第一章 第一节 集合
- 格式:doc
- 大小:79.00 KB
- 文档页数:3
集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。
我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。
第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
一、选择题
1.(2011·湖南高考)设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =( )
A .{1,2,3}
B .{1,3,5}
C .{1,4,5}
D .{2,3,4}
解析:由M ∩∁U N ={2,4}可得集合N 中不含有元素2,4,集合M 中含有元素2,4,故N ={1,3,5}.
答案:B
2.设全集为R ,集合M ={x |y =2x +1},N ={y |y =-x 2},则( )
A .M ⊆N
B .N ⊆M
C .N =M
D .M ∩N ={(-1,-1)}
解析:从代表元素入手,认识集合的意义,M 为一次函数的定义域,N 为二次函数的值域,化简判断,M =R ,N =(-∞,0],即N ⊆M .
答案:B
3.函数y =1-2x 的定义域为集合A ,函数y =ln(2x +1)的定义域为集合B ,则A ∩B =( )
A .(-12,12]
B .(-12,12
) C .(-∞,-12) D .[12
,+∞) 解析:∵函数y =1-2x ,∴1-2x ≥0.∴x ≤12
. ∴A ={x |x ≤12
}.又∵函数y =ln(2x +1),∴2x +1>0. ∴x >-12.∴B ={x |x >-12}.∴A ∩B ={x |-12<x ≤12
}. 答案:A
4.已知集合A ={y |x 2+y 2=1}和集合B ={y |y =x 2},则A ∩B 等于( )
A .(0,1)
B .[0,1]
C .(0,+∞)
D .{(0,1),(1,0)}
解析:∵A ={y |x 2+y 2=1},∴A ={y |-1≤y ≤1}.
又∵B ={y |y =x 2},∴B ={y |y ≥0}.∴A ∩B ={y |0≤y ≤1}.
答案:B
5.(2011·北京高考)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是
( )
A .(-∞,-1]
B .[1,+∞)
C .[-1,1]
D .(-∞,-1]∪[1,+∞)
解析:因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].
答案:C
二、填空题
6.已知集合A ={3,2,2,a },B ={1,a 2},若A ∩B ={2},则a 的值为________. 解析:因为A ∩B ={2},所以a 2=2,所以a =2或a =-2;当a =2时,不符合元素的互异性,故舍去,所以a =- 2.
答案:- 2
7.已知集合A ={x |-x 2+2x +3>0},B ={x |x -2<0},则A ∩(∁R B )=________. 解析:因为A ={x |-1<x <3},B ={x |x <2},
所以∁R B ={x |x ≥2}.
所以A ∩(∁R B )={x |2≤x <3}.
答案:[2,3)
三、解答题
8.设集合A ={x 2,2x -1,-4},B ={x -5,1-x,9},若A ∩B ={9},求A ∪B . 解:由9∈A ,可得x 2=9,或2x -1=9,
解得x =±3,或x =5.
当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;
当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-7,-4,4,9}.
9.已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |m -2≤x ≤m +2}.
(1)若A ∩B =[1,3],求实数m 的值;
(2)若A ⊆∁R B ,求实数m 的取值范围.
解:A ={x |-1≤x ≤3},
B ={x |m -2≤x ≤m +2}.
(1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧
m -2=1,m +2≥3,得m =3. (2)∁R B ={x |x <m -2或x >m +2}.
∵A ⊆∁R B ,∴m -2>3或m +2<-1.
∴m >5或m <-3.
10.已知集合A ={x ∈R|ax 2-3x +2=0,a ∈R}.
(1)若A 是空集,求a 的取值范围;
(2)若A 中只有一个元素,求a 的值,并把这个元素写出来.
解:集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.
(1)A 是空集,即方程ax 2-3x +2=0无解,得
⎩⎪⎨⎪⎧
a ≠0,Δ=(-3)2-8a <0, ∴a >98
. 即实数a 的取值范围是(98
,+∞). (2)当a =0时,方程只有一解,方程的解为x =23
; 当a ≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43
. ∴当a =0或a =98时,A 中只有一个元素,分别是23和43
.。