高中数学直线方程练习题
- 格式:doc
- 大小:674.50 KB
- 文档页数:4
高中数学-直线的方程(一)练习基础达标(水平一 )1.直线的方程为ax+by+c=0,当a>0,b<0,c>0时,此直线一定不过().A.第一象限B.第二象限C.第三象限D.第四象限【解析】由题意知斜率->0,纵截距->0,故直线过第一、二、三象限.【答案】D2.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为().A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=0【解析】由题意可知,所求直线的斜率为-2,故所求直线的方程为y-3=-2(x+1),即2x+y-1=0.【答案】A3.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m是().A.1B.2C.-D.2或-【解析】当2m2+m-3≠0时,在x轴上的截距为=1,即2m2-3m-2=0,∴m=2或m=-.【答案】D4.与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是().A.y=x+4B.y=2x+4C.y=-2x+4D.y=-x+4【解析】∵直线y=2x+1的斜率为2,∴与其垂直的直线的斜率是-,∴直线的斜截式方程为y=-x+4,故选D.【答案】D5.过点P(,-)且倾斜角为45°的直线方程为.【解析】斜率k=tan 45°=1,由直线的点斜式方程可得y+=1×(x-),即x-y-2=0.【答案】x-y-2=06.已知△ABC的三个顶点为A(1,3),B(5,7),C(10,12),则BC边上的高所在直线的方程为.【解析】由k BC==1,知所求直线斜率为-1,设直线方程为y=-x+b,将点A代入,得b=4.故所求直线的方程为y=-x+4.【答案】y=-x+47.已知在△ABC中,A(0,0),B(3,1),C(1,3).(1)求AB边上的高所在直线的方程;(2)求BC边上的高所在直线的方程;(3)求过点A且与BC平行的直线方程.【解析】(1)直线AB的斜率k1==,AB边上的高所在直线的斜率为-3且过点C,所以AB边上的高所在直线的方程为y-3=-3(x-1),即y=-3x+6.(2)直线BC的斜率k2==-1,BC边上的高所在直线的斜率为1且过点A,所以BC边上的高所在直线的方程为y=x.(3)由(2)知过点A与BC平行的直线的斜率为-1,所以所求直线方程为y=-x.拓展提升(水平二)8.方程y=ax+表示的直线可能是().【解析】直线y=ax+的斜率是a,在y轴上的截距.当a>0时,斜率a>0,在y轴上的截距>0,则直线y=ax+过第一、二、三象限,四个选项都不符合;当a<0时,斜率a<0,在y轴上的截距<0,则直线y=ax+过第二、三、四象限,只有选项B符合.【答案】B9.直线mx+ny+3=0在y轴上的截距为-3,且倾斜角是直线x-y=3倾斜角的2倍,则().A.m=-,n=1B.m=-,n=-3C.m=,n=-3D.m=,n=1【解析】对于直线mx+ny+3=0,令x=0得y=-,即-=-3,∴n=1.∵x-y=3的倾斜角为60°,直线mx+ny+3=0的倾斜角是直线x-y=3的2倍, ∴直线mx+ny+3=0的倾斜角为120°,即-=-,∴m=.故选D.【答案】D10.在直线方程y=kx+b中,当x∈[-3,4]时,恰好y∈[-8,13],则此直线方程为.【解析】由一次函数的单调性知,当k>0时,函数y=kx+b为增函数,则解得即y=3x+1.当k<0时,函数y=kx+b为减函数,则解得即y=-3x+4.【答案】y=3x+1或y=-3x+411.已知过点(4,-3)的直线l在两坐标轴上的截距的绝对值相等,求直线l的方程.【解析】依条件设直线l的方程为y+3=k(x-4).令x=0,得y=-4k-3;令y=0,得x=.∵直线l在两坐标轴上的截距的绝对值相等,∴|-4k-3|=,即k(4k+3)=±(4k+3).解得k=1或k=-1或k=-.故所求直线l的方程为y=x-7或y=-x+1或y=-x.。
直线的方程(两点式、截距式) 同步练习一、选择题:1.过两点(2,5)和(2,-5)的直线方程为( )A .x=21 B .x=2 C .x+y=2 D .y=0 2.过两点(-1,1)和(3,9)的直线 在x 轴上的截距为( )A .-23B .-32C .52 D .2 3. 下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;B.经过任意两个不同的点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;C.不经过原点的直线都可以用方程a x +by =1表示; D.经过定点A (0,b )的直线都可以用方程y=kx+b 表示.4.过点A (1,2)作直线 使它在两坐标轴上的截距的绝对值相等,满足条件的直线 的条数是( )A .1B .2C .3D .45. 直线2x-3y=6在x 轴、y 轴上的截距分别为( )A .3,2B .-3,2C .3,-2D .-3,-26.直线ax+by=1 (ab ≠0)与两坐标轴围成的面积是( )A .21ab B. 21|ab| C .ab 21 D .||21ab 7.若直线(m+2)x+(m 2-2m-3)y=2m 在x 轴上的截距是3,则m 的值是( )A .52B .6C .-52 D . -6 8.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( )A .2x+y-12=0B .2x+y-12=0 或2x-5y=0C .x-2y-1=0D .x+2y-9=0或2x-5y=0二.填充题 :9. 经过两点A(2,1), B(0,3)的直线方程是_______________.10.过点(2,4)且在两坐标轴上截距相等的直线方程_______________________ .11.直线3x-4y+k=0在两坐标轴上截距之和为2,则实数k=________.12.直线 过点(3,4),且在第一象限和两坐标轴围成的三角形的面积是24,则 的截距式方程是 _______________.三.解答题:13.已知∆ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求BC 边上的中线AD 所在直线的方程.14.求过点A (-2,3),且在两坐标轴上的截距之和为2的直线方程。
高中数学《直线与方程》测试题1.直线x+6y+2=0在x轴和y轴上的截距分别是()A。
(2,0) B。
(-2.-1/3) C。
(-11/3,0) D。
(-2,-3/23)2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是()A。
重合 B。
平行 C。
垂直 D。
相交但不垂直3.直线过点(-3,-2)且在两坐标轴上的截距相等,则这直线方程为()A。
2x-3y=0 B。
x+y+5=0 C。
2x-3y=5 D。
x+y+5或x-y+5=04.直线x=3的倾斜角是()A。
0 B。
π/2 C。
π D。
不存在5.点(-1,2)关于直线y=x-1的对称点的坐标是()A。
(3,2) B。
(-3,-2) C。
(-3,2) D。
(1,-2)6.点(2,1)到直线3x-4y+2=0的距离是()A。
4/5 B。
5/4 C。
4/25 D。
25/47.直线x-y+3=0的倾斜角是()A。
30° B。
45° C。
60° D。
90°8.与直线l: 3x-4y+5=0关于x轴对称的直线的方程为()A。
3x+4y-5=0 B。
3x+4y+5=0 C。
-3x+4y-5=0 D。
-3x+4y+5=09.设a、b、c分别为△ABC中∠A、∠B、∠C对边的边长,则直线xsinA+ay+c=0与直线bx-ysinB+sinC=0的位置关系是()A。
平行 B。
重合 C。
垂直 D。
相交但不垂直10.直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来位置,那么l的斜率为()A。
-1/3 B。
-3 C。
1/3 D。
311.直线kx-y+1=3k,当k变动时,所有直线都通过定点()A。
(0,0) B。
(0,1) C。
(3,1) D。
(2,1)13.直线过原点且倾角的正弦值是4/5,则直线方程为y=4x/5.14.直线mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为1/2|mn|.15.如果三条直线mx+y+3=0,x-y-2=0,2x-y+2=0不能成为一个三角形三边所在的直线,那么m的一个值是 -1/2.16.已知两条直线 (-∞,1).17.△ABC中,点A(4,-1),AB的中点为M(-1,2),直线CM 的方程为 3x+y-11=0.1.3,2为重心P,求边BC的长度。
一、单选题1. 过,的直线方程是()A.B.C.D.2. 已知M(3,),A(1,2),B(3,1),则过点M和线段AB的中点的直线方程为()A.4x+2y﹣5=0 B.4x﹣2y﹣5=0 C.x+2y﹣5=0 D.x﹣2y﹣5=03. 已知直线过点(2, 1),且横截距、纵截距满足,则该直线的方程为()A.2x+y-5=0 B.x+2y-4=0C.x-2y=0或x+2y-4=0 D.x-2y=0或2x+y-5=04. 下列说法正确的是()A.直线与两坐标轴围成的三角形的面积是4B.直线的横截距为1C.过,两点的直线方程为D.若直线l沿x轴向左平移3个单位长度,再沿y轴向上平移2个单位长度后,回到原来的位置,则该直线l的斜率为5. 过点,且在两坐标轴上截距的绝对值相等的直线有()A.4条B.2条C.3条D.1条6. 下列直线方程是两点式方程的是()A.B.C.D.二、多选题7. 经过点且与两坐标轴围成等腰直角三角形的直线方程可以是()A.B.C.D.8. 经过点,且在两坐标轴上的截距相等的直线的方程可能为()A.B.C.D.三、填空题9. 经过点,并且在y轴上的截距是在x轴上的截距的两倍的直线方程为_______.10. 已知直线的倾斜角是直线的倾斜角的2倍,且过点,则直线的方程为______.11. 过点,直线的两点式方程为______.12. 过点,且在两坐标轴上的截距相等的直线方程是___________.四、解答题13. 回答下列问题:(1)任一条直线都有x轴上的截距和y轴上的截距吗?(2)如果两条直线有相同的斜率,但在x轴上的截距不同,那么它们在y轴上的截距可能相同吗?(3)如果两条直线在y轴上的截距相同,但是斜率不同,那么它们在x轴上的截距可能相同吗?(4)任一条直线都可以用截距式方程表示吗?14. 已知直线l:.已知圆C的圆心为,且与直线l相切,求圆C的方程;求与l垂直,且与两坐标轴围成的三角形面积为4的直线方程.15. 根据条件写出下列直线的斜截式方程:(1)倾斜角为60°,与轴的交点到坐标原点的距离为3;(2)在y轴上的截距为,且与y轴夹角为60°.16. 已知的三个顶点坐标分别为、、.(1)求边上的中线所在直线方程;(2)求边上的高所在直线方程;(3)求边的垂直平分线的方程.。
高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。
解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。
代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。
得到方程:\( y - 4 = -2(x - 3) \)。
### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。
解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。
代入已知值:\( m = 3 \),\( b = -5 \)。
得到方程:\( y = 3x - 5 \)。
### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。
解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。
代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。
化简得到:\( 7(y - 6) = -5(x + 1) \)。
### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。
解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。
代入截距:\( a = 4 \),\( b = -3 \)。
得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。
### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。
高中数学直线练习题一、选择题1.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A.(-2,-1)B.(2,3)C.(2,1)D.(-2,1) 答案 B解析 由题意知,直线MN 的方程为2x -y -1=0.又∵点N 在直线x -y +1=0上,∴⎩⎪⎨⎪⎧ x -y +1=0,2x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =3. 2.三点A (3,1),B (-2,k ),C (8,11)在一条直线上,则k 的值为( )A.-8B.-9C.-6D.-7答案 B解析 ∵三点A (3,1),B (-2,k ),C (8,11)在一条直线上,∴k AB =k AC ,∴k -1-2-3=11-18-3, 解得k =-9.故选B.3.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)考点 两条直线的交点题点 求两条直线的交点坐标答案 A解析 由已知可得直线y =2x ,x +y =3的交点为(1,2),此点也在直线mx +ny +5=0上, ∴m +2n +5=0,再将四个选项代入,只有A 满足此式.4.与直线l :x -y +1=0关于y 轴对称的直线的方程为( )A.x +y -1=0B.x -y +1=0C.x +y +1=0D.x -y -1=0 考点 对称问题的求法题点 直线关于直线的对称问题答案 A解析 直线l :x -y +1=0与两坐标轴的交点分别为(-1,0)和(0,1),因为这两点关于y 轴的对称点分别为(1,0)和(0,1),所以直线l :x -y +1=0关于y 轴对称的直线方程为x +y -1=0.5.已知A (2,3),B (-4,a ),P (-3,1),Q (-1,2),若直线AB ∥PQ ,则a 的值为( )A.0B.1C.2D.3答案 A解析 ∵直线AB 的斜率k AB =3-a 6,直线PQ 的斜率k PQ =2-1-1-(-3)=12,直线AB ∥PQ ,∴3-a 6=12,解得a =0,故选A. 6.如果AB >0,BC >0,则直线Ax -By -C =0不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限考点 直线的一般式方程题点 直线的一般式方程的概念答案 B解析 直线Ax -By -C =0化成斜截式方程y =A B x -C B, ∵AB >0,BC >0,∴斜率大于0,纵截距小于0,∴直线不经过第二象限.7.已知点P (2,-3),Q (3,2),直线ax -y +2=0与线段PQ 相交,则a 的取值范围是( )A.a ≥43B.a ≤-43C.-52≤a ≤0D.a ≤-43或a ≥12 考点 直线的图象特征与倾斜角、斜率的关系题点 倾斜角、斜率的变化趋势及其应用答案 C解析 直线ax -y +2=0可化为y =ax +2,斜率k =a ,恒过定点A (0,2),如图,直线与线段PQ 相交,则k AP ≤k ≤0,即-52≤a ≤0,故选C. 8.过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( )A.2条B.3条C.4条D.无数多条答案 B解析 由题意知,直线的斜率存在,设所求直线的方程为y =k (x -3)-1.当y =0时,得横截距x =3+1k; 当x =0时,得纵截距y =-1-3k .由题意得⎪⎪⎪⎪3+1k =|-1-3k |, ∴-1-3k =3+1k 或-1-3k =-1k-3, ∴k =-1或k =-13或k =1, ∴所求直线有3条.故选B.二、填空题9.若直线l 的斜率是过点(1,6),(-1,2)的直线的斜率的2倍,则直线l 的斜率为________. 答案 4解析 过点(1,6),(-1,2)的直线的斜率为6-21-(-1)=2,∴l 的斜率为k =2×2=4. 10.若无论m 为何值,直线l :(2m +1)x +(m +1)y -7m -4=0恒过一定点P ,则点P 的坐标为________.答案 (3,1)解析 特殊值法:令m =-1,得-x +3=0;令m =0,得x +y -4=0.联立⎩⎪⎨⎪⎧ x =3,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1. 故点P 的坐标为(3,1).11.设直线l 经过点(-1,1),则当点(2,-1)与直线l 的距离最远时,直线l 的方程为________. 答案 3x -2y +5=0解析 数形结合(图略)可知,当直线l 与过两点的直线垂直时,点(2,-1)与直线l 的距离最远,因此所求直线的方程为y -1=-2-(-1)-1-1·(x +1),即3x -2y +5=0. 三、解答题12.已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解 (1)∵k =tan 135°=-1,∴由直线的点斜式方程得直线l 的方程为y -1=-(x -1),即x +y -2=0.(2)设点A ′的坐标为(a ,b ),则根据题意有⎩⎪⎨⎪⎧ b -4a -3×(-1)=-1,a +32+b +42-2=0,故a =-2,b =-1.∴A ′的坐标为(-2,-1).13.在平面直角坐标系中,已知A (-1,2),B (2,1),C (1,0).(1)判定△ABC 的形状;(2)求过点A 且在x 轴和y 轴上的截距互为倒数的直线方程;(3)已知l 是过点A 的直线,点C 到直线l 的距离为2,求直线l 的方程.考点 分类讨论思想的应用题点 分类讨论思想的应用解 (1)k AC =-1,k BC =1,k AC ·k BC =-1,且|AC |≠|BC |,∴△ABC 为直角三角形.(2)设所求直线方程为x a+ay =1(a ≠0), 则-1a +2a =1,即a =-12或a =1, ∴-2x -12y =1或x +y =1, ∴所求直线方程为-2x -12y =1或x +y =1,即4x +y +2=0或x +y -1=0. (3)①当直线l 的斜率不存在时,l 的方程为x =-1,此时点C 到直线l 的距离为2,符合题意;②当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为y -2=k (x +1),即kx -y +k +2=0,则点C 到直线l 的距离d =|2k +2|k 2+1=2,解得k =0, ∴直线l 的方程为y -2=0.综上可知,直线l 的方程为x +1=0或y -2=0.14.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是( )①y =x +1;②y =2;③y =43x ;④y =2x +1. A.①③B.①④C.②③D.③④ 考点 点到直线的距离题点 与点到直线的距离有关的最值问题 答案 C解析 设点M 到下列4条直线的距离分别为d 1,d 2,d 3,d 4,对于①,d 1=|5-0+1|2=32>4; 对于②,d 2=2<4;对于③,d 3=|5×4-3×0|5=4; 对于④,d 4=|5×2-0+1|5=115>4, 所以符合条件的有②③.15.已知一束光线经过直线l 1:3x -y +7=0和l 2:2x +y +3=0的交点M ,且射到x 轴上一点N (1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 3的方程.考点 对称问题的求法题点 关于对称的综合应用解 (1)由⎩⎪⎨⎪⎧ 3x -y +7=0,2x +y +3=0,得⎩⎪⎨⎪⎧x =-2,y =1,∴M (-2,1). ∴点M 关于x 轴的对称点P 的坐标为(-2,-1).(2)易知l 3经过点P 与点N , ∴l 3的方程为y -0-1-0=x -1-2-1, 即x -3y -1=0.。
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。
高中直线与方程练习题及答案详解1.高中直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=√2/2B.a-b=√2/2C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.2C.10D.无法确定4.已知ab0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠1B.m≠-1/2C.m≠1/2D.m≠0二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x。
三、解答题1.已知直线Ax+By+C=0。
1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程变为Ax+By=0,解得y=-A/B*x,即过原点且斜率为-A/B的直线。
2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都相交。
3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。
4)系数满足什么条件时是x轴;当A=0且B≠0且C=0时,直线是x轴。
高中数学直线方程练习题一.选择题(共12小题)1.已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)2.已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]3.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]4.已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)5.已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.6.已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<28.已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.9.经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=010.过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=011.经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=012.已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)二.填空题(共4小题)13.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=时,l1∥l2,当m=时,l1⊥l2.16.如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于.三.解答题(共11小题)17.已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为.18.已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.19.已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.20.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.21.已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.22.已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x 轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.23.已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.24.已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ 的周长最小.25.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.26.已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.高中数学直线方程练习题参考答案与试题解析一.选择题(共12小题)1.(2016秋•滑县期末)已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)【分析】利用斜率计算公式与斜率的意义即可得出.【解答】解:k PA==2,k PB==﹣8,∵直线l与线段AB有交点,∴l的斜率的范围是k≤﹣8,或k≥2.故选:C.【点评】本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,属于中档题.2.(2016秋•碑林区校级期末)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k (x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]【分析】由直线系方程求出直线l所过定点,由两点求斜率公式求得连接定点与线段AB上点的斜率的最小值和最大值得答案.【解答】解:∵直线l:y=k(x﹣2)+1过点P(2,1),连接P与线段AB上的点A(1,3)时直线l的斜率最小,为,连接P与线段AB上的点B(﹣2,﹣1)时直线l的斜率最大,为.∴k的取值范围是.故选:D.【点评】本题考查了直线的斜率,考查了直线系方程,是基础题.3.(2016秋•雅安期末)已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]【分析】利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【解答】解:直线l:x+my+m=0经过定点P(0,﹣1),k PA==﹣2,k PB==﹣.∵直线l:x+my+m=0与线段AB(含端点)相交,∴≤≤﹣2,∴.故选:B.【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.4.(2016秋•庄河市校级期末)已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PN或k≤k PM,用直线的斜率公式求出k PN和k PM的值,解不等式求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PN或k≤k PM,即k≥=2,或k≤=﹣3,∴k≥2,或k≤﹣3,故选:A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想.5.(2013秋•迎泽区校级月考)已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.【分析】求出边界直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即P(﹣1,2),由斜率公式可得PM的斜率k1==5,直线PN的斜率k2==,当直线l与x轴垂直(红色线)时记为l′,可知当直线介于l′和PM之间时,k≥5,当直线介于l′和PN之间时,k≤﹣,故直线l的斜率k的取值范围是:k≤﹣,或k≥5故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004秋•南通期末)已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪【分析】先求出直线的斜率的取值范围,再根据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的具体范围.【解答】解:设直线l的斜率等于k,直线的倾斜角为α由题意知,k PB==﹣,或k PA==﹣设直线的倾斜角为α,则α∈[0,π),tanα=k,由图知0°≤α≤120°或150°≤α<180°故选:D.【点评】本题考查直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<2【分析】求出PA,PB所在直线的斜率,数形结合得答案.【解答】解:点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1),∵直线PA的斜率是=2,直线PB的斜率是=.如图,∵直线l与线段AB始终有公共点,∴斜率k的取值范围是(,2).故选:A.【点评】本题考查了直线的倾斜角和直线的斜率,考查了数形结合的解题思想方法,是基础题.8.(2017•成都模拟)已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E 为BC的中点.由,可得=2=2,点O是直线AE的中点.根据,B,O,D三点共线,可得点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.即可得出.【解答】解:以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E为BC的中点.∵,∴=2=2,∴点O是直线AE的中点.∵,B,O,D三点共线,∴点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.则OM=EC=BC,=,∴DM=MC,∴AD=AM=AC,∴t=.故选:B.【点评】本题考查了向量共线定理、向量三角形与平行四边形法则、平行线的性质,考查了推理能力与计算能力,属于中档题.9.(2016秋•沙坪坝区校级期中)经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=0【分析】直接利用直线的截距式方程求解即可.【解答】解:因为直线经过(3,0),(0,4)两点,所以所求直线方程为:,即4x+3y﹣12=0.故选D.【点评】本题考查直线截距式方程的求法,考查计算能力.10.(2016秋•平遥县校级期中)过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=0【分析】当直线过原点时,用点斜式求得直线方程.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即2x+y=0.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k=﹣3,故直线方程是x+y+3=0.综上,所求的直线方程为x+y+3=0或2x+y=0,故选:D.【点评】本题考查用待定系数法求直线方程,体现了分类讨论的数学思想,注意当直线过原点时的情况,这是解题的易错点,属于基础题.11.(2015秋•运城期中)经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=0【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或x﹣y=0.故选:D.【点评】此题考查直线的一般方程和分类讨论的数学思想,要注意对截距为0和不为0分类讨论,是一道基础题.12.(2013春•泗县校级月考)已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)【分析】利用三角形三条中线的交点到对边的距离等于到所对顶点的距离的一半,用向量表示即可求得结果.【解答】解:如图所示,;∵△ABC的顶点A(2,3),三条中线交于点G(4,1),设BC边上的中点D(x,y),则=2,∴(4﹣2,1﹣3)=2(x﹣4,y﹣1),即,解得,即所求的坐标为D(5,0);故选:A.【点评】本题考查了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共4小题)13.(2015•益阳校级模拟)已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是﹣3.【分析】根据l1∥l2,列出方程a(a+1)﹣2×3=0,求出a的值,讨论a是否满足l1∥l2即可.【解答】解:∵l1∥l2,∴a(a+1)﹣2×3=0,即a2+a﹣6=0,解得a=﹣3,或a=2;当a=﹣3时,l1为:﹣3x+3y+1=0,l2为:2x﹣2y+1=0,满足l1∥l2;当a=2时,l1为:2x+3y+1=0,l2为:2x+3y+1=0,l1与l2重合;所以,实数a的值是﹣3.故答案为:﹣3.【点评】本题考查了两条直线平行,斜率相等,或者对应系数成比例的应用问题,是基础题目.14.(2015秋•天津校级期末)直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.【点评】本题考查两直线平行的条件,其中5﹣3a≠8是本题的易错点.属于基础题.15.(2015秋•台州期末)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=﹣1时,l1∥l2,当m=时,l1⊥l2.【分析】利用直线平行、垂直的性质求解.【解答】解:∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1∥l2,∴=≠,解得m=﹣1;∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1⊥l2,∴1×(m﹣2)+3m=0,解得m=;故答案为:﹣1,.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.16.(2016春•信阳月考)如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于a=2或a=﹣2.【分析】利用两条直线互相垂直的充要条件,得到关于a的方程可求.【解答】解:设直线(2a+5)x+(a﹣2)y+4=0为直线M;直线(2﹣a)x+(a+3)y﹣1=0为直线N①当直线M斜率不存在时,即直线M的倾斜角为90°,即a﹣2=0,a=2时,直线N的斜率为0,即直线M的倾斜角为0°,故:直线M与直线N互相垂直,所以a=2时两直线互相垂直.②当直线M和N的斜率都存在时,k M=(,k N=要使两直线互相垂直,即让两直线的斜率相乘为﹣1,故:a=﹣2.③当直线N斜率不存在时,显然两直线不垂直.综上所述:a=2或a=﹣2故答案为:a=2或a=﹣2【点评】本题考查两直线垂直的充要条件,若利用斜率之积等于﹣1,应注意斜率不存在的情况.三.解答题(共11小题)17.(2016秋•兴庆区校级期末)已知点A(1,1),B(﹣2,2),直线l过点P (﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为k≤﹣3,或k≥1.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.【点评】本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.18.(2015春•乐清市校级期末)已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.【分析】(1)设对称后的点P(a,b),根据点的对称即可求原点O关于直线l 的对称点P的坐标.(2)根据斜率公式可知,表示的为动点(x,y)到定点(2,1)的两点的斜率的取值范围.【解答】解:(1)设原点O关于直线l的对称点P的坐标为(a,b),则满足,解得a=,b=,故;(2)当x∈[1,3]时,的几何意义为到点C(2,1)的斜率的取值范围.当x=1时,y=,当x=3时,y=,由可得A(1,),B(3,),从而k BC==,k AC==﹣,∴k的范围为(﹣∞,﹣]∪[,+∞)【点评】本试题主要是考查了直线的方程以及点关于直线对称点的坐标的求解和斜率几何意义的灵活运用.19.(2016秋•浦东新区校级月考)已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.【分析】(1)要分为两类来研究,一类是直线L与点A(1,2)和点B(5,﹣1)两点的连线平行,一类是线L过两点A(1,2)和点B(5,﹣1)中点,分类解出直线的方程即可;(2)根据A,B两点与直线l的位置关系以及m与两点间距离5的一半比较,得到满足条件的直线.【解答】解:∵|AB|==5,|AB|>2,∴A与B可能在直线l的同侧,也可能直线l过线段AB中点,①当直线l平行直线AB时:k AB=,可设直线l的方程为y=﹣x+b依题意得:=2,解得:b=或b=,故直线l的方程为:3x+4y﹣1=0或3+4y﹣21=0;②当直线l过线段AB中点时:AB的中点为(3,),可设直线l的方程为y﹣=k(x﹣3)依题意得:=2,解得:k=,故直线l的方程为:x﹣2y﹣=0;(2)A,B两点到直线l的距离都为m(m>0),AB平行的直线,满足题意得一定有2条,经过AB中点的直线,若2m<|AB|,则有2条;若2m=|AB|,则有1条;若2m>|AB|,则有0条,∵|AB|=5,综上:当m<2.5时,有4条直线符合题意;当m=2.5时,有3条直线符合题意;当m>2.5时,有2条直线符合题意.【点评】本题考查点到直线的距离公式,求解本题关键是掌握好点到直线的距离公式与中点坐标公式,对空间想像能力要求较高,考查了对题目条件分析转化的能力20.(2015秋•眉山校级期中)已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.【分析】(1)把直线方程变形得,2x+y+m(y+2)=0,联立方程组,求得方程组的解即为直线l恒过的定点.(2)设点P在直线l上的射影为点M,由题意可得|PM|≤|PQ|,再由两点间的距离公式求得点P到直线l的距离的最大值【解答】(1)证明:由2x+(1+m)y+2m=0,得2x+y+m(y+2)=0,∴直线l恒过直线2x+y=0与直线y+2=0的交点Q,解方程组,得Q(1,﹣2),∴直线l恒过定点,且定点为Q(1,﹣2).(2)解:设点P在直线l上的射影为点M,则|PM|≤|PQ|,当且仅当直线l与PQ垂直时,等号成立,∴点P到直线l的距离的最大值即为线段PQ的长度,等于=2.【点评】本题考查了直线系方程问题,考查了点到直线的距离公式,正确理解题意是关键,是中档题.21.(2010秋•常熟市期中)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.【分析】(Ⅰ)直线方程按m集项,方程恒成立,得到方程组,求出点的坐标,即可证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的定点,写出直线方程,求出△AOB面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+(1﹣2m)y+4﹣3m=0化为(x﹣2y﹣3)m=﹣2x ﹣y﹣4.(3分)得∴直线必过定点(﹣1,﹣2).(6分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=|﹣1|,OB=|k﹣2|,(8分)S△AOB=•OA•OB=|(﹣1)(k﹣2)|=|﹣|..(10分)∵k<0,∴﹣k>0,∴S=[﹣]=[4+(﹣)+(﹣k)]≥4.△AOB当且仅当﹣=﹣k,即k=﹣2时取等号.(13分)∴△AOB的面积最小值是4,(14分)直线的方程为y+2=﹣2(x+1),即y+2x+4=0.(15分)【点评】本题是中档题,考查直线恒过定点的知识,三角形面积的最小值的求法,基本不等式的应用,考查计算能力,转化思想的应用.22.(2016秋•枣阳市校级月考)已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.【分析】(1)联立方程组,求出M的坐标,从而求出P的坐标即可;(2)法一:求出直线的斜率,从而求出直线方程即可;法二:求出直线PN的方程,根据对称性求出直线方程即可;(3)设出与l3平行的直线方程,根据平行线的距离公式求出即可.【解答】解:(1)由得,∴M(﹣2,1).所以点M关于x轴的对称点P的坐标(﹣2,﹣1).…(4分)(2)因为入射角等于反射角,所以∠1=∠2.直线MN的倾斜角为α,则直线l3的斜斜角为180°﹣α.,所以直线l3的斜率.故反射光线所在的直线l3的方程为:.即.…(9分)解法二:因为入射角等于反射角,所以∠1=∠2.根据对称性∠1=∠3,∴∠2=∠3.所以反射光线所在的直线l3的方程就是直线PN的方程.直线PN的方程为:,整理得:.故反射光线所在的直线l3的方程为.…(9分)(3)设与l3平行的直线为,根据两平行线之间的距离公式得:,解得b=3,或,所以与l3为:,或.…(13分)【点评】本题考查了点对称、直线对称问题,考查求直线方程,是一道中档题.23.(2015秋•嘉峪关校级期末)已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.【分析】(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),得到关于m,n的方程组,求得m、n的值,可得P′的坐标;(2)求出交点坐标,在直线y=x﹣2上任取点(2,0),得到对称点坐标,求出直线方程即可.【解答】解:(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),则由,求得m=﹣2,n=7,故P′(﹣2,7).(2)由,解得:交点为,在直线y=x﹣2上任取点(2,0),得到对称点为,所以得到对称的直线方程为7x+y+22=0【点评】本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,属于中档题.24.(2014秋•宜秀区校级期中)已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ的周长最小.【分析】本题实际是求点M关于l的对称点M1,点M关于y轴的对称点M2,求得直线M1M2的方程,与y轴交点为Q,与直线l:x﹣2y+2=0的交点为P.【解答】解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(﹣3,5).据M1及M2两点可得到直线M1M2的方程为x+2y﹣7=0.得交点P(,).令x=0,得到M1M2与y轴的交点Q(0,).解方程组x+2y﹣7=0,x﹣2y+2=0,故点P(,)、Q(0,)即为所求.【点评】本题考查直线关于直线对称的问题,三角形的几何性质,是中档题.25.(2010•广东模拟)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.【分析】法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l 与l1夹角的关系求解.法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1﹣y2,x1﹣x2的值确定直线l的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,﹣4)或B′(3,﹣9),截得的线段AB的长|AB|=|﹣4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由|AB|=5.得(﹣)2+(﹣+)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d==,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ==,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1﹣x2)+(y1﹣y2)=5.①又(x1﹣x2)2+(y1﹣y2)2=25.②联立①、②可得或由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.【点评】本题是中档题,考查直线与直线的位置关系,直线与直线所成的角,直线的点斜式方程,斜率是否存在是容易出错的地方,注意本题的三种方法.26.(2009秋•重庆期末)已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.【分析】设出直线l′的斜率为k′,通过直线的夹角公式求出直线的斜率,然后求出直线的方程.【解答】解:设直线l′的斜率为k′,则,…(7分),…(10分)直线l′:7x﹣3y﹣11=0和3x+7y﹣13=0;…(13分)【点评】本题是基础题,考查直线方程的求法,夹角公式的应用,注意夹角公式与到角公式的区别,考查计算能力.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.【分析】(1)依据条件求出AC的斜率,可得点C的坐标,即得边长BC,点A 的横坐标就是三角形的高,代入三角形的面积公式进行计算.(2)利用对称的特点,待定系数法求出原点O关于直线AB的对称点D的坐标,由题意可得=2,把相关向量的坐标代入,利用两个向量相等的条件求出点P的坐标,再把点P的坐标代入代入直线l的方程,求出a,即得直线l的斜率,由斜率求直线l的倾斜角.【解答】解:(1)∵点C在线段OB上,且∠ACB=,∴∠ACO=,故AC 的倾斜角为,故AC的斜率为﹣1,设点C(0,b),由﹣1=得b=2,即点C(0,2),BC=4,点A到BC的距离为2,故△ABC的面积为×4×2=4.(2)设D(m,n),点P(c,d),AB的方程+=1,即3x+y﹣6=0,由得m=,n=,故D(,),=(﹣c,﹣d),=(﹣,),由题意知,=2,∴﹣c=﹣,﹣d=,解得c=,d=﹣,故P(,﹣),把P(,﹣)代入直线l:ax+10y+84﹣108=0,得a•+10•+84﹣108=0,即得a=10.∴直线l的斜率为=﹣,故直线l的倾斜角为120°.【点评】本题考查直线的倾斜角的定义,倾斜角与斜率的关系;点关于直线的对称点的坐标求法,两个向量相等时向量坐标间的关系.。
直线的方程〔一般式〕同步练习一、选择题:1. 二元一次方程 Ax+By+C=0 表示为直线方程 ,以下不正确表达是〔〕A .实数 A 、B 必须不全为零B. A2 +B2 0 C.所有的直线均可用Ax+By+C=0 (A 2+B 2 0)表示D .确定直线方程 Ax+By+C=0 须要三个点坐标待定A,B,C 三个变量2. 假设 p r<0, q r<0,那么直线px+qy+r=0 不经过〔〕A. 第一象限B.第二象限C.第三象限D.第四象限3. 以下结论正确的选项是〔〕A . Ax+By+C=0 有横截距B .直线 Ax+By+C=0 有纵截距C.直线 Ax+By+C=0 既有横截距又有纵截距D.以上都不正确4. 假设直线 ax+by+c=0 在第一、二、三象限,那么〔〕A.ab>0 , bc>0B. ab>0, bc<0C. ab<0, bc>0D. ab<0, bc<05. 和直线3x-4y+5=0 关于 x 轴对称的直线方程是〔〕A.3x+4y-5=0B. 3x+4y+5=0C. -3x+4y-5=0D. -3x+4y+5=06.过点 M 〔 2, 1〕的直线l与 x 轴, y 轴分别相交于 P, Q 两点,且 |MP|=|MQ|, 那么直线l的方程是〔〕A . x-2y+3=0B .2x-y-3=0C. 2x+y-5=0 D . x+2y-4=07. m R,直线 (m-1)x-y+2m+1=0 过定点〔〕1 〕 B .〔 -2, 0〕C.〔 2, 3〕D.〔 -2, 3〕A .〔1,28. 假设 (m2 -4)x+(m 2-4m+3)y+1=0 表示直线,那么〔〕A . m 2 且 m 1, m 3B .m2C. m 1,且 m 3 D . m 可取任意实数二 .填充题:9.假设方程Ax+By+C=0 表示与两条坐标轴都相交的直线,那么A,B,C 应满足条件 ___________.10.假设直线 ax-y+2=0 与直线 3x-y+b=0 关于直线y=x 对称,那么 a= ______________, b=___________. 11. 设点 P(x 0, y 0 ) 在直线 Ax+ By+ C=0 上,那么这条直线的方程可以写成___________.12.假设直线 (2t-3)x+y+6=0 ,不经过第一象限,那么t 的取值范围是 __________ .三 .解答题:13. 过 P〔 -2, 2〕点引一条直线l ,使它与两坐标轴围成的三角形面积等于4〔面积单位〕,求此直线l的方程。
1.已知点
(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x
C .52=+y x
D .52=-y x
2.若
1
(2,3),(3,2),(,)2
A B C m --三点共线 则m 的值为(
)
A.21 B.21
- C.2- D.2
3.直线x a y
b
221-=在y 轴上的截距是( )
A .
b
B .2b -
C .b 2
D .±b
4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )
A .(0,0)
B .(0,1)
C .(3,1)
D .(2,1)
5.直线cos sin 0x y a θ
θ++=与sin cos 0x y b θθ-+=的位置关系是( )
A .平行
B .垂直
C .斜交
D .与,,a b θ的值有关 6.两直线330x y +
-=与610x my ++=平行,则它们之间的距离为( )
A .4
B
C
D 7.已知点
(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的
斜率k 的取值范围是( )
A .3
4
k ≥
B .324k ≤≤
C .324
k k ≥≤或 D .2k ≤
二、填空题 1.方程
1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y
x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y
x 上,则2
2b a +的最小值为
4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 .
三、解答题 1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
2.一直线被两直线0653:,064:21
=--=++y x l y x l 截得线段的中点是P 点,当P 点
分别为(0,0),(0,1)时,求此直线方程。
2.
把函数
()y f x =在x a =及x b =之间的一段图象近似地看作直线,设
a c
b ≤≤,
证明:
()f c 的近似值是:()()()[]f a c a
b a
f b f a +
---.
4.直线
3
1y x =-
+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1
(,)2
P m 使得△ABP 和△ABC 的面积相等,
求m 的值。
一、选择题
1.如果直线l 沿x 轴负方向平移3个单位再沿
y 轴正方向平移1个单位后,
又回到原来的位置,那么直线l 的斜率是( ) A .-
13
B .3-
C .
13
D .3
2.若
()()P a b Q c d ,、,都在直线y mx k =+上,则PQ
用a c m 、、表示为( )
A .()a
c m ++12
B .()m
a c - C .
a c m
-+12
D .
a c m -+12
3.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )
A .
23 B .32 C .32- D . 23- 4.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )
A .5
B .4
C .10
D .8
5.下列说法的正确的是 ( )
A .经过定点()P x y 00
,的直线都可以用方程()y y
k x x -=-0
0表示
B .经过定点
()b A ,0的直线都可以用方程y kx b =+表示
C .不经过原点的直线都可以用方程x a y
b
+=1表示 D .经过任意两个不同的点()()222111
y x P y x P ,、,的直线都可以用方程
()()()()y y x x x x y y --=--121121表示
6.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )
A .360x y +
-= B .320x y -+=
C .320x y +-=
D .320x y -+=
二、填空题 1.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.
2.直线10x y -
+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,
则直线l 的方程是 .
3.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 4.若方程02222
=++-y x my x 表示两条直线,则m 的取值是 .
5.当2
1
0<
<
k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限.
三、解答题
1.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么? 2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程
3.已知点
(1,1)A ,(2,2)B ,点P 在直线x y 2
1=
上,求2
2PB PA +取得 最小值时P 点的坐标。
4.求函数
()f x =的最小值。