集合第一节
- 格式:ppt
- 大小:180.00 KB
- 文档页数:12
集合第一节课教案一、教学目标。
同学们!咱们这第一节课要走进一个全新又有趣的数学世界——集合啦!这节课的目标呢,就是让大家搞清楚集合到底是个啥玩意儿,能认识一些集合的基本概念,还能学会用一些简单的方法来表示集合。
等这节课结束,咱都得变成集合小专家哟!二、教学重难点。
重点嘛,就是理解集合的概念。
这概念就像个神秘的小盒子,咱们得把各种元素合理地装进去。
难点呢,就是区分集合中元素的特性,特别是互异性,有时候一不小心就容易掉进坑里啦,所以得瞪大眼睛,仔细分辨哟!三、教学方法。
我打算用故事法、实例法和游戏法来给大家讲解。
为啥呢?因为数学要是干巴巴地讲,那多没意思呀,就像吃没放盐的菜,没味道!咱得加点料,让它变得有趣起来。
四、教学过程。
1. 导入(10分钟)同学们,咱先来讲个小故事。
有一天,小熊要整理它的玩具,它把小汽车、小飞机、小玩偶都放在了一个大箱子里。
这个大箱子就有点像咱们今天要学的集合啦,里面装的小汽车、小飞机、小玩偶就是集合里的元素。
那在生活中,还有没有类似这样把东西放在一起的例子呀?对啦,像咱们班的同学,就是一个集合,每个同学就是这个集合里的元素。
这样一说,是不是感觉集合没那么神秘啦?2. 知识讲解(20分钟)现在咱正式来认识一下集合。
集合就是把一些确定的、不同的对象放在一起组成的一个整体。
比如说,咱们学校所有的篮球,这就是一个集合。
这里面的“确定”是什么意思呢?就是说你得清楚哪些是这个集合里的,哪些不是。
不能模棱两可,就像你不能说“大概是篮球的东西”组成一个集合,这可不行哟!还有“不同”,这就是元素的互异性啦。
比如咱不能说这个篮球放进去一次,又放进去一次,那不成重复啰嗦啦。
集合通常用大写字母来表示,像A、B、C 等等。
集合里的元素就用小写字母表示,比如a、b、c 。
如果a是集合A里的元素,咱们就说a属于A,记作a∈A;要是a不在集合A里,就说a不属于A,记作a∉A。
3. 集合的表示方法(15分钟)集合的表示方法有列举法和描述法。
集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。
我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。
数学高一第一节集合知识点集合是数学中的一个基本概念,它是由一些确定的对象组成的整体。
在高一数学的第一节课中,我们将学习有关集合的基本知识点。
本文将按照逻辑顺序,依次介绍集合的定义、表示方法、基本运算和特殊集合等内容。
一、集合的定义集合是由一些确定的对象组成的整体。
这些对象称为集合的元素。
集合的元素可以是任何事物,如数字、字母、图形、动物等。
例如,一个由1、2、3组成的集合可以写为{1, 2, 3}。
二、集合的表示方法集合可以用不同的表示方法来描述。
常见的表示方法有三种:列举法、描述法和图示法。
1. 列举法:列举法是通过列举集合中的每个元素来表示集合。
例如,表示一个由1、2、3组成的集合可以写为{1, 2, 3}。
2. 描述法:描述法是通过给出集合中元素的某种特定性质或条件来表示集合。
例如,表示一个由正整数组成的集合可以写为{x |x是正整数}。
3. 图示法:图示法使用Venn图来表示集合与元素之间的关系。
在图示法中,集合用一个圆形或椭圆形表示,元素用圆内的点表示。
圆之间的交集表示两个集合的共同元素。
三、集合的基本运算集合的基本运算包括并集、交集、差集和补集。
下面分别介绍这些运算的含义和表示方法。
1. 并集:并集是指包含两个或多个集合中的所有元素的集合。
用符号"∪"表示。
例如,对于集合A={1, 2, 3}和集合B={2, 3, 4},它们的并集可以表示为A∪B={1, 2, 3, 4}。
2. 交集:交集是指包含两个或多个集合中共同元素的集合。
用符号"∩"表示。
例如,对于集合A={1, 2, 3}和集合B={2, 3, 4},它们的交集可以表示为A∩B={2, 3}。
3. 差集:差集是指从一个集合中减去另一个集合中共同元素后的剩余元素构成的集合。
用符号"\"或"-"表示。
例如,对于集合A={1, 2, 3}和集合B={2, 3, 4},它们的差集可以表示为A\B={1}或A-B={1}。
高一数学必修1(人教版)第一章第一节集合教学目标:1. 了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;2. 了解集合间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义。
3. 理解补集的含义,会求补集;4. 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交 集。
5. 渗透数形结合、分类讨论的数学思想方法。
[知识要点]一、集合的含义及其表示1、一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的性质:(1)确定性:班级中成绩好的同学构成一个集合吗?(2)无序性:班级位置调换一下,这个集合发生变化了吗?(3)互异性:集合中任意两个元素是不相同的。
如:已知集合A ={1,2,a},则a 应满足什么条件?常用数集及记法(1)自然数集:记作N (2)正整数集:记作*N N +或(3)整数集:记作Z (4)有理数集:记作Q (5)实数集:记作R例:下列各种说法中,各自所表述的对象是否确定,为什么?(1)我们班的全体学生;(2)我们班的高个子学生;(3)地球上的四大洋;(4)方程x 2-1=0的解;(5)不等式2x -3>0的解;(6)直角三角形;2、集合的表示法(1)列举法:把集合中的元素列举在一个大括号里:{…}(2)描述法:将集合的所有元素都具有的 性质(满足的条件)表示出来,写成{x| P (x )}的形式。
如:{x ︱x 为中国的直辖市}(3)集合的分类:有限集与无限集<1>有限集:含有有限个元素的集合。
<2>无限集:若一个集合不是有限集,就称此集合为无限集。
<3>空集:不含任何元素的集合。
记作Φ,如:二、子集、全集、补集1、子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A ⊆B B A ⊇或 特别的:A AA ⊆∅⊆ 真子集的定义:如果A ⊆B 并且B A ≠,则称集合A 为集合B 的真子集。