重温4之函数定义域+不等式
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
显然,值域是集合B 的子集。
(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。
(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。
(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。
符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[1,1],求函数)41(+=x f y )41(-⋅x f 的定义域第一页解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数定义域值域及表示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT函数定义域值域及表示(1)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(2)区间的概念及表示法设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.例题讲解[例1] 求下列函数的定义域:⑴y=⑵y=(3)x x x x f -+=0)1()( (4)g(x)=211+-++x x[例2] 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。
函数的定义域常见求法一、函数的定义域的定义函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥奇次方根(21,)n k k N *=+∈其中中,x R ∈.3、指数函数xy a =的底数a 必须满足01,a a x R >≠∈且.4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且.5、零次幂的底数不能为零,即0x 中0x ≠.6、正切函数tan y x =的定义域是{|,}2x x k k z ππ≠+∈.7、复合函数的定义域的求法(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.8、求函数()()y f x g x =+的定义域一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的定义域.9、求实际问题中函数的定义域不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.五、函数的问题,必须遵循“定义域优先”的原则.研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】方法一 直接法使用情景 函数的结构比较简单.解题步骤直接列出不等式解答,不等式的解集就是函数的定义域.【例1】求函数2253y x x =+-的定义域.【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数21x y x +=+. 方法二 求交法使用情景函数是由一些函数四则运算得到的,即函数的形式为()()()f x g x h x =+型.解题步骤一般先分别求函数()g x 和()h x 的定义域A 和B ,再求AB ,A B 就是函数()f x 的定义域.【例2】求函数225y x =-3log cos x 的定义域.【解析】由题得⎪⎩⎪⎨⎧∈+<<-≤≤-∴⎩⎨⎧>≥-zk k x k x x x 2222550cos 0252ππππ∴}52322235|{≤<<<--<≤-x x x x ππππ或或所以函数的定义域为}52322235|{≤<<<--<≤-x x x x ππππ或或【点评】(1)求函数()()y f x g x =+的定义域,一般先求()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.(2)该题中要考虑偶次方根的被开方数是非负数,对数函数的真数大于零,列不等式求函数的定义域时,必须考虑全面,不能漏掉限制条件.(3)解不等式cos 0x >时,主要是利用余弦函数的图像解答.(4)求552222x k x k k zππππ-≤≤⎧⎪⎨-<<+∈⎪⎩的解集时,只需给参数k 赋几个整数值,再通过数轴求交集.(5)注意等号的问题,其中只要有一个错误,整个解集就是错误的,所以要仔细认真. 学科#网【例3】求函数 02)23(3|3|)lg(-+-+-=x x x x y 的定义域.【点评】(1)该题中要考虑真数大于零,分式的分母不能为零,零次幂的底数不能为零,考虑要全面,不要遗漏.(2)求不等式的交集一般通过数轴完成.【例4】求函数log (1)(01)xa y a a a =->≠且的定义域.【解析】由题得 0101=xxa a a ->∴>1a >当时,x>0;当0<a<1时,x<0.1{a ∴>当时,函数的定义域为x|x>0}, 1{a <当0<时,函数的定义域为x|x<0}.【点评】(1)求含有参数的函数的定义域时,注意在适当的地方分类讨论.(2)对于指数函数和对数函数,如果已知条件中,没有给定底数a 的取值范围,一般要分类讨论.【反馈检测2】求函数2ln1)23xy a x x =---+(的定义域.方法三 抽象复合法 使用情景涉及到抽象复合函数.解题步骤利用抽象复合函数的性质解答:(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.【例5】求下列函数的定义域:(1)已知函数f (x)的定义域为[2,2]-,求函数2(1)y f x =-的定义域; (2)已知函数(24)y f x =+的定义域为[0,1],求函数f (x)的定义域; (3)已知函数f (x)的定义域为[1,2]-,求函数2(1)(1)y f x f x =+--的定义域.【点评】(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.第1小题就是典型的例子.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.第2小题就是典型的例子.(3)求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.【反馈检测3】已知函数(tan 2)y f x =的定义域为[0,]8π,求函数()f x 的定义域.【反馈检测4】 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,求函数)(log 2x f 的定义域.方法四 实际法使用情景 数学问题是实际问题.解题步骤先求函数的自变量的取值范围,再考虑自变量的实际限制条件,最后把前面两者的范围求交集,即得函数的定义域.【例6】用长为L 的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为2x ,求此框架围成的面积y 与关于x 的函数解析式,并求出它的定义域. 【解析】如图,【点评】(1)求实际问题中函数的定义域,不仅要考虑解析式本身有意义,还要保证满足实际意义.(2)该题中在考虑实际意义时,必须保证解答过程中的每一个变量都有意义,即2x 02x 02x π⎧⎪⎨⎪⎩>L -->,不能遗漏.【反馈检测5】 一个圆柱形容器的底部直径是dcm ,高是hcm .现在以3/vcm s 的速度向容器内注入某种溶液.求容器内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.参考答案【反馈检测1答案】{|12}x x x >-≤-或【反馈检测1详细解析】由题得(2)(1)012201011x x x x x x x x ++≥≥-≤-⎧⎧+≥∴∴⎨⎨+≠+≠-⎩⎩或所以12{|12}x x x x x >-≤-∴>-≤-或函数的定义域为或.【反馈检测2答案】当1a >时,函数的定义域为{|01}x x <<;当01a <<时,函数的定义域为{|30}x x -<<.【反馈检测3答案】[0,1]【反馈检测3详细解析】由题得0020tan 2184x x x ππ≤≤∴≤≤∴≤≤,所以函数的定义域为[0,1].【反馈检测4答案】{}42|≤≤x x【反馈检测4详细解析】依题意知:2log 212≤≤x 解之得 42≤≤x ∴ )(log 2x f 的定义域为{}42|≤≤x x【反馈检测5答案】函数解析式为24vtx dπ=,函数的定义域为{t |0≤t ≤2hd 4v π},值域为{x |0≤x ≤h }. 【反馈检测5详细解析】向容器内注入溶液经历时间为t 秒后,容器中溶液的高度为xcm .故t 秒后溶液的体积为=底面积×高=π⎪⎭⎫⎝⎛2d 2x =vt 解之得:x =24vt d π又因为0≤x ≤h 即0≤24vt d π≤h ⇒ 0≤t ≤2hd 4v π,故函数的定义域为{t |0≤t ≤2hd 4vπ},值域为{x |0≤x ≤h }.。
第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f (x )的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R . (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f (x )=x 0的定义域为{x |x ≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域: 1.y =kx +b (k ≠0)的值域是R . 2.y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧y ⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪y ≤4ac -b 24a . 3.y =kx(k ≠0)的值域是{y |y ≠0}.4.y =a x (a >0且a ≠1)的值域是(0,+∞). 5.y =log a x (a >0且a ≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.3.函数f (x )与f (x +a )(a 为常数a ≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x >1.( × ) (3)函数y =f (x )定义域为[-1,2],则y =f (x )+f (-x )定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a )的值域为R ,则a 的取值范围为⎝⎛⎦⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × )[解法二](判别式法):设x 2+2=t (t ≥2),则y =t +1t ,即t 2-ty +1=0,∵t ∈R ,∴Δ=y 2-4≥0,∴y ≥2或y≤-2(舍去).( × )[解法三](配方法):令x 2+2=t (t ≥2),则y =t +1t =⎝⎛⎭⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t ≥2时是增函数,所以t =2时,y min =322,故y ∈⎣⎡⎭⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a )值域为R 应满足Δ≥0,即1-4a ≥0,∴a ≤14.题组二 走进教材2.(必修1P 17例1改编)函数f (x )=2x -1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x -1≥0x -2≠0,解得x ≥0且x ≠2,故选C .3.(必修1P 32T5改编)函数f (x )的图象如图,则其最大值、最小值分别为( B )A .f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫-32 B .f (0),f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫-32,f (0) D .f (0),f (3)4.(必修1P 39BT1改编)已知函数f (x )=x +9x,x ∈[2,4]的值域为⎣⎡⎦⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎡⎦⎤6,132. 题组三 走向高考5.(2020·北京,11,5分)函数f (x )=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞).6.(2016·北京,5分)函数f (x )=xx -1(x ≥2)的最大值为2. [解析] 解法一:(分离常数法)f (x )=x x -1=x -1+1x -1=1+1x -1,∴x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy -y =x ,∴x =y y -1.∵x ≥2,∴y y -1≥2,∴yy -1-2=2-y y -1≥0,解得1<y ≤2,故函数f (x )的最大值为2.解法三:(导数法)∵f (x )=xx -1,∴f ′(x )=x -1-x (x -1)2=-1(x -1)2<0,∴函数f (x )在[2,+∞)上单调递减,故当x=2时,函数f (x )=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎫-1,-12 C .(-1,0)D .⎝⎛⎭⎫12,1[解析] 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎫-1,-12. [引申1]若将本例中f (x )与f (2x +1)互换,结果如何? [解析] f (2x +1)的定义域为(-1,0),即-1<x <0, ∴-1<2x +1<1,∴f (x )的定义域为(-1,1).[引申2]若将本例中f (x )改为f (2x -1)定义域改为[0,1],求y =f (2x +1)的定义域,又该怎么办? [解析] ∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0, 因此y =f (2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 〔变式训练1〕 (1)(角度1)函数f (x )=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( D ) A .-2 B .-1 C .1D .2(3)(角度2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.故选B .(2)因为-2x +a >0,所以x <a 2,所以a2=1,得a =2.故选D .(3)因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x |1+|x |;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2; (6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x |1+|x |=-1+21+|x |, ∵|x |≥0,∴|x |+1≥1,∴0<2|x |+1≤2.∴-1<-1+21+|x |≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x |1+|x |,得|x |=1-y 1+y .∵|x |≥0,∴1-y1+y≥0,∴-1<y ≤1,即函数值域(-1,1]. (2)解法一:配方法:y =-2⎝⎛⎭⎫x -142+258, ∴0≤y ≤524,∴值域为⎣⎡⎦⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t ≤258, 又∵y =t 有意义,∴0≤t ≤258,∴0≤y ≤524,∴值域为⎣⎡⎦⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x ≠0),得y -1=x +1x .∵⎪⎪⎪⎪x +1x =|x |+⎪⎪⎪⎪1x ≥2|x |·⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y ≤-1或y ≥3.即函数值域为(-∞,-1]∪[3,+∞) 解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y )x +1=0.∵方程有实根,∴Δ=(1-y )2-4≥0. 即(y -1)2≥4,∴y -1≤-2或y -1≥2.得y ≤-1或y ≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y ′=1-1x 2=(x +1)(x -1)x 2<0,得-1<x <0或0<x <1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y ≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y ≤-1. ∴y ≤-1或y ≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t (t ≥0),得x =1-t 22,∴y =1-t 22-t =-12(t +1)2+1≤12(t ≥0),∴y ∈⎝⎛⎦⎤-∞,12.即函数的值域为⎝⎛⎦⎤-∞,12. 解法二:单调性法∵1-2x ≥0,∴x ≤12,∴定义域为⎝⎛⎦⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝⎛⎭⎫-∞,12上均单调递增,∴y ≤12-1-2×12=12,∴y ∈⎝⎛⎦⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎡⎦⎤-π2,π2,y =sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4,∵θ∈⎣⎡⎦⎤-π2,π2,∴θ+π4∈⎣⎡⎦⎤-π4,3π4,∴sin ⎝⎛⎭⎫θ+π4∈⎣⎡⎦⎤-22,1,∴y ∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x <-1),3(-1≤x ≤2),2x -1(x >2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a ≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a ≠0,f (x )值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x )+bf (x )+c (a ≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b ±cx +d (c ≠0)的函数;如例3(4);形如y =ax +b ±c 2-x 2(c ≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ; (3)y =2x 2-x +12x -1⎝⎛⎭⎫x >12. [解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1]. 解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y1+y≥0.所以-1<y ≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t ≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t ≥0), 所以y ≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12,因为x >12,所以x -12>0,所以x -12+12x -12≥2⎝⎛⎭⎫x -12·12⎝⎛⎭⎫x -12=2,当且仅当x -12=12x -12,即x =1+22时取等号.所以y ≥2+12,即原函数的值域为⎣⎡⎭⎫2+12,+∞.导数法:y ′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f (x )=lg [(a 2-1)x 2+(a +1)x +1]. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为R ,求实数a 的取值范围.[分析] (1)由f (x )的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立; (2)由f (x )的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a >1或a <-1,a >53或a <-1. ∴a <-1或a >53.又a =-1时,f (x )=1>0,满足题意.∴a ≤-1或a >53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f (x )的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a ≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a ≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎡⎦⎤32,4 C .⎣⎡⎦⎤32,3D .⎣⎡⎭⎫32,+∞[解析] (1)①当m =0时,y =8,其定义域为R . ②当m ≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,∴32≤m ≤3. 另:由y =x 2-3x -4=⎝⎛⎭⎫x -322-254,∴32≤m ≤3.。
重温4之函数基本概念+不等式
1. 函数f(x)=2x -1log 2x
的定义域为( ) A .(0,+∞) B .(1,+∞) C .(0,1) D .(0,1)∪(1,+∞)
2. 函数y =1-lg (x +2)的定义域为( )
A .(0,8]
B .(-2,8]
C .(2,8]
D .[8,+∞)
3.已知f ⎝⎛⎭
⎫12x -1=2x +3,f(m)=6,则m 等于( ) A. 14 B .-14 C. 32 D .-32
4. 已知f(x)=⎩
⎪⎨⎪⎧sin πx ,x ≤0,f (x -1)+1,x>0,则f ⎝⎛⎭⎫56的值为________.
5. 已知函数f(x)=⎩
⎪⎨⎪⎧1-x ,x≤0a x ,x>0,若f(1)=f(-1),则实数a 的值等于( ) A .1 B .2 C .3 D .4
6. 已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x≤0,
若f(a)+f(1)=0,则实数a 的值等于( ) A .-3 B .-1 C .1 D .3
7.已知f(x)=⎩
⎨⎧ln 1x ,x>0,1x ,x<0,则f(x)>-1的解集为____________________.
8. (1)求函数f(x)=lg (x 2
-2x )9-x 2
的定义域; (2)已知函数f(x)的定义域为[0,1],求下列函数的定义域:①f(x 2),②f(x -1);
(3)已知函数f(lg(x +1))的定义域是[0,9],求函数f(2x )的定义域.
9.函数g(x)=x +3+log 2(6-x)的定义域是( )
A .{x|x>6}
B .{x|-3<x<6}
C .{x|x>-3}
D .{x|-3≤x<6}
10.已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求f(x)的解析式.
11.已知函数f(x)=x 2
1+x 2
,x ∈R. (1)求f(x)+f ⎝⎛⎭⎫1x 的值; (2)计算:f(1)+f(2)+f(3)+f(4)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+f ⎝⎛⎭
⎫14.
12. 已知集合A ={x|x 2+3x -10<0},B ={x ∈N|log 2(x +1)<2},则A∩B 等于( )
A .{0,1,2}
B .{-1,0,1}
C .{-1,2}
D .{0,1}
14. 不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( )
A .[-4,4]
B .(-4,4)
C .(-∞,-4]∪[4,+∞)
D .(-∞,-4)∪(4,+∞)
15.若不等式x 2-(a +1)x +a≤0的解集是[-4,3]的子集,则a 的取值范围是________.
重温4之函数基本概念+不等式 答案
1.D 解析:由题意知⎩⎪⎨⎪⎧x>0,x≠1,
解不等式得x ∈(0,1)∪(1,+∞). 2.B 解析:由⎩
⎪⎨⎪⎧x +2>0,1-lg (x +2)≥0,得⎩⎪⎨⎪⎧x>-2,x≤8,所以-2<x≤8. 3.B 解析:令2x +3=6,得x =32,则m =12x -1=12×32-1=-14
. 4. 12 解析:f ⎝⎛⎭⎫56=f ⎝⎛⎭⎫56-1+1=f ⎝⎛⎭⎫-16+1=sin ⎝⎛⎭
⎫-π6+1=-12+1=12. 5.B 解析:因为f(1)=a ,f(-1)=1-(-1)=2,所以a =2..
6.A 解析:f(1)=2×1=2,∴f(a)=-2,∴f(a)=a +1=-2,得a =-3..
7.(-∞,-1)∪(0,e) 解析:当x >0时,ln 1x >-1,∴0<x <e ;当x <0时,1x
>-1,∴x <-1. 综上,x ∈(-∞,-1)∪(0,e).
8.解:(1)要使函数有意义,则只需⎩⎪⎨⎪⎧x 2-2x>0,9-x 2>0, 即 ⎩⎪⎨⎪⎧x>2或x<0,-3<x<3,
解得-3<x<0或2<x<3. 故函数的定义域是(-3,0)∪(2,3).
(2)①∵f(x)的定义域是[0,1], ∴要使f(x 2)有意义,则必有0≤x 2≤1,解得-1≤x≤1.
∴f(x 2)的定义域为[-1,1].
②由0≤x -1≤1,得1≤x ≤2. ∴1≤x ≤4.(x≥0时,x 才有意义) ∴函数f(x -1)的定义域为[1,4].
(3)∵f(lg(x +1))的定义域为[0,9], ∴0≤x ≤9,1≤x +1≤10,∴0≤lg(x +1)≤1,
∴f(x)的定义域为[0,1].
由0≤2x ≤1,得x≤0.∴f(2x )的定义域为(-∞,0].
9.D 解析:由⎩⎪⎨⎪⎧
x +3≥0,6-x>0,解得-3≤x<6,故函数的定义域为[-3,6). 10.解析:设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,
∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧ a =2,b =7,
∴f(x)=2x +7. 11.解析:(1)由f(x)+f ⎝⎛⎭⎫1x =x 21+x 2+1x 2
1+1x 2=x 21+x 2+11+x 2=1+x 21+x 2=1.
(2)原式=f(1)+⎣⎡⎦⎤f 2 +f ⎝⎛⎭⎫12+f(3)+f ⎝⎛⎭⎫13+f(4)+f ⎝⎛⎭⎫14=12+3=72
. 12.D 解析:A ={x|x 2+3x -10<0}={x|-5<x<2},
B ={x ∈N|log 2(x +1)<2}={x ∈N|0<x +1<22}={x ∈N|-1<x <3}={0,1,2},
则A∩B ={0,1}.
14.D 解析:不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,解得a <-4或a >4.
15.[-4,3] 解析:原不等式可化为(x -a)(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a≥-4
即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得-4≤a≤3.。