DI中没有6ES7 321
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
快速入门合肥锐锋自控工程有限公司一、硬件组态首先打开STEP7 V5.3软件(Simatic Manager)进入STEP7的编程画面.在名称(NAME)栏目内填上要建的项目名称,按<OK>即可。
此时打开的是名为CHEN的空项目,里面仅有一个MPI(1)的图标,在它下方空白处按鼠标右键,在弹出的窗体上点击“Insert New Object”,选择SIMATIC 400 Station,首先建立S7400站。
系统自动在项目“CHEN”下面生成“SIMATIC400(1)”图标,它表示S7400站已建立,但此时的S7400站里是空的,软件和硬件的组态都没有。
双击Simatic 400(1)图标,打开400站的组态,里面只有硬件组态(Hardware)图标,双击它进入硬件组态画面,这是S730/400 PLC编程的基础,所有的硬件信息、通讯方式、通讯地址、外部的输入/输出地址都要在此定义,必须按照硬件组态的地址编写用户软件。
SIEMENS S7300/400 PLC的硬件是模块化的,系统就是由这些模块以搭积木的方式组成,硬件组态的任务就是用软件的方式模拟这些模块组成的过程。
右边的栏目所列的是SIEMENS S7400/300系列PLC的硬件配置库,组态时要从这些库中找到与实际应用模块型号完全一致的模块按照SIEMENS的硬件组态标准进行“安装”,当然是指软件上的安装。
首先是安装底板。
所有的PLC模块都是安装在底板上的,S7400的底板功能有:A、固定硬件模块B、模块之间的通讯连接(内部有通讯线路),这一点不同于S7300,S7300的底板仅仅是个支架。
在“RACK-400”中找到“UR1”,这是我们实际用到的底板型号,如果不能确定众多同类型号中哪种才是我们要找的,可以依次用鼠标单击,在右下角会出现被点中模块的详细型号(“6ES7400-1TA01-0AA0”),直到找到完全相符的模块(实际用到的模块型号可以在控制柜的PLC模块面板上找到)。
电感式接近开关原理1。
电感式接近开关工作原理电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。
振荡器产生一个交变磁场。
当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。
振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的2.霍尔接近开关工作原理当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。
由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。
霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。
霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转.输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。
霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。
霍尔开关可应用于接近传感器、压力传感器、里程表等,作为一种新型的电器配件。
3.线性接近传感器的原理线性接近传感器是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
该接近传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
模块型号接线方式说明再进行描述之前,我们首先介绍通道,一个通道即为一个点,可为AI,AO,DI,DO。
1、6ES7 131-4BD01-0AA0 4通道数字量输入4个通道分别为1,5,2,6。
额定输入电压24 VDC 适用于开关以及接近开关。
如图:图上1、5、2、6,分别代表一个数字量输入点。
图中的断开处可以是一个开关,一个按钮,当开关处于闭合状态时,我们将万用表的一只表笔处于1〔5,2,6〕端子处,另一只表笔接地或接0V可测得24V电压。
可用终端模块TM-E15S24-01〔6ES7193-4CB20-0AA0〕。
终端模块即我们所说的插槽,螺钉型的接线端。
也可用TM-E15S26-A1〔6ES7193-4CA40-0AA0〕,该类型的终端模块带有A7,A3,A4,A8接线端。
2、6ES7 132-4BD02-0AA0 4通道数字量输出(24V/)4个通道分别为(1,3)(5,7)(2,4)(6,8)。
带四个输出的数字电子模块,每个输出的输出电流为0.5 A,额定负载电压24 VDC,适用于电磁阀、直流接触器和指示灯。
如图:该类型模块的5〔1,2,6〕输出一个高电平〔24V〕进设备,然后回到该类型模块的低电平7〔3,4,8〕。
当有信号输出时我们可在5〔1,2,6〕和7〔3,4,8〕处测得24V电压。
3、6ES7 132-4BD32-0AA0个通道分别为(1,3)(5,7)(2,4)(6,8)。
如图:4通道数字量输出(24V/2A)该类型模块与2相同,只是为输出24V,2A。
接线方式同2。
4、6ES7 134-4GB11-0AB0 2通道模拟量输入(4线制)两个通道分别为〔1,2〕〔5,6〕。
如图:4线制即设备的单独供电需要一对线信号的输入需要一对线。
设备的正〔4-20ma+〕接模块的1〔5〕,设备的负〔4-20ma-〕接模块的2〔6〕。
当我们取下1〔5〕处的线时,并接到万用表的红表笔上,把表的黑表笔接到1〔5〕上,我们可测到正的4-20ma,如果不为正的毫安值,必须进行调换。
(1)DI16*DC24V (6ES7321-1BH50-0AA0)前连接器(1接24V+),2至19 下端子后,每个通道后需分别相对应的增加下端子的24V-。
(2)DO16*DC24V (6ES7322-1BH01-0AA0)1接24V+ 10接24V- 11接24V+ 20接24V- (2至9 11至于19分别接对应继电器的线圈)。
(3)AI8*16位 (6ES7331-7NF00-0AB0)前连接器(2与22,3与23,4与24,5与25,依次类推,短接)下端子后,23 25 27 29 33 35 37 39要与 24V-压在一起下端子,每个端子前面需分别接24V+ 端子排布如下:24V+ 22 (23和24V-)(4)AI8*RTD 电阻(6ES7331-7PF01-0AB0)本项目为三线制如端子(3,6,4):前连接器中3与5短接,3下端子,3接电阻箱最大值,6,4接电阻箱最小值。
(7,10,8),(11,14,12),(15,18,16)………对于到 SM 331,AI 8 x RTD 的 3 线制连接,请桥接 M+ 和 IC+。
请务必始终将 IC- 和 M- 电缆直接连接至电阻温度计。
对于到 SM 331,AI 8 x RTD 的 2 线制连接,请桥接 M+ 和 IC+ 以及 M- 和 IC- (5)AI8*TC 电偶(6ES7331-7PF11-0AB0)带外部补偿PT100 (35,37短接;36,38 短接,然后下端子)21端子需接24V+,其他按照接线图接线。
(7, 8), (9, 10), (11, 12), (13, 14), (27, 28), (29, 30), (31, 32), (33, 34)(6)AO8*12位 (6ES7332-5HF00-0AB0)前连接器1接24V+,其他按照图纸接线(3,6),(7,10)……。
西门子S7-300 plc故障及解决方法1:使用CPU 315F和ET 200S时应如何避免出现“通讯故障”消息?使用CPU S7 315F, ET 200S以及故障安全DI/DO模块,那么您将调用OB35 的故障安全程序。
而且,您已经接受所有监控时间的默认设置值,并且愿意接收“通讯故障”消息。
OB 35 默认设置为100毫秒。
您已经将F I/O模块的F监控时间设定为100毫秒,因此至少每100毫秒要寻址一次I/O模块。
但是由于每100毫秒才调用一次OB 35,因此会发生通讯故障。
要确保OB35的扫描间隔和F监控时间有所差别,请确保F监控时间大于OB35的扫描间隔时间。
S7分布式安全系统,一直到V5.2 SP1 和6ES7138-4FA00-0AB0,6ES7138-4FB00-0AB0,6ES7138-4CF00-0AB0 都会出现这个问题。
在新的模块中,F 监控时间设定为150毫秒.2:当DP从站不可用时,PROFIBUS上S7-300 CPU的监控时间是多少?使用CPU的PROFIBUS接口上的DP从站操作PROFIBUS网络时,希望在启动期间检查期望的组态与实际的组态是否匹配。
在CPU属性对话框中的Startup选项卡上给出了两个不同的时间。
3:如何判断电源或缓冲区出错,如:电池故障?如果电源(仅S7-400)或缓冲区中的一个错误触发一个事件,则CPU操作系统访问OB81。
错误纠正后,重新访问OB81。
电池故障情况下,如果电池检测中的BATT.INDIC开关是激活的,则S7-400仅访问OB81。
如果没有组态OB81,则CPU不会进入操作状态STOP。
如果OB81不可用,则当电源出错时,C PU仍保持运行。
4:为S7 CPU上的I/O模块(集中式或者分布式的)分配地址时应当注意哪些问题?请注意,创建的数据区域(如一个双字)不能组态在过程映象的边界上,因为在该数据块中,只有边界下面的区域能够被读入过程映像,因此不可能从过程映像访问数据。
电感式接近开关原理1.电感式接近开关工作原理电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。
振荡器产生一个交变磁场。
当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。
振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的2.霍尔接近开关工作原理当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。
由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。
霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。
霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。
输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。
霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。
霍尔开关可应用于接近传感器、压力传感器、里程表等,作为一种新型的电器配件。
3.线性接近传感器的原理线性接近传感器是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
该接近传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
SIMATIC自动化系统S7-300入门指南2006年01月版A5E00432669-05安全技术提示为了您的人身安全以及避免财产损失,必须注意本手册中的提示。
人身安全的提示用一个警告三角表示,仅与财产损失有关的提示不带警告三角。
警告提示根据危险等级由高到低如下表示。
危险表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。
警告表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。
小心带有警告三角,表示如果不采取相应的小心措施,可能导致轻微的人身伤害。
小心不带警告三角,表示如果不采取相应的小心措施,可能导致财产损失。
注意表示如果不注意相应的提示,可能会出现不希望的结果或状态。
当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。
如果在某个警告提示中带有警告可能导致人身伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。
合格的专业人员仅允许安装和驱动与本文件相关的附属设备或系统。
设备或系统的调试和运行仅允许由合格的专业人员进行。
本文件安全技术提示中的合格专业人员是指根据安全技术标准具有从事进行设备、系统和电路的运行,接地和标识资格的人员。
按规定使用请注意下列说明:警告设备仅允许用在目录和技术说明中规定的使用情况下,并且仅允许使用西门子股份有限公司推荐的或指定的外部设备和部件。
设备的正常和安全运行必须依赖于恰当的运输,合适的存储、安放和安装以及小心的操作和维修。
商标所有带有标记符号 ®的都是西门子股份有限公司的注册商标。
标签中的其他符号可能是一些其他商标,这是出于保护所有者权利的目地由第三方使用而特别标示的。
责任免除我们已对印刷品中所述内容与硬件和软件的一致性作过检查。
然而不排除存在偏差的可能性,因此我们不保证印刷品中所述内容与硬件和软件完全一致。
印刷品中的数据都按规定经过检测,必要的修正值包含在下一版本中。
Siemens AG Automation and Drives Postfach 48 48 90437 NÜRNBERG A5E00432669-0501/2006西门子股份有限公司版权所有(2006).本公司保留技术更改的权利SIMATIC自动化系统S7-300 CPU 31x:调试入门指南2005年8月版A5E00817203-01安全技术提示为了您的人身安全以及避免财产损失,必须注意本手册中的提示。
西门子PLC与NPN(源型)和PNP(漏型)传感器的接线说明传感器根据输出类型可以分为NPN(有人称为源型传感器)和PNP(有人称为漏型传感器)两大类;两种类型的传感器都有3个引脚,分别接24V、0V、Out(信号输出),那么西门子S7系列PLC都支持什么类型的传感器呢?西门子PLC和模块所支持的传感器类型1、西门子S7-200所支持的传感器类型?S7-200系列的输入端既支持源型也支持漏型,所以既可以接NPN传感器也可以接PNP的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图):2、西门子S7-200smart所支持的传感器类型?S7-200smart与S7-200一样输入端既支持漏型也支持源型,所以既可以接NPN传感器也可以接PNP的传感器(具体接法请参考第二步),其他型号可以参照产品手册(如下图):3、西门子S7-1200所支持的传感器类型?S7-1200输入端既支持漏型也支持源型,所以既可以接NPN传感器也可以接PNP的传感器。
(具体接法请参考第二步),其他型号可以参照产品手册(如下图):4、西门子S7-300所支持的传感器类型?S7-300的DI模块很多,要具参数分需要在硬件组态中查看(具体接法请参考第二步)(1)S7-300的大部分DI模块均为漏型(应该选取PNP型的传感器),在硬件组态时不提示源型还是漏型,就是默认为漏型的意思,如:321-1BL00:(2)S7-300的源型DI模块(应该选取NPN传感器),如:6ES7 321-1BH50-0AA0:(3)源型/漏型两用式DI模块(既可NPN也可以PNP型传感器):如:6ES7 321-1BP00-0AA05、西门子S7-1500所支持的传感器类型?S7-1500系列中现推出的DI模块有漏型,接PNP型传感器(具体接法请参考第二步)。
如:6ES7 523-1BL00-0AA0有支持源型的DI模块,接NPN型传感器(具体接法请参考第二步)。
西门子硬件序列号的具体含义以6ES7 221-0BA23-0XA0为例:6ES----自动化系统系列7------7:S7系列,5:S5系列2------2:200系列,3:300系列,4:400系列2------1:CPU,2:DI/DO,3:AI/AO,4:通讯模块,5:功能模块1------1:输入,2:输出,3:输入输出(对于数字量),4:输入输出(对于模拟量) 0BA----输入/输出电压等级,类型,点数等,这个比较多,还是查样本比较好23-----版本,如果最后一位数字不同,基本上可以通用完整的订货号6ES7 321-1BH01-0XA06ES7:S7系列的PLC模块3:300系列2:数字量(1为CPU,3为模拟量,4为通讯,5为功能)1:输入(2为输出,3为输入输出)1:功能等级(数越大功能越强)B:晶体管(H是继电器,F是交流,如果是模拟量K是通用型,P为温度信号)H:16点,(L表示32点,F为8点,D为4点,B为两点)01:版本号,0.1版本0XA0:后缀,用于描述特殊功能。
例子6 S E 7 0 2 1 - 3 E B 6 1 - Z6SE7表示SIMOVERT MASTERDRIVES 6SE7系列,0表示书本型,装机装柜型装置,2表示输出电流倍数,1倍,(3表示10倍,4表示100倍)1-3表示输出电流前两位,所以输出电流=1*13=13A,E表示电网电压代号,3AC 380~480V,B表示装置尺寸,6表示控制型式,SIMOVERT 矢量控制,1表示功能状态,Z表示用选件时的补充代号。
以变频器6SE70举例:6SE7037-0TE60-Z6SE70是指6SE70系列产品3是额定输出电流基本值的倍率。
1是0.1倍。
2是1倍,3是10倍,4是100倍。
7-0是额定输出电流基本值,这里是70.因为前面是3,表示10倍。
就是700AT是进线电压:T代表逆变器,进线510V-650V DCE是结构代号6是控制板代号,6代表CUVC0代表无安全停车功能Z是代表有选件。