1(1)0G x x a x =++-+>∴()G x 在[0,)+∞上单调递增∴()(0)0G x G >=在(0,)+∞上成立,与题意矛盾. 11分(ii)当0a >时,令()'(),[0,)x G x x ϕ=∈+∞ 则1'()1x a x ϕ=-+,由于1(0,1)1x ∈+ ①当1a ≥时,1'()01x a x ϕ=-<+,()x ϕ在[0,)x ∈+∞上单调递减 ∴()(0)10x a ϕϕ≤=-≤,即'()0G x ≤在[0,)x ∈+∞上成立∴()G x 在[0,)x ∈+∞上单调递减∴()(0)0G x G ≤=在[0,)+∞上成立,符合题意 12分②当01a <<时,1[(1)]1'(),[0,)11a x a x a x x x ϕ---=-=∈+∞++ ∴()x ϕ在1[0,1)x a ∈-上单调递增,在1(1,)x a∈-+∞上单调递减 ∵(0)10a ϕ=->∴()0x ϕ>在1[0,1)x a ∈-成立,即'()0G x >在1[0,1)x a ∈-成立 ∴()G x 在1[0,1)x a ∈-上单调递增∴()(0)0G x G >=在1(0,1)x a ∈-上成立,与题意矛盾 13分 综上,a 的最小值为1 14分考点:导数,函数的单调性,范围与最值,分类与整合.。
成都七中高2015届高三上学期期中数学考试题(理科)(注:每道题号前面的红色序号表示该题在得分明细表中填写的对应位置。
)满分150分,考试时间120分钟一、选择题,本大题有10个小题,每小题5分,共50分,每小题有一个正确选项,请将正确选项涂在答题卷上.【题1】1.中,角的对边分别为,若,则()答案:解析:【题2】2.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布。
(不作近似计算)()A. B. C. D.答案:C解析:由题可知,是等差数列,首项是5,公差为,前30项和为390.根据等差数列前项和公式,有,解得.【题3】3.若在上是减函数,则b的取值范围是()答案:D解析:由题意可知,在上恒成立,即在上恒成立,且要使,需故答案为,选D【题4】4.已知平面和直线,给出条件:①;②;③;④;⑤能推导出的是()①④①⑤②⑤③⑤答案:解析:由两平面平行的性质可知两平面平行,在一个平面内直线必平行于另一个平面【题5】5.已知数列满足,则等于( )答案:B解析:根据题意,由于数列{a n}满足a1=0,a n+1=,那么可知∴a1=0,a2=-,a3=,a4=0,a5=-,a6=…,故可知数列的周期为3,那么可知,选B.【题6】6.在中,若、、分别为角、、的对边,且,则有().成等比数列.成等差数列.成等差数列.成等比数列答案:D解析:由变形得:,,∴上式化简得:,,即,由正弦定理得:,则成等比数列.故选D【题7】7.设是所在平面上的一点,且是中点,则的值为()答案:解析:为中点,【题8】8.若存在过点(1,0)的直线与曲线和都相切,则 ( )A.或B.或C.或D.或答案:A解析:由求导得设曲线上的任意一点处的切线方程为,将点代入方程得或.(1)当时:切线为,所以仅有一解,得(2)当时:切线为,由得仅有一解,得.综上知或.【题9】9.已知满足约束条件,当目标函数在约束条件下取到最小值时,的最小值为()答案:D【题10】10.我们把具有以下性质的函数称为“好函数”:对于在定义域内的任意三个数,若这三个数能作为三角形的三边长,则也能作为三角形的三边长.现有如下一些函数:①②③,④,.其中是“好函数”的序号有()A.①②B.①②③C.②③④D.①③④答案:B解析:①任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于,所以①为好函数.②设所以②为好函数.③设因为,所以,所以③为好函数.④不是好函数.如显然不是好函数.【题11】二、填空题,本大题共5个小题,每小题5分,共25分,请将正确答案填在答题卷上.11.已知指数函数,对数函数和幂函数的图像都过,如果,那么答案:解析:令则,12.答案:解析:,,又因为与不共线,所以,所以13.定义在上的奇函数满足,且不等式在上恒成立,则函数的零点个数为答案:解析:在单增,又为偶函数且有一个零点为3,令得,如图可知有3个零点14.已知命题p:函数在内有且仅有一个零点.命题q:在区间内恒成立.若命题“p且q”是假命题,实数的取值范围是.答案:提示:先确定p且q为真命题的的取值范围,然后取补集可得结果.15.给出定义:若,则叫做实数的“亲密函数”,记作,在此基础上给出下列函数的四个命题:①函数在上是增函数;②函数是周期函数,最小正周期为1;③函数的图像关于直线对称;④当时,函数有两个零点.其中正确命题的序号是答案:②③④解析:时,,当时,当时,,作出函数的图像可知①错,②,③对,再作出的图像可判断有两个交点,④对三、解答题,本大题共6个小题,共75分,请将答案及过程写在答题卷上.【题12】16.(12分)已知函数(1)求得最小正周期;(2)求在区间上的取值范围.解析:(1)(2)的取值范围为【题13】17. (12分)已知数列满足.(Ⅰ)证明数列是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)设,求数列的前项和.解析:(Ⅰ)由已知可得,所以,即,∴数列是公差为1的等差数列.(Ⅱ)由(Ⅰ)可得,∴. .(Ⅲ)由(Ⅱ)知,,所以,,相减得,∴【题14】18.(12分)为一个等腰三角形形状的空地,腰的长为3(百米),底的长为4(百米).现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为和.(1)若小路一端为的中点,求此时小路的长度;(2)若小路的端点两点分别在两腰上,求得最小值.解:(1)为中点,,不在上,故在上,可得,在中,,在中,,(2)若小路的端点两点分别在两腰上,如图所示,设,则当且仅当时取等号,故的最小值为.【题15】19.(12分)如图分别是正三棱台的直观图和正视图,分别是上下底面的中心,是中点.(1)求正三棱台的体积; (注:棱台体积公式:,其中为棱台上底面面积,为棱台下底面面积,为棱台高)(2)求平面与平面的夹角的余弦;(3)若是棱上一点,求的最小值.解析:(1)由题意,正三棱台高为(2)设分别是上下底面的中心,是中点,是中点.以为原点,过平行的线为轴建立空间直角坐标系. ,,,,,,,设平面的一个法向量,则即取,取平面的一个法向量,设所求角为则(3)将梯形绕旋转到,使其与成平角,由余弦定理得即的最小值为【题16】20.(13分)已知函数,其中函数在上是减函数.(1)求曲线在点处的切线方程;(2)若在上恒成立,求得取值范围.(3)关于的方程,有两个实根,求的取值范围.解析:(1),在点处的切线方程为,即(2)在上单减在上恒成立,即在上恒成立,,又在单减,在上恒成立,只需恒成立,(3)由(1)知方程为,设,则方程根的个数即为函数图像与轴交点的个数.,当时,在上为增函数,当时,在都是减函数.在上为减函数,在上为减函数.在上的最大值为,又且,所求方程有两根需满足时原方程有两根,【题17】21.(14分)已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由.(3)求实数与正整数,使得在内恰有2013个零点.解:(Ⅰ)由函数的周期为,,得又曲线的一个对称中心为,故,得,所以将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数(Ⅱ)当时,,所以问题转化为方程在内是否有解设,则因为,所以,在内单调递增,又,且函数的图象连续不断,故可知函数在内存在唯一零点,即存在唯一的满足题意(Ⅲ)依题意,,令当,即时,,从而不是方程的解,所以方程等价于关于的方程,现研究时方程解的情况,令,则问题转化为研究直线与曲线在的交点情况,令,得或当变化时,和变化情况如下表当且趋近于时,趋向于,当且趋近于时,趋向于当且趋近于时,趋向于,当且趋近于时,趋向于故当时,直线与曲线在内有无交点,在内有个交点;当时,直线与曲线在内有个交点,在内无交点;当时,直线与曲线在内有个交点,在内有个交点由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,,所以综上,当,时,函数在内恰有个零点.。
四川省成都市2015届高三摸底(零诊)数学(理)试题【试卷综析】本试卷是高三摸底试卷,考查了高中全部内容.以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:数列、三角、概率、导数、圆锥曲线、立体几何综合问题、程序框图、平面向量、基本不等式、函数等;考查学生解决实际问题的综合能力。
是份非常好的试卷.第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a=(5,-3),b=(-6,4),则a+b= (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 【知识点】向量的坐标运算【答案解析】D 解析:解:由向量的坐标运算得a+b=(5,-3)+(-6,4)=(-1,1),所以选D.【思路点拨】本题主要考查的是向量加法的坐标运算,可直接结合向量加法的运算法则计算. 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(UðS )T 等于(A ){2,4} (B ){4} (C )∅ (D ){1,3,4} 【知识点】集合的运算 【答案解析】A 解析:解:因为UðS={2,4},所以(UðS )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集. 3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5 (C )x ∃∈R ,2x =5 (D )x ∃∈R ,2x ≠5【知识点】全称命题及其否定【答案解析】D 解析:解:结合全称命题的含义及其否定的格式:全称变特称,结论改否定,即可得⌝p 为x ∃∈R ,2x ≠5,所以选D.【思路点拨】全称命题与特称命题的否定有固定格式,掌握其固定格式即可快速判断其否定. 4.计算21og63 +log64的结果是(A )log62 (B )2 (C )log63 (D )3 【知识点】对数的运算【答案解析】B 解析:解:21og63 +log64=1og69+log64=1og636=2,所以选B.【思路点拨】在进行对数运算时,结合对数的运算法则,一般先把对数化成同底的系数相同的对数的和与差再进行运算,注意熟记常用的对数的运算性质.5.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 【知识点】简单的线性规划 【答案解析】B 解析:解:作出不等式组表示的平面区域为如图中的三角形AOB 对应的区域,平移直线4x+y=0,经过点B 时得最大值,将点B 坐标(2,0)代入目标函数得最大值为8,选B.【思路点拨】对于线性规划问题,通常先作出其可行域,再对目标函数进行平行移动找出使其取得最大值的点,或者把各顶点坐标代入寻求最值点.6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是(A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α 【知识点】线面平行的判定、线面垂直的性质【答案解析】C 解析:解:A 选项中直线a 还可能在平面α内,所以错误,B 选项直线a 与b 可能平行还可能异面,所以错误,C 选项由直线与平面垂直的性质可知正确,因为正确的选项只有一个,所以选C 【思路点拨】在判断直线与平面平行时要正确的理解直线与平面平行的判定定理,应特别注意定理中的“平面外一条直线与平面内的一条直线平行”,在判断位置关系时能用定理判断的可直接用定理判断,不能直接用定理判断的可考虑用反例排除.7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,一般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是(A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,乙的较大 (C )这10日内乙监测站读数的众数与中位数相等 (D )这10日内甲、乙监测站读数的平均数相等 【知识点】茎叶图、中位数、众数、平均数【答案解析】C 解析:解:因为甲、乙监测站读数的极差分别为55,57,所以A 选项错误,10日内甲、乙监测站读数的中位数分别为74,68,所以B 选项错误,10日内乙监测站读数的众数与中位数都是68,所以C 正确,而正确的选项只有一个,因此选C.【思路点拨】结合所给的茎叶图正确读取数据是解题的关键,同时要理解中位数、众数、平均数各自的含义及求法.8.已知函数f (x )cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于π,则f (x )的单调递减区间是(A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z (C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 【知识点】函数y=Asin(ωx+φ)的图象与性质【答案解析】A 解析:解:因为()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭,则图象与直线y= -2的两个相邻公共点之间的距离等于一个周期,所以2ππω=,得ω=2,由()3222,262k x k k Z πππππ+≤+≤+∈,得()263k x k k Z ππππ+≤≤+∈,所以其单调递减区间是2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z 选A. 【思路点拨】注意该题中直线y=-2的特殊性:-2正好为函数的最小值,所以其与函数的两个相邻公共点之间的距离等于函数的最小正周期9.已知定义在R 上的偶函数f (x )满足f (4-x )=f (x ),且当x ∈(]1,3-时,f (x )=(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩则g (x )=f (x )-|1gx|的零点个数是(A )7 (B )8 (C )9 (D )10 【知识点】函数的图象、偶函数、函数的周期性【答案解析】D 解析:解:由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称.先画出函数f (x )当x ∈(-1,3]时的图象,再画出x ∈[0,10]图象.画出y=|lgx|的图象.可得g (x )在x≥0时零点的个数为10, 故选D【思路点拨】由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称,先画出函数f (x )当x ∈(-1,3]时的图象,再画出x ∈[0,10]图象,可得g (x )在x≥0时零点的个数.10.如图,已知椭圆Cl :211x +y2=1,双曲线C2:2222x y a b -=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A ,B 两点,且C1与该渐近线的两交点将线段AB 三等分,则C2的离心率为 (A )5 (B(C(D)7【知识点】椭圆、双曲线性质的应用【答案解析】C 解析:解:因为AB 方程为b y xa =,与椭圆方程联立得渐进线与椭圆在第一象限的交点横坐标x =,因为且C1与该渐近线的两交点将线段AB 三等分,由椭圆的对称性知该点到原点的距离为16⨯16=⨯,整理得224b a =,得2222222215c a b b e a a a +===+=,得e = C【思路点拨】一般求离心率问题就是通过已知条件得到关于a ,b ,c 的关系式,再求ca 即可,本题注意抓住AB 长为圆的直径,直线AB 与椭圆在第一象限的交点到原点的距离等于直径的16,即可建立a ,b ,c 关系.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。
四川省成都七中实验学校2015届高三零诊模拟训练数学试题第Ⅰ卷(选择题),第Ⅱ卷(非选择题),满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-≥,集合{}10B x x =-≤,则()U C A B =I ( ) A .{}1x x ≥ B .{}11x x -<< C .{}11x x <-<≤ D .{}1x x <- 解析:{}210A x x =-≥={}11x x x 或≥≤-,∴U C A ={}11x x -<<, 又{}10B x x =-≤={}1x x ≤,∴ ()U C A B =I {}11x x -<< 答案B 2. 下列四种说法中,正确的是 ( C ) A .}{1,0A =-的子集有3个;B .“若22,am bm a b <<则”的逆命题为真;C .“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件;D .命题“x R ∀∈,均有2320x x --≥”的否定是 “,x R ∃∈使得2320x x --≤ 3.某几何体的三视图如图所示,则该几何体的表面积是( ) A .244π+ B .166π+C .242π+D .164π+由三视图知,该几何体是由两个半径为1的半球和一个棱长为2正方体组成,表面积为42262242S πππ=+⨯⨯-=+,选C .4. 阅读如图所示的程序框图,运行相应的程序,输出的结果k =( B )A. 4B. 5C. 6D. 75.函数3,0(),0-+<⎧=⎨≥⎩x x a x f x a x (01)a a >≠且是R 上的减函数,则a 的取值范围是( B )A .()0,1B .1[,1)3C .1(0,]3D .2(0,]3解:据单调性定义,()f x 为减函数应满足:0013a a a <<⎧⎨≥⎩即113a ≤<. 答案B 6. 已知向量()()ABC BC AB ∆︒︒=︒︒=则,45sin ,30cos ,120sin ,120cos 的形状为 ( C )A .直角三角形B .等腰三角形C . 钝角三角形D .锐角三角形()()cos120,sin120cos30,sin 45=cos120cos30+sin120sin 45AB BC ⋅=︒︒⋅︒︒︒︒︒︒1=02->,所以ABC ∠为钝角 答案C7. 设,m n 为空间的两条不同的直线,,αβ为空间的两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β; ②若,m m αβ⊥⊥,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若,m n αα⊥⊥,则m ∥n . 上述命题中,所有真命题的序号是 ( D )A. ①②B. ③④C. ①③D. ②④8.某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为2万元,且甲、乙两种产品都需要在A 、B 两种设备上加工.在每台设备A 、每台设备B 上加工1件甲产品所需工时分别为1h 和2h ,加工1件乙产品所需工时分别为2h 和1h ,A 设备每天使用时间不超过4h ,B 设备每天使用时间不超过5h ,则通过合理安排生产计划,该企业在一天内的最大利润是 ( D )A .18万元B . 12万元C . 10万元D .8万元9. 若()sin(2)f x x b ϕ=++, 对任意实数x 都有()()3f x f x π+=-,2()13f π=-,则实数b 的值为 ( A )A .2-或0B .0或1C .1±D .2±解:由()3f x f x π⎛⎫+=- ⎪⎝⎭可得()f x 关于直线6x π=对称,因为213f π⎛⎫=-⎪⎝⎭且函数周期为π,所以21163f f b ππ⎛⎫⎛⎫=-==±+ ⎪ ⎪⎝⎭⎝⎭,所以2b =-或0b =10. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当 6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( A )A .3 B.2 C.332 D.2 解:设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+-,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c cc e e=+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e-+=,解得23e =,所以e ,,选A.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5题,每小题5分,共25分.答案填在答题卡上. 11. 设{}n a 是公差不为零的等差数列,12a =且136,,a a a 成等比数列,则2014a =22017=n a 12. 已知a b>,且1ab =,则221a b a b++-的最小值是 . 13.有一个内接于球的四棱锥P ABCD -,若PA ABCD ⊥底面,2BCD π∠=,2ABC π∠≠,BC =3,CD =4,PA =5,则该球的表面积为________.解: 由∠BCD =90°知BD 为底面ABCD 外接圆的直径,则2r =32+42=5.又∠DAB =90°⇒PA ⊥AB ,PA ⊥AD ,BA ⊥AD .从而把PA ,AB ,AD 看作长方体的三条棱,设外接球半径为R ,则(2R )2=52+(2r )2=52+52, ∴4R 2=50,∴S 球=4πR 2=50π.14.已知函数221,(20)()3,(0)ax x x f x ax x ⎧⎪⎨⎪⎩++-<≤=->有3个零点,则实数a 的取值范围是 .解:因为二次函数最多有两个零点,所以函数必有一个零点,从而0a >,所以函数3(0)y ax x =->221(20)y ax x x =++-< 必有两个零点,故需要()()22022000440a f f a ìïï-<-<ïïïïï->íïï>ïïïï=->ïîV ,解得34a < 答案 3(,)4+∞15.下列命题正确的有___________.①已知A,B 是椭圆+=22134x y 的左右两顶点, P 是该椭圆上异于A,B 的任一点,则⋅=-34AP BP k k .②已知双曲线-=2213y x 的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则⋅12PA PF 的最小值为-2.③若抛物线C :=24x y 的焦点为F ,抛物线上一点(2,1)Q 和抛物线内一点(2,)R m >(1)m ,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分∠RQF ;④已知函数()f x 是定义在R 上的奇函数,'=->>(1)0,()()0(0)f xf x f x x , 则不等式>()0f x 的解集是-+∞(1,0)(1,).答案 (2) (3) (4)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222823ABC b c a S ∆+-=(其中ABC S ∆为△ABC 的面积).(1)求2sin cos 22B CA ++;(2)若2b =,△ABC 的面积为3,求a .解析:(1)由已知得A bc A bc sin 21382cos 2⨯=即0sin 4cos 3>=A A 53sin =∴A 54cos =A212cos cos 22cos 2cos 12cos 2sin 22-+=++=++A A A A A C B50592152425162=-⨯+⨯=………………6分 (2)由(Ⅰ)知53sin =A 2,3sin 21===∆b A bc S ABC ,A b c a c cos 265222++==∴ 又13545222542=⨯⨯⨯-+=∴a13=∴a ……………………………………12分17.(本小题满分12分)已知数列{}n a ,其前n 项和为n S ,点(),n n S 在抛物线23122y x x =+上;各项都为正数的等比数列{}n b 满足13511,1632==b b b .(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和n T . 解:(1)23122n S n n =+Q 当1n =时,2a S ==∴数列n a 是首项为2,公差为3的等差数列,31n a n ∴=- 又各项都为正数的等比数列{}n b 满足13511,432b b b ==解得1,22b q ==,()2n n b ∴= ……………………5分(2)由题得1(31)()2n n c n =-①②①-②得2311111113()()()(31)()22222n n n T n +⎡⎤=++++--⎢⎥L52n n T ∴=- ………………………………………………12分18. (本小题满分12分)已知函数3221()(1)3f x x a x b x =--+,其中,a b 为常数. (1)当6,3a b ==时,求函数()f x 的单调递增区间;(2)若任取[0,4],[0,3]a b ∈∈,求函数()f x 在R 上是增函数的概率.19. (本小题满分12分)如图,已知平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形, 090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法).(2)设,P DF AG Q =⋂是直线DC 上的动点,判断并证明直线PQ 与直线EF 的位置关系.(3)求直线EF 与平面ADE 所成角的余弦值.19.(1)如右图. (2)垂直.(3)220.(本小题满分13分)平面内两定点12,A A 的坐标分别为(2,0),(2,0)-,P 为平面一个动点,且P 点的横坐标()2,2x ∈-. 过点P 作PQ 垂直于直线12A A ,垂足为Q ,并满足21234PQ AQ A Q =⋅. (1)求动点P 的轨迹方程.(2)当动点P 的轨迹加上12,A A 两点构成的曲线为C . 一条直线l 与以点(1,0) 为圆心,半径为2的圆M 相交于,A B 两点. 若圆M 与x 轴的左交点为F ,且6FA FB ⋅=. 求证:直线l 与曲线C 只有一个公共点.解:(1)设(),P x y ,()2,2x ∈-则:2212,2,2PQ y AQ x A Q x ==+=- 所以:23(2)(2)4y x x =-+,即:22143x y +=,()2,2x ∈- -----4分 (2)由(1)知曲线C 的方程为22143x y +=,圆M 的方程为()2214x y -+=,则()1,0F - 设()()1122,,,A x y B x y①当直线l 斜率不存在时,设l 的方程为:0x x =,则:12012,x x x y y ===-,()()01021,,1,FA x y FB x y =+=+因为6FA FB ⋅=,所以:()201216x y y ++=,即:()220116x y +-=因为点A 在圆M 上,所以:()220114x y -+=代入上式得:02x =±所以直线l 的方程为:2=+x (经检验x=-2不合题意舍去), 与曲线C 只有一个公共点. ------5分 经检验x=-2不合题意舍去所以 x=2 -------6分②当直线l 斜率存在时,设l 的方程为:y kx m =+,联立直线与圆的方程:()2214y kx mx y =+⎧⎪⎨-+=⎪⎩,消去x 得: 222(1)2(1)30k x km x m ++-+-=所以:12221222(1)131km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩------------8分 因为:()()11221,,1,FA x y FB x y =+=+,且6FA FB ⋅=所以:121212()5x x x x y y +++=又因为:1122y kx my kx m =+⎧⎨=+⎩,所以:()()2212121212()y y kx m kx m k x x km x x m =++=+++代入得:221212(1)(1)()5k x x km x x m +++++=, 化简得:2243m k -=--------10分 联立直线l 与曲线C 的方程:22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去x 得:222(34)84120k x kmx m +++-= 22222(8)4(34)(412)48(43)km k m k m ∆=-+-=-+ ----12分 因为:2243m k -=,所以0∆=,即直线l 与曲线C 只有一个公共点21.(本小题满分14分) (文科)已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.解:(Ⅰ)由()1x a f x x e =-+,得 ()1xaf x e '=-. 又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10ae-=,解得a e =.(Ⅱ)()1xa f x e '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.(Ⅲ)当1a =时,()11x f x x e=-+令()()()()111xg x f x kx k x e =--=-+, 则直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解. 假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+<⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解, 与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10x g x e=>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1.另解(Ⅲ)当1a =时,()11x f x x e=-+.直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111xkx x e -=-+在R 上没有实数解,即关于x 的方程: ()11xk x e -=(*)在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-.令()xg x xe =,则有()()1xg x x e '=+.令()0g x '=,得1x =-,当x 变化时,()g x '的变化情况如下表:当1x =-时,()min g x e=-, 同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1.(理科)已知函数2()ln f x x x =+.(1)若函数()()g x f x ax =-在定义域内为增函数,求实数a 的取值范围;(2)在(1)的条件下,若1a >,3()3x xh x e ae =-,[0,ln 2]x ∈,求()h x 的极小值;(3)设2()2()3()F x f x x kx k R =--∈,若函数()F x 存在两个零点,m n<<(0)m n ,且满足02x m n =+,问:函数()F x 在00(,())x F x 处的切线能 否平行于x 轴?若能,求出该切线方程,若不能,请说明理由.解:(Ⅰ)21()()ln ,()2.g x f x ax x x ax g x x a x'=-=+-=+-由题意,知()0,(0,)g x x '≥∈+∞恒成立,即min 1(2)a x x≤+…… 2分又10,2x x x>+≥x =时等号成立.故min 1(2)x x+=a ≤……4分(Ⅱ)由(Ⅰ)知,1a <≤ 令x e t =,则[1,2]t ∈,则3()()3.h x H t t at ==-2()333(H t t a t t '=-=+……5分由()0H t '=,得t =或t =(舍去),34(1,2[1,2]a ∈,①若1t <≤()0,()H t H t '<单调递减;()h x在也单调递减; 2t <≤,则()0,()H t H t '>单调递增. ()h x 在2]也单调递增;故()h x的极小值为(ln 2h =-……8分(Ⅲ)设()F x 在00(,())x F x 的切线平行于x 轴,其中2()2ln .F x x x kx =-- 结合题意,有220002ln 0,2ln 0,2,220,m m km n n kn m n x x k x ⎧--=⎪--=⎪⎪+=⎨⎪⎪--=⎪⎩ ……10分①—②得2ln ()()().m m n m n k m n n -+-=-,所以02ln 2.m n k x m n =-- 由④得0022.k x x =- 所以2(1)2()ln .1m m m n n m n m n n--==++⑤ ……11分 设(0,1)m u n =∈,⑤式变为2(1)ln 0((0,1)).1u u u u --=∈+ 设2(1)ln ((0,1))1u y u u u -=-∈+, 2222212(1)2(1)(1)4(1)0,(1)(1)(1)u u u u u y u u u u u u +--+--'=-==>+++ 所以函数2(1)ln 1u y u u -=-+在(0,1)上单调递增,因此,1|0u y y =<=, 即2(1)ln 0.1u u u --<+ 也就是,2(1)ln 1m m n m n n-<+,此式与⑤矛盾. 所以()F x 在00(,())x F x 处的切线不能平行于x 轴.……14分① ② ③④。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
2015届成都市第一次诊断适应性考试数 学(理)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( ) A 、),1(+∞- B 、)2,1[- C 、)2,1(- D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”.3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( )A 、()0,1B 、()1,2C 、()2,eD 、()3,44、执行上图所示的程序框图,则输出的结果是( ) A 、5 B 、7 C 、9 D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(xx +展开式中的常数项是( )A 、180B 、90C 、45D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( ) A 、2a b = B 、//a b C 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM +的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( )A 、54B 、53C 、43D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1 B.2C .3D .4二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ;12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
四川省成都市2015届高三上学期摸底数学试卷(理科)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠54.(5分)计算21og63+log64的结果是()A.log62 B.2 C.log63 D.35.(5分)已知实数x,y满足,则z=4x+y的最大值为()A.10 B.8 C.2 D.06.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z9.(5分)已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f (x)=则g(x)=f(x)﹣|1gx|的零点个数是()A.7 B.8 C.9 D.1010.(5分)如图,已知椭圆C l:+y2=1,双曲线C2:=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5 B.C.D.二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.12.(5分)当x>1时,函数的最小值为.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是.14.(5分)运行如图所示的程序框图,则输出的运算结果是.15.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=l上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.18.(12分)某地区为了解2014-2015学年高二学生作业量和玩电脑游戏的情况,对该地区内所有2014-2015学年高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数喜欢电脑游戏72名36名108名不喜欢电脑游戏32名60名92名(I)已知该地区共有2014-2015学年高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面VAC;(Ⅱ)若AC=1,求二面角M﹣VA﹣C的余弦值.20.(13分)在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足=(+)的动点M的轨迹为Γ.(Ⅰ)求轨迹Γ的方程;(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹F于点Q,且=λ,λ∈R.①证明:λ2m2=4k2+1;②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.21.(14分)巳知函数f(x)=x1nx,g(x)=ax2﹣bx,其中a,b∈R.(I)求函数f(x)的最小值;(Ⅱ)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,试用a表示出b的取值范围;(Ⅲ)当b=﹣a时,若f(x+1)≤g(x)对x∈[0,+∞)恒成立,求a的最小值.四川省成都市2015届高三上学期摸底数学试卷(理科)参考答案与试题解析一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的坐标运算即可得出.解答:解:=(5,﹣3)+(﹣6,4)=(﹣1,1).故选:D.点评:本题考查了向量的坐标运算,属于基础题.2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}考点:交、并、补集的混合运算.专题:集合.分析:利用集合的交、并、补集的混合运算求解.解答:解:∵全集U={1,2,3,4},集合S={l,3},T={4},∴(∁U S)∪T={2,4}∪{4}={2,4}.故选:A.点评:本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题.3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠5考点:全称命题;命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题,即可得到结论.解答:解:∵命题是全称命题,∴根据全称命题的否定是特称命题得:¬p为∃x0∈R,2≠5,故选:D.点评:本题主要考查含有量词的命题的否定,要求熟练掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.4.(5分)计算21og63+log64的结果是()A.log62 B.2 C.log63 D.3考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数性质求解.解答:解:21og63+log64=log69+log64=log636=2.故选:B.点评:本题考查对数的性质的求法,是基础题,解题时要注意对数性质的合理运用.5.(5分)已知实数x,y满足,则z=4x+y的最大值为()A.10 B.8 C.2 D.0考点:简单线性规划.专题:不等式的解法及应用.分析:画出足约束条件的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出4x+y的最大值.解答:解:已知实数x、y满足,在坐标系中画出可行域,如图中阴影三角形,三个顶点分别是A(0,0),B(0,2),C(2,0),由图可知,当x=2,y=0时,4x+y的最大值是8.故选:B.点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.6.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α考点:空间中直线与平面之间的位置关系.专题:探究型;空间位置关系与距离.分析:根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定即可.解答:解:若a∥b、b⊂α,则a∥α或a⊂α,故A错误;若a∥α、b⊂α,则a∥b或a,b异面,故B错误;若a⊥α,b⊥α,则a∥b,满足线面垂直的性质定理,故正确若b⊥α,a⊥b,则a∥α或a⊂α,故D错误;故选:C点评:本题考查空间中直线与直线、直线与平面、平面与平面的位置关系,是基础题.解题时要认真审题,仔细解答,注意空间想象能力的培养.7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等考点:众数、中位数、平均数;茎叶图.专题:概率与统计.分析:根据茎叶图中的数据分布,分别求出甲乙的极差,中位数,众数,平均数比较即可.解答:解:根据茎叶图中的数据可知,这l0日内甲、极差为55,中位数为74,平均数为73.4,这l0日内乙、极差为57,中位数为68,众数为68,平均数为68.1,通过以上的数据分析,可知C正确.故选;C.点评:本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定极差,中位数,众数,平均数大小,比较基础.8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z考点:正弦函数的图象;两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,根据题意求得周期,进而求得ω,函数的解析式可得,最后利用正弦函数的单调性求得函数的单调减区间.解答:解:f(x)=2(sinωx+cosωx)=2sin(ωx+),依题意知函数的周期为T==π,∴ω=2,∴f(x)=2sin(2x+),由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,∴f(x)的单调递减区间是[kπ+,kπ+](k∈Z),故选A.点评:本题主要考查了两角和与差的正弦函数,三角函数图象与性质.求得函数的解析式是解决问题的基础.9.(5分)已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f (x)=则g(x)=f(x)﹣|1gx|的零点个数是()A.7 B.8 C.9 D.10考点:分段函数的应用;函数零点的判定定理.专题:函数的性质及应用.分析:先根据函数的周期性画出函数y=f(x)的图象,以及y=|1gx|的图象,结合图象当x >10时,y=lg10>1此时与函数y=f(x)无交点,即可判定函数函数g(x)=f(x)﹣|1gx|的零点个数解答:解:R上的偶函数f(x)满足f(4﹣x)=f(x),∴函数f(x)为周期为4的周期函数,根据周期性画出函数y=f(x)的图象,y=log6x的图象根据y=|lgx|在(1,+∞)上单调递增函数,当x=10时lg10=1,∴当x>10时y=lgx此时与函数y=f(x)无交点,结合图象可知有10个交点,则函数g(x)=f(x)﹣lgx的零点个数为10,故选D.点评:本题考查函数的零点,求解本题,关键是研究出函数f(x)性质,作出其图象,将函数g(x)=f(x)﹣|1gx|的零点个数的问题转化为两个函数交点个数问题是本题中的一个亮点,此一转化使得本题的求解变得较容易.10.(5分)如图,已知椭圆C l:+y2=1,双曲线C2:=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5 B.C.D.考点:双曲线的简单性质;椭圆的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线C2:=1的一条渐近线方程为y=x,代入+y2=1,可得交点的横坐标,利用C1与该渐近线的两交点将线段AB三等分,可得b=2a,即可求出C2的离心率.解答:解:双曲线C2:=1的一条渐近线方程为y=x,代入+y2=1,可得x=±,∵C1与该渐近线的两交点将线段AB三等分,∴•2•=•2,整理可得b=2a,∴c==a,∴e==,故选:C.点评:本题考查椭圆、双曲线的性质,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用诱导公式与同角三角函数间的关系即可求得答案.解答:解:∵cosα=,α∈(0,),∴sin(π﹣α)=sinα==.故答案为:.点评:本题考查运用诱导公式化简求值,考查同角三角函数间的关系的应用,属于基础题.12.(5分)当x>1时,函数的最小值为3.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式就看得出.解答:解:∵x>1,∴==3,当且仅当x=2时取等号.故答案为:3.点评:本题查克拉基本不等式的应用,属于基础题.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是28+12.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知该几何体是一平放的直三棱柱,利用数据判断出底面为正三角形,再利用表面积公式计算.解答:解:由三视图可知该几何体为上部是一平放的直三棱柱.底面三角形为等腰三角形,底边长为2,腰长为2;棱柱长为6.S底面==4S侧面=cl=6×(4+2)=24+12所以表面积是28+12.故答案为:28+12.点评:本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键14.(5分)运行如图所示的程序框图,则输出的运算结果是.考点:程序框图.专题:算法和程序框图.分析:模拟程序框图的运行过程,即可得出该程序的运行结果是什么.解答:解:模拟程序框图的运行过程,如下;S=0,i=1,S=0+=;i≥4?,否,i=2,S=+=;i≥4?,否,i=3,S=+=;i≥4?,否,i=4,S=+=;i≥4?,是,输出S=.故答案为:.点评:本题考查了程序框图的运行过程,解题时应模拟算法程序的运行过程,从而得出正确的结果,是基础题.15.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=l上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.考点:几何概型.专题:概率与统计.分析:根据直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.解答:解:∵y=,∴x=y2,代入y=k(x+)得y=k(y2+),整理得ky2﹣y+=0,直线y=k(x+)与曲线y=恰有两个不同交点,等价为ky2﹣y+=0有两个不同的非负根,即△=1﹣k2>0,且>0,解得0<k<1,∴A={k|0<k<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:.点评:本题主要考查几何概型的概率计算,利用直线和圆锥曲线的位置关系求出集合A,B 是解决本题的关键.综合性较强,难度非常大.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)根据等差数列,建立方程关系即可求数列{a n}的通项公式.(Ⅱ)求出数列{b n}的通项公式,利用等比数列的求和公式即可得到结论.解答:解:(Ⅰ)设等差数列的公差是d,∵a2=3,S7=49,∴,解得,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)b n===2n,则数列{b n}为等比数列,则数列{b n}的前n项和T n=.点评:本题主要考查数列的通项公式和数列求和,要求熟练掌握等差数列和等比数列的通项公式和求和公式,考查学生的运算能力.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.考点:余弦定理;平面向量数量积的运算.专题:解三角形.分析:(Ⅰ)由两向量的坐标及两向量的数量积为0,利用平面向量的数量积运算法则计算得到关系式,由余弦定理表示出cosB,将得出关系式代入求出cosB的值,即可确定出角B的大小;(Ⅱ)由B的度数,利用内角和定理求出A的范围,进而确定出这个角的范围,利用正弦函数的值域即可确定出f(A)的值域.解答:解:(Ⅰ)∵=(a﹣b,c﹣a),=(a+b,c),且•=0,∴(a﹣b)(a+b)﹣c(a﹣c)=0,即a2+c2=b2+ac,∴cosB==,∵B∈(0,π),∴B=;(Ⅱ)由(Ⅰ)得:A=π﹣﹣C∈(0,),∴A+∈(,),∴sin(A+)∈(,1],则f(A)=sin(A+)的值域为(,1].点评:此题考查了余弦定理,平面向量的数量积运算,以及正弦函数的值域,熟练掌握余弦定理是解本题的关键.18.(12分)某地区为了解2014-2015学年高二学生作业量和玩电脑游戏的情况,对该地区内所有2014-2015学年高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数喜欢电脑游戏72名36名108名不喜欢电脑游戏32名60名92名(I)已知该地区共有2014-2015学年高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(I)根据样本数据统计表,可得200名学生中喜欢电脑游戏并认为作业不多的人有36名,求出其占总人数的概率,再乘以2014-2015学年高二学生的总数即可;(Ⅱ)求出至少有一名学生认为作业多的事件的个数,和从这六名学生中随机抽取两名的基本事件的个数,两者相除,即可求出至少有一名学生认为作业多的概率是多少.解答:解:(Ⅰ)42500×答:欢电脑游戏并认为作业不多的人有7650名.(Ⅱ)从这六名学生中随机抽取两名的基本事件的个数是至少有一名学生认为作业多的事件的个数是:15﹣=15﹣6=9(个)所有至少有一名学生认为作业多的概率是.答:至少有一名学生认为作业多的概率是.点评:本题主要考查了概率的运算,考查了学生的分析推理能力,解答此题的关键是要弄清楚两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面VAC;(Ⅱ)若AC=1,求二面角M﹣VA﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)由线面垂直得VC⊥BC,由直径性质得AC⊥BC,由此能证明BC⊥平面VAC.(Ⅱ)分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M﹣VA﹣C的余弦值.解答:(Ⅰ)证明:∵VC⊥平面ABC,BC⊂平面ABC,∴VC⊥BC,∵点C为⊙O上一点,且AB为直径,∴AC⊥BC,又∵VC,AC⊂平面VAC,VC∩AC=C,∴BC⊥平面VAC.(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,则A(1,0,0),V(0,0,2),B(0,2,0),=(1,0,﹣2),,设平面VAC的法向量==(0,2,0),设平面VAM的法向量=(x,y,z),由,取y=,得∴,∴cos<>==,∴二面角M﹣VA﹣C的余弦值为.点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.20.(13分)在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足=(+)的动点M的轨迹为Γ.(Ⅰ)求轨迹Γ的方程;(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹F于点Q,且=λ,λ∈R.①证明:λ2m2=4k2+1;②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.考点:轨迹方程;函数解析式的求解及常用方法.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用代入法求椭圆方程;(Ⅱ)设A(x1,y1),B(x2,y2),由直线代入椭圆方程,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件能证明结论.②由已知条件得m≠0,|x1﹣x2|=,由此能求出△AOB的面积,再利用基本不等式求最大值.解答:解:(Ⅰ)设M(x,y),P(x0,y0),则D(x0,0),且x02+y02=4,①∵=(+),∴x0=x,y0=2y,②②代入①可得x2+4y2=4;(Ⅱ)①证明:设A(x1,y1),B(x2,y2),由直线代入椭圆方程,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,∴x1+x2=,x1x2=(1)∴y1+y2=k(x1+x2)+2m=,又由中点坐标公式,得G(,),将Q(,)代入椭圆方程,化简,得λ2m2=1+4k2,(2).②解:由(1),(2)得m≠0,λ>1且|x1﹣x2|=,(3)结合(2)、(3),得S△AOB=,λ∈(1,+∞),令=t∈(0,+∞),则S=≤≤1(当且仅当t=1即λ=时取等号),∴λ=时,S取得最大值1.点评:本题考查椭圆方程的求法,考查方程的证明,考查三角形面积的求法,解题时要认真审题,注意弦长公式的合理运用.21.(14分)巳知函数f(x)=x1nx,g(x)=ax2﹣bx,其中a,b∈R.(I)求函数f(x)的最小值;(Ⅱ)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,试用a表示出b的取值范围;(Ⅲ)当b=﹣a时,若f(x+1)≤g(x)对x∈[0,+∞)恒成立,求a的最小值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)利用导数研究函数的单调性极值与最值即可得出.(II)由函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,可得函数h(x)=在x∈[4,+∞)上单调递增.因此h′(x)=ax2﹣2bx+1≥0在[4,+∞)上恒成立.变形为=ax+在[4,+∞)上恒成立⇔2b≤,x∈[4,+∞).令u(x)=,x∈[4,+∞).对a分类讨论,利用导数研究其单调性即可得出.(III)当b=﹣a时,令G(x)=f(x+1)﹣g(x)=(x+1)ln(x+1)﹣﹣ax,x∈[0,+∞).由题意G(x)≤0对x∈[0,+∞)恒成立.G′(x)=ln(x+1)+1﹣ax﹣a,x∈[0,+∞).对a分类讨论利用研究其单调性极值与最值即可.解答:解:(I)f′(x)=lnx+1(x>0),令f′(x)=0,解得x=.∴函数f(x)在上单调递减;在单调递增.∴当x=时,f(x)取得最小值.且==﹣.(II)由函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,∴函数h(x)=在x∈[4,+∞)上单调递增.∴h′(x)=ax2﹣2bx+1≥0在[4,+∞)上恒成立.∴=ax+在[4,+∞)上恒成立⇔2b≤,x∈[4,+∞).令u(x)=,x∈[4,+∞).(a>0).则=.令u′(x)=0,解得.∴u(x)在上单调递减,在上单调递增.(i)当时,即时,u(x)在上单调递减,在上单调递增.∴u(x)min==,∴,即.(ii)当时,即,函数u(x)在[4,+∞)上单调递增,∴,即.综上可得:当时,即.当,.(III)当b=﹣a时,令G(x)=f(x+1)﹣g(x)=(x+1)ln(x+1)﹣﹣ax,x∈[0,+∞).由题意G(x)≤0对x∈[0,+∞)恒成立.G′(x)=ln(x+1)+1﹣ax﹣a,x∈[0,+∞).(i)当a≤0时,G′(x)>0,∴G(x)在x∈[0,+∞)上单调递增.∴G(x)>G(0)=0在x∈(0,+∞)成立,与题意矛盾,应舍去.(ii)当a>0时,令v(x)=G′(x),x∈[0,+∞).则,,①当a≥1时,v′(x)≤0在x∈[0,+∞)上成立.∴v(x)在x∈[0,+∞)单调递减.∴v(x)≤v(0)=1﹣a≤0,∴G′(x)在x∈[0,+∞)上成立.∴G(x)在x∈[0,+∞)上单调递减.∴G(x)≤G(0)=0在x∈[0,+∞)成立,符合题意.②当0<a<1时,=,x∈[0,+∞).∴v(x)在上单调递增,在单调递减.∵v(0)=1﹣a>0,∴v(x)>0在上成立,即G′(x)>0在上成立,∴G(x)在上单调递增,∴G(x)>G(0)=0在成立,与题意矛盾.综上可知:a的最小值为1.点评:本题考查了利用导数研究函数的单调性极值与最值,考查了构造函数研究函数的单调性问题,考查了转化思想方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于难题.。
成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x 2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB =( )A .[0,2] B. [1,3) C. (1,3) D.(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是( )A .2ρ= B.2θπ=C. cos 2ρθ=D.sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )A .33x y > B. sin sin x y > C. 22ln(1)ln(1)x y +>+D.221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( ) A . ()cos(1)f x x =+B.()f x =C.()tan f x x = D.3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( ) A .4个 B.6个 C. 10个 D.14个10.设函数()x f x π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞二、填空题:本大题共5小题,每小题5分,共25分.11.设向量,a b满足|a b |+|a b |-=则a b ⋅=12.设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且1cos 4a b C ==1,=2,, 则sin B =13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a =14.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ;BADC. PD CBAP③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值;(Ⅱ)求使()f x ≥0成立的x 的取值集合.17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.18.在四棱锥P A B C D -中,PD ⊥平面A B C D ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式; (2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆222210:()x y M a b a b +=>>的长轴长为22124x y +=第(17)题图有相同的离心率. (I )求椭圆M 的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M 有两个交点A 、B ,且OA OB ⊥?若存在,写出该圆的方程,并求||AB 的取值范围,若不存在,说明理由.21. 已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x l n ()ex x-=.这里,e 为自然对数的底数.(1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围;(2)如果当x ≥1时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围;(3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明.成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( C )B.0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D.0||,2000≥+∈∃x x R x2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( B )(A )[0,2](B )[1,3)(C )(1,3)(D )(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是(D )(A )2ρ=(B )2θπ=(C )cos 2ρθ=(D )sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( A ) (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为(D )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( A ) (A) ()cos(1)f x x =+(B) ()f x =(C) ()tan f x x =(D) 3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( D ) A. 4 B. 5 C. 6 D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( B )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( C ) (A )4个(B )6个(C )10个(D )14个10.设函数()s i n x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( B )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = 1414.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .112π+15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质BADC. P)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ; ③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数 ①② ③三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值; (Ⅱ)求使()f x ≥0成立的x 的取值集合.解:(Ⅰ) cos x ≠0知x 2k pp?,k ∈Z , 即函数f (x )的定义域为{x |x ∈R ,且x ≠kπ,k ∈Z }.………………………3分 又∵ x xx x x x x x x x x f 2sin 22cos 12cos sin 2sin 2cos )cos (sin cos sin 2)(2--⨯=-=-=)2cos 2(sin 1x x +-= )42sin(21π+-=x ,∴ 21)(max +=x f .……………………………………………………………8分(II )由题意得1)4πx +≥0,即sin(2)4πx +解得324πk π+≤24πx +≤924πk π+,k ∈Z ,整理得4πk π+≤x ≤k ππ+,k ∈Z .结合x ≠kπ,k ∈Z 知满足f (x )≥0的x 的取值集合为{x |4πk π+≤x ≤k ππ+且x 2k p p?,k ∈Z }.………………………………………………12分17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4, 5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.解:(1)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20,第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C1.则从6名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),( A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种. …………8分其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1), (A1,B2), (A2,B1), (A2,B2), (A3,B1), (A3, B2), (B1,B2), (B1,C1), (B2,C1),共有9种,………10分所以第4组至少有一名志愿者被抽中的概率为93.155=…………12分yD CBAP18.在四棱锥P ABCD -中,PD ⊥平面A B C ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.证明:(Ⅰ)在四棱锥P ABCD -中,因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为90BCD ∠=︒, 所以BC CD ⊥.因为PDDC D =, 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以BC PC ⊥. ………4分 (Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz . 不妨设1=AD ,则2===PD CD BC .则(0,0,0),(1,0,0),(2,2,0),(0,2,0),(0,0,2)D A B C P .所以(1,0,2)=-PA u u r ,(2,2,2),(0,2,2)=-=-PB PC u u r u u u r.设平面PBC 的法向量(,,)=x y z n .所以 0,⎧⋅=⎪⎨⋅=⎪⎩uu r uu u r PB PC n n .即2220,220x y z y z +-=⎧⎨-=⎩. 令1y =,则0,1x z ==.所以(0,1,1)=n所以cos ,<>==uu rPA n 所以PA 与平面PBC所成角的正弦值为5. ………8分所以DF PC ⊥. 因为BC ⊥平面PCD , 所以DF BC ⊥.因为=PC BC C I , 所以DF ⊥平面PBC . 所以AE ⊥平面PBC .即在线段PB 上存在点E ,使AE ⊥平面PBC .(法二)设在线段PB 上存在点E ,当(01)=<<u u r u u rPE PB λλ时,AE ⊥平面PBC .设000(,,)E x y z ,则000(,,2)=-PE x y z uur.所以000(,,2)(2,2,2)x y z λ-=-.即0002,2,22x y z λλλ===-+.所以(2,2,22)E λλλ-+.所以(21,2,22)=--+AE λλλu u u r.由(Ⅱ)可知平面PBC 的法向量(0,1,1)=n . 若AE ⊥平面PBC ,则//u u u r AE n .即=u u u r AE μn .解得1,12λμ==.所以当12=PE PB uur uu r,即E 为PB 中点时,AE ⊥平面PBC . ………12分19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式;(2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆的长轴长为,且与椭圆有相同的离心率.(I )求椭圆M的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,说明理由.21.(本小题满分12分)已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x ln()ex x-=.这里,e 为自然对数的底数. (1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围; (2)如果当x ≥1时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围; (3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明. 解:x>0时,ln()1ln ()()ex x f x f x x x+=--== ………2分(1)当x>0时,有221(1ln )1ln ()x x x x f x x x ⋅-+⋅'==- ()0ln 001f x x x '>⇔<⇔<<;()0ln 01f x x x '<⇔>⇔> 所以()f x 在(0,1)上单调递增,在(1,)∞上单调递减,函数()f x 在1x =处取得唯一的极值.由题意0a >,且113a a <<+,解得所求实数a 的取值范围为213a << …4分(2)当1x ≥时,1ln (1)(1ln )()11k x k x x f x k x x x x+++≥⇔≥⇔≤++ 令(1)(1l n )()(1)x x g x x x++=≥,由题意,()k g x ≤在[)1,+∞上恒成立 []22(1)(1ln )(1)(1ln )ln ()x x x x x x x x g x x x ''++⋅-++⋅-'== 令()l n (1)h x x x x =-≥,则1()10h x x'=-≥,当且仅当1x =时取等号. 所以()l n h x x x =-在[)1,+∞上单调递增,()(1)10h x h ≥=>.……6分 因此,2()()0h x g x x '=> ()g x 在[)1,+∞上单调递增,m i n ()(1)2g x g ==.所以2k ≤.所求实数k 的取值范围为(],2-∞ …………………8分(3)(方法一)由(2),当1x ≥时,即12)(+≥x x f ,即12ln 1+≥+x x x . 从而x x x 21121ln ->+-≥.………..10分 令1(1,2,,)k x k n k +==,得,22112ln -> 322ln123⋅>-, ……12ln 11n n n n +⋅>-+将以上不等式两端分别相加,得123ln(1)2()2341n n n n +>-+++++ 1123ln 2()12341n n n n ∴<++++-++ ………………………14分 (方法二)1=n 时,2ln 11ln -=+n < 011132212=-=-⎪⎭⎫ ⎝⎛++++n n n 猜想11ln +n n n n -⎪⎭⎫ ⎝⎛++++<132212 对一切*N n ∈成立。
四川省成都市2015届高中毕业班第一次诊断性检测数学试题(理科)【试卷综述】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷。
【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞(C )(,1)(1,)-∞+∞ (D )(1,)+∞【知识点】集合的补集 A1【答案】【解析】A 解析:因为{|0}=≥U x x ,{1}=P ,所以U P =ð[0,1)(1,)+∞,故选A.【思路点拨】由补集运算直接计算可得.【题文】2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 【知识点】三视图 G2 【答案】【解析】C 解析:由题意可得,A 是正方体,B 是三棱柱,C 是半个圆柱,D 是圆柱,C 不能满足正视图和侧视图是两个全等的正方形,故选C. 【思路点拨】由三视图的基本概念即可判断.【题文】3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3(C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为5 【知识点】复数运算 L4 【答案】【解析】D 解析:由复数概念可知虚部为-3,其共轭为43i -+,故选D. 【思路点拨】由复数概念直接可得.【题文】4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 【知识点】函数的图像 B6 B8【答案】【解析】A 解析:当0x <时,将3y x =的图像向上平移一个单位即可;当0x ≥时,取1()3xy =的图像即可,故选A.【思路点拨】由基本函数3y x =和1()3xy =的图像即可求得分段函数的图像.【题文】5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是( ) (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”【知识点】四种命题 A2 【答案】【解析】C 解析:“若p 则q ”的逆命题是“若q 则p ”,否命题是“若p ⌝则q ⌝”,故选C. 【思路点拨】将原命题的条件和结论互换位置即可得到逆命题,分别写出条件和结论的否定为否命题. 【题文】6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是( ) (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 【知识点】二次函数 B5【答案】【解析】B 解析:因为240+-=x ax 在区间[2,4]上有实数根,令2(x)4f x ax =+-所以(2)(4)0f f ≤ ,即()21240a x +≤,30a ∴-≤≤ ,故选B.【思路点拨】二次函数在给定区间上根的分布问题,只需找准条件即可,不能丢解.【题文】7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是( ) (A )14 (B )34 (C )12(D【知识点】椭圆的几何性质 H5【答案】【解析】B 解析:Rt PFA 中,222|PF ||FA ||PA |+=,||c FA a =+,2|PF |b a=, 又14=PF AF ,21(c)4b a a =+,得22430c ac a +-=,34c a ∴=,故选B.【思路点拨】Rt PFA 中, ||c FA a =+,2|PF |b a=,且14=PF AF ,得22430c ac a +-=,可求离心率.【题文】8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥ 【知识点】线线关系,线面关系 G4 G5【答案】【解析】D 解析:A 中m ,n 可能异面;B 中α,β可能相交;C 中可能m β⊂或//m β,故选D.【思路点拨】熟悉空间中线线,线面关系的判断,逐一排除即可. 【题文】9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π【知识点】两角和与差的正弦、余弦 C7【答案】【解析】A 解析:()2αββαα+=-+,552sin =α,],4[ππα∈cos 2α∴=[,]42ππα∈,又1010)sin(=-αβ,[,]42ππα∈,]23,[ππβ∈,cos()βα∴-=sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-((=+=, 又5[,2]4παβπ+∈,所以74παβ+=,故选A. 【思路点拨】利用角的变换()2αββαα+=-+,得sin()sin[()2]αββαα+=-+ sin()cos 2cos()sin 2βααβαα=-+-即可求解.【题文】10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 最小值是( )(A )21 (B )22 (C )23 (D )25 【知识点】点、线、面间的距离计算 G11【答案】【解析】B 解析:点P 到平面11CDD C 距离就是点P 到直线1CC 的距离,所以点P 到点F 的距离等于点P 到直线1CC 的距离,因此点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在面11A ABB 中作1HK BB ⊥于K ,连接KP ,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可,由题意易求得min 2|K |6P =,所以2|HP |最小值为22,故选B.【思路点拨】注意到点P 到点F 的距离等于点P 到直线1CC 的距离,即点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可.【题文】二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 【知识点】向量的夹角 F3 【答案】【解析】090解析:a b a b +=-22||||a b a b ∴+=-,即0a b =,所以a b ⊥,a ,b 的夹角为090,故答案为090.【思路点拨】由a b a b +=-可得0a b =,所以夹角为090.【题文】12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答) 【知识点】二项式定理 J3【答案】【解析】-20解析:2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,求展开式中含3x 的项的系数,此时3633r r -=∴=,因此系数为6r 366(1)120r C C --=-⨯=-,故答案为-20.【思路点拨】利用通项2r6r6r 361661()()(1)r r r r T C x C x x---+=-=-,可求r,即可求出系数.【题文】13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.【知识点】余弦定理,正弦定理 C8【答案】2222cos b a c ac B =+-,得222116444a a a =+-⨯,2,4a c ∴==.面积11sin 2422S ac B ==⨯⨯=【思路点拨】【思路点拨】由余弦定理2222cos b a c ac B =+-可求24a =,再利用1sin 2S ac B =即可. 【题文】14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 【知识点】充分、必要条件 A2【答案】【解析】[2,0]-解析:因为0x ≥时,奇函数3()log (1)=+f x x ,所以函数()f x 在R 上为增函数,2[(2)](22)f x a a f ax x ++≤+,2(2)22x a a ax x ∴++≤+,即()222(2)0x a x a a -+++≤,2a x a ∴≤≤+,{|2}A x a x a =≤≤+,{|22}B x x =-≤≤,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,即22022a a a ≥-⎧∴-≤≤⎨+≤⎩,故答案为[2,0]-. 【思路点拨】因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,然后根据题意分别求出集合,A B 即可.【题文】15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54;③当*n ∈N 时,n k <;④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)n S . 其中,正确的结论有 (写出所有正确结论的序号) 【知识点】命题的真假判断A2【答案】【解析】①③④解析:因为曲线C :22y x a =+,所以()2'2'2y yy ==,即1'y k y === ,n k =,点n P ()n (0,a n >∈N )处的切线n l 为)y x n =-,,n n x n a y ∴=--= ,①00|x ||y |=,0,|||1n a a ∴=-=∴= ,正确;②1122n y ===12=112≥⨯=,所以n y 的最小值为1,错误;③012n <≤,∴> <亦即n k <,正确;④n k ==121n n n ++=+,22(2n 1)<+,<,<=,因为n k =,所以122(21321)n n S k k k n n =+++<-+-+++- 1), 故正确.【思路点拨】依题意,分别求出n k =, ,n n x n a y =--=,依次进行判断即可. 【题文】三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X . 【知识点】古典概型,分布列 K2 K6 【答案】【解析】(Ⅰ)15(Ⅱ)X 的分布列为:X 的数学期望1310121555=⨯+⨯+⨯=EX (Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分 1(2)()5===P X P A ……………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分【思路点拨】)X 的可能取值为0,1,2,再分别求出(0)P X =,(1)P X =,(2)P X =即可.【题文】17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.【知识点】线面平行,空间向量解决线面位置关系 G4 G10 【答案】【解析】 (Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图.则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 【思路点拨】(Ⅰ)求证线面平行,可以利用线线平行,本题很容易找出//DF OB ; (Ⅱ)分别求平面DEA 与平面ABC 的法向量1(1,0,1)=n 2(0,0,1)=n ,∴121212,2⋅>===cos <n n n n n n ,即可求出余弦值. 【题文】18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .【知识点】等差数列,等比数列【答案】【解析】(Ⅰ)2n n a =,21n b n =-(Ⅱ)1(23)24+=-+n n T n (Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .…………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n …………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ……………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ……………………………………………1分 ∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n …………………………………3分【思路点拨】(Ⅰ)由条件直接求解即可;(Ⅱ)数列(21)2=-nn c n ,为差比数列,利用错位相减法直接求解. 【题文】19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象.(Ⅰ)根据图象,求A ,ω,ϕ,B 的值;(Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:【知识点】函数模型及其应用B10 【答案】【解析】(Ⅰ)1,22A B == ,12T =,6πω=(Ⅱ)11.625时(Ⅰ)由图知12T =,6πω=.………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t .又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分∴应该在11.625时停产.……………………………………………………………1分(也可直接由0)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产).【思路点拨】(Ⅰ)由三角函数图像可直接求)1,22A B == ,12T =,6πω=,代点(0,2.5)可求2πϕ=;(Ⅱ)理解二分法定义即可求解本题.【题文】20.(本小题满分13分) 已知椭圆Γ:12222=+byx (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB,求0x 的值.【知识点】直线与椭圆H8【答案】【解析】(Ⅰ)141222=+yx (Ⅱ)0x 的值为3-或1- (Ⅰ)由已知2=a =a ,又=c∴2224=-=b a c . ∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分 ∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m ,得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321m x x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400m m x y =+=, ①当2m =时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-.【思路点拨】联立直线与椭圆,可得2m =±,因为=PA PB ,所以点P 为线段AB 的中垂线与直线2=y 的交点,分情况讨论即可求0x .【题文】21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值; (Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.【知识点】函数综合B14【答案】【解析】(Ⅰ)()2f x me =-极小值(Ⅱ)略(Ⅲ)(,(21)∈-∞-+m e e 解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x m x f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'x f ,得210e x <<,且1≠x .…………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .……………2分 ∴me e f x f 2)()(-==极小值.……………………………………………………………1分 (Ⅱ)222(2)(),(0)mx mx mx mx mxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点. ∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分由(1)(1)0-=-=-<m m g m me m e . ∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分 综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mx mx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减. ∴max 224()()==-g x g m m e m.…………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+. 综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分 【思路点拨】(Ⅰ)2(12ln )()(ln )mx x f x x ⋅-'=,由0)(>'x f 和0)(<'x f ,求得其单调区间,进而可求极值 ;(Ⅱ)(2)(),(0)mx mx mx g x m e -'=>,∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增,得()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得10a b e c -<<<<<.(III )由题意,只需min max ()()>f x g x ,12min ()()2==-f x f e me ,max 224()()==-g x g m m e m,求解即可.。
四川省成都市 2015届高三摸底(零诊)数学(理)试题本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟. 注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a=(5,-3),b=(-6,4),则a+b= (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )U T 等于 (A ){2,4} (B ){4}(C )∅(D ){1,3,4}3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5(C )0x ∃∈R ,20x =5(D )0x ∃∈R ,20x ≠54.计算21og 63 +log 64的结果是 (A )log 62 (B )2(C )log 63(D )35.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 (A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m 3)则下列说法正确的是 (A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,己的较大 (C )这10日内乙监测站读数的众数与中位散相等 (D )这10日内甲、乙监测站读数的平均数相等8.已知函数f (x )3cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于x ,则f (x )的单调递减区间是 (A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z(C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 9.已知定义在R 上的偶函数f (x )满足f (4-x )=f (x ),且当x ∈(]1,3-时,f (x )=(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩则g (x )=f (x )-|1gx|的零点个数是 (A )7(B )8(C )9(D )1010.如图,已知椭圆C l :211x +y 2=1,双曲线C 2:2222x y a b -=1(a>0,b>0),若以C 1的长轴为直径的圆与C 2的一条渐近线相交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 (A )5 (B 17(C 5(D )2147第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。