求函数定义域和值域方法和典型题归纳
- 格式:docx
- 大小:173.95 KB
- 文档页数:7
●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)(6)函数f(x)=x0的定义域为{x|x≠0}12 (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ 如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:值域必须写成集合或区间的形式!!!(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =k x (k ≠0)的值域是{y |y ≠0}(4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R3 《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2)函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题4 函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测15(2014·山东) 函数()=f x 为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]6 解析:由题意得⎩⎨⎧1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集. 函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R 则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax练习:(补充) 若函数27()43kx f x kx kx +=++的定义域为R7则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4].则使函数y =f (2x )-ln(x -1)有意义,需⎩⎨⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}8解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。
专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1、求函数yx 2 2x 15的定义域。
x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。
二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。
(一)已知f (x )的定义域,求f g (x ) 的定义域。
其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。
例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。
2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。
2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。
例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。
解: 1 x 2, 2 2x 4, 3 2x 1 5。
即函数f (x )的定义域是x |3 x 5 。
三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。
例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。
22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。
高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。
又因为分式中有$x-1$的项,所以还要满足$x\neq1$。
所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。
⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。
所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。
⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。
分式中有$x-1$的项,所以还要满足$x\neq1$。
分母不能为0,所以$x\neq\pm\sqrt{2}$。
所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。
2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。
3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。
4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。
由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。
解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。
1、函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =x k (k ≠0) (三)1、如何求函数的定义域例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.2、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);x2(3)y =2x; (4)y=x分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
函数的定义域与值域计算练习题函数是数学中的一个重要概念,它描述了一种关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。
在函数的定义中,一个关键的要素就是定义域和值域。
定义域指的是函数接受输入的所有可能值的集合,值域则是函数所能取到的所有输出值的集合。
在本文中,我们将探讨函数的定义域和值域的计算方法,并通过练习题加深理解。
练习题 1:考虑函数f(x) = √(x-2)。
1. 计算函数 f(x) 的定义域。
2. 计算函数 f(x) 的值域。
解答:1. 函数 f(x) 为平方根函数,要使得函数有实数解,必须满足 x-2 ≥ 0,即x ≥ 2。
因此,函数 f(x) 的定义域为[2, +∞)。
2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。
由于平方根函数的性质,函数值必须大于等于 0。
因此,函数 f(x) 的值域为[0, +∞)。
练习题 2:考虑函数 g(x) = 1 / (x+3)。
1. 计算函数 g(x) 的定义域。
2. 计算函数 g(x) 的值域。
解答:1. 函数 g(x) 中分母为 x+3,因此要使得函数有意义,分母不能为零。
即 x+3 ≠ 0,解得x ≠ -3。
因此,函数 g(x) 的定义域为 R - {-3},即全体实数集去掉 -3 所在的点。
2. 对于定义域内的任意 x 值,我们可以计算出对应的函数值。
由于分母为 x+3,当 x 趋近于无穷大时,分母趋近于无穷大,函数值趋近于0。
同理,当 x 趋近于负无穷大时,函数值也趋近于 0。
因此,函数 g(x) 的值域为 (-∞, 0) 与(0, +∞)。
通过以上两个练习题的解答,我们可以看出函数的定义域和值域的计算方法:1. 对于定义域,需要考虑函数中存在的限制条件,如根号函数中的非负性,分数函数中的分母不为零等。
根据这些限制条件,我们可以求解出定义域的范围。
2. 对于值域,可以通过将函数中的变量逐渐趋近于无穷大或负无穷大,观察函数的取值变化趋势。
函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。
⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。
⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。
2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。
若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。
3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。
同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。
要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。
根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。
高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文介绍了函数求值域最常用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数定义域的几种求法:一、已知复杂函数,求f(x)例1.若函数f(x+1)的定义域是[-2,3],求f(x)的定义域例2.若f( )的定义域为[0,3],求f(x)的定义域总结:二、已知简单函数f(x),求复杂函数例1.若函数f(x)的定义域为[1,4],求函数f(x+2)的定义域总结:三、综合一和二,求函数的定义域例1.若函数f(x+1) 的定义域是[-2,3],求函数f(2x-1)的定义域四、当定义域为R时,求未知数的取值范围例1.已知函数y=²的定义域为R,求m 的取值范围例3.已知函数y=的定义域为R,求实数a的取值范围²总结:函数值域基本初等函数的定义域和值域1.一次函数f(x)=k x+b(k≠0)的定义域是R,值域是R2.反比例函数f(x)=(k≠0)的定义域是(-∞,0)∪(0,+ ∞),值域是(-∞,0)∪(0,+ ∞)3.二次函数f(x)=ax2+bx+c(a≠0)的定义域是R。
当a>0时,值域是[f(-),+ ∞); 当a<0,时,值域是(-∞,f(-)]函数值域的常用方法:一、利用简单函数值域求复杂函数值域例1.求函数y=-1的值域解:已知≧0,所以-1≧-1,所以函数y=-1的值域为[-1, + ∞]例2.求函数y=-的值域例3.求函数y=²的值域例4.求函数y=+1的值域例5.求函数y=+1的值域二、配方法例6.求函数y=²-4x+5的值域例7.求函数y=²-6x+10的值域解:y=²-4x+5=(x-2)2+1≧1所以,函数y=²-4x+5的值域为[1,+∞)例8.求函数y=的值域²三、将函数形式变成x=( )y的形式,利用已知函数值或者Δ的取值范围来判定例9.求函数y=²的值域²解:函数变形:y²+2yx+3y=2²+4x-7即:(y-2)²+2(y-2)x+3y+7=0当y=0时,显然不成立;当y≠0时,上式可以看作是关于x的一元二次方程,由于定义域x∈R,则有Δ≧0,即:Δ=4(y-2)2-4(y-2)(3y+7) ≧0所以2y2+5y-18≦0,解得:-≦y﹤2(x=2舍去)所以函数y=²的值域为[-,2)²。
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。
(形如:2()x f x x=) 2.抽象函数(没有解析式的函数)解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。
总结为:(1)给出了定义域就是给出了所给式子中x 的取值范围;(2)在同一个题中x 不是同一个x ;(3)只要对应关系f 不变,括号的取值范围不变。
(4)求抽象函数的定义域个关键在于求f(x)的取值范围,及括号的取值范围。
例1:已知f(x+1)的定义域为[-1,1],求f (2x-1)的定义域。
解:∵f(x+1)的定义域为[-1,1];(及其中x 的取值范围是[-1,1])∴012x ≤+≤ ; (x+1的取值范围就是括号的取值范围) ∴f(x)的定义域为[0,2];(f 不变,括号的取值范围不变)∴f(2x-1)中0212x ≤-≤ ∴1322x -≤≤ ∴f(2x-1)的定义域为13|22x x ⎧⎫-≤≤⎨⎬⎩⎭ 3.复合函数定义域复合函数形如:(())y f g x =,理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。
例2:()(2,3),()(1)(2),f xg x f x f x -=++-若函数的定义域为求g(x)的定义域。
分析:由题目可以看出g(x)是由y=x+1、y=x-2和y=f(x)三个函数复合起来的新函数。
此时做加运算,所以只要求出f(x+1)和f(x-2)的定义域,再根据求函数定义域要所有式子同时满足,即只要求出f(x+1)和f(x-2)的定义域的交集即可。
解:由f(x)的定义域为(-2,3),则f(x+1)的定义域为(-3,2),f(x-2)的定义域为(0,4);3204x x -<<⎧∴⎨<<⎩,解得0<x<2 所以,g(x)的定义域为(0,2).(二)求定义域的典型题1.已知函数解析式(1)求下列函数的定义域211 (1)();(2)()(1)();31xf x f x x f xx x-==++=+-22(23)11(4)()(1);(5)()log();(6)()42xxf x x f x x f xx+-=-=-=+-(2)求下列函数的定义域(1)()()12(3)()()f x f xxf x f x==-==(3)与函数定义域有关的问题题①若函数224()(21)xf xx m x m-=+++的定义域为R,求实数m的取值范围。
②函数y=R,求k的取值范围。
③函数()f x=R,求m的取值范围。
2.求抽象数定义域①若函数f(x)的定义域为(-2,6),求1(1)2f x-的定义域。
②若数()f x的定义域为[0,2],求函数(2)()1f xg xx=-的定义域。
③若数(1)f x-的定义域为[-1,2],求函数()(2)g x f x=++的定义域。
④若函数()f x的定义域为[0,1],1()()(),()2g x f x a f x a a=++-≤,求函数g(x)的定义域。
⑤若()log (1),()log (1)a a f x x g x x =+=-,(0,1)a a >≠且,令 F (x )=f(x)-g(x),求F (x )的定义域。
二、求函数值域(一)求函数值域方法和情形总结1.直接观察法(利用函数图象)一般用于给出图象或是常见的函数的情形,根据图象来看出y 值的取值范围。
2.配方法适用于二次函数型或是可以化解成二次函数型的函数,此时注意对称轴的位置,在定义域范围内(以a<0为例),此时对称轴的地方为最大值,定义域为内端点离对称轴最远的端点处有最小值;对称轴在定义域的两边则根据单调性来求值域。
总结为三个要点:(1)含参数的二次型函数,首先判断是否为二次型,即讨论a ;(2)a 不为0时,讨论开口方向;(3)注意区间,即讨论对称轴。
例1:求2()46f x x x =-+在[1,5]上的值域.解:配方:2()(2)2f x x =-+f(x)的对称轴为x=2在[1,5]中间 min (2)2y f ==(端点5离x=2距离较远,此时为最大值)max (5)11y f ==所以,f(x)的值域为[2,11].3.分式型(1)分离常量法:应用于分式型的函数,并且是自变量x 的次数为1,或是可以看作整体为1的函数。
具体操作:先将分母搬到分子的位子上去,观察与原分子的区别,不够什么就给什么,化为d y a bx c =++。
例2:51()42x f x x -=+求的值域. 解:510(42)1515744()424242(42)x x f x x x x +---===-+++由于分母不可能为0,则意思就是函数值不可能取到54, 即:函数f(x)的值域为5{|}4y y ≠. 跟踪练习:已知(]2()4(1)3(0,2)f x ax a x x =++-∈在x=2处有最大值,求a 的取值范围.1,2⎡⎫+∞⎪⎢⎣⎭(2)利用20x ≥来求函数值域:适用于函数表达式为分式形式,并且只出现2x 形式,此时由于为平方形式大多时候x 可以取到任意实数,显然用分离常量法是行不通,只有另想它法(有界变量法)。
例3:求函数2231()2x f x x -=+的值域. 解:由于22x +不等于0,可将原式化为22231yx y x +=-即 2(3)12y x y -=--(由于20x ≥)只需3y ≠,则有21203y x y --=≥-3)y -(12)0y --≥ 所以,函数值域1,32y ⎡⎫∈-⎪⎢⎣⎭. (3)方程根的判别式法:适用于分式形式,其中既出现变量x 又出现2x 混合,此时不能化为分离常量,也不能利用上述方法。
对于其中定义域为R 的情形,可以使用根的判别式法。
例4:求函数221x y x =+的值域解:由于函数的定义域为R ,即210x +≠原式可化为 220yx x y -+=(由于x 可以取到任意的实数,那么也就说总有一个x 会使得上述方程有实数根,即方程有根那么判别式大于或等于0,注:这里只考虑有无根,并不考虑根为多少)所以,2440y ∆=-≥所以,函数值域为[]1,1y ∈-跟踪练习:求下列函数值域 (1)11y x =+ (2)2211x y x -=+ (3)211y x =+ 22(4)36x y x x +=++ (5)若2328log 1mx x n y x ++=+的定义域为R ,值域为[]0,2,求常数m,n 的值(m=n=5)4.换元法通过换元将一个复杂的问题简单化更便于求函数值域,一般函数特征是函数解析式中含有根号形式,以及可将问题转换为我们熟悉的函数形式等问题。
而换元法其主要是让我们明白一种动态的方法来学习的一种思路,注重换元思维的培养,并不是专一的去解答某类问题,应该多加平时练习。
注:换元的时候应及时确定换元后的元的取值范围。
例5:求函数()2f x x =解:令20,1t t x t =≥=+则,带入原函数解析式中得 2221152(1)222()48y t t t t t =+-=-+=-+因为,0t ≥所以,函数的值域为15,8y ⎡⎫∈+∞⎪⎢⎣⎭. 跟踪练习:求下列函数的域(1)22sin 3cos 1y x x =-- (2)21y x =+(3)sin cos sin cos y x x x x =++,(令t=sin cos x x +)(4) []4=3cos (0,))y x x θθπ=++∈令。