工科数学分析下考试题带答案
- 格式:doc
- 大小:309.50 KB
- 文档页数:9
数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。
3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。
4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。
5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)xy yx f x y f x y =。
( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。
( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。
( ) 三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AOI e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分22()Vx y dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。
、计算第一型曲面积分 SI dS =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。
()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。
f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。
5、若函数(在有界闭区域D上连续,则函数(在D上可积。
()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。
其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。
第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。
4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。
第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。
得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。
09级《工科数学分析》(下)试题A 参考答案一.填空题(每小题4分,总12分。
将答案按题号写在答题纸上,不写解题过程)1、222,0y C Cx C =+≥的常数;2、3 ;3、0 ,34-. 二.选择题(每小题4分,总12分。
每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代号按题号写在答题纸上)1、C;2、B ;3、B.三(7分)、解:sin ,xz f e y x ∂'=∂2222sin sin ;x x z f e y f e y x∂'''=+∂ 同理2222sin cos ;x x zf ey f e y y∂'''=-+∂结合已知得0.f f ''-=解这个常微分方程得 1212(),,t t f t C e C e C C -=+为任意常数。
四(8分)、解:设32(18)F x y z x y z λ=+++-,令2233230200180x y z F x y z F x yz F x y F x y z λλλλ⎧=+=⎪=+=⎪⎨=+=⎪⎪=++-=⎩,解出9,6,3x y z ===由题意知最大产出必存在,所以9,6,3x y z ===为所求。
五(7分)、解:令23zF z e xy =-+-,则有()2|4,x P F P y '==()2|2,y P F P x '==()(1)|0.z z P F P e '=-=故 切平面方程为4(1)2(2)0(0)0x y z -+-+⋅-= 即 240x y +-= 法线方程120420x y z ---==即 120.210x y z ---== 六(8分)、解:依题意令密度函数为k ρ=为待定常数。
由球体的对称性只需求其对z 轴的转动惯量22()d z I x y V ρΩ=+⎰⎰⎰即可。
又由题设m dV ρΩ=⎰⎰⎰。
工科数学分析试题卷及答案考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 80 %一、填空题(每题2分,共20分)1.---→xx x x sin 11lim 30 3-2.若⎪⎩⎪⎨⎧=≠-+=0,0,13sin )(2x a x xe x xf ax 在0=x 处连续,则a 3- 3.设01lim 23=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,则 =a 1 , =b 0 4.用《δε-》语言叙述函数极限R U ⊂∈=→)(,)(lim 0x x A x f x x 的定义: εδδε)()()(:000A x f x x ∈→∈∀>∍>∀U 5.若当)1(,023+++-→cx bx ax e x x是3x 的高阶无穷小,则=a61=b21=c 1 6.设N ∈=--→n x x x f x f nx x ,1)()()(lim2000,则在0x x =处函数)(x f 取得何种极值? 答: 极小值姓名: 班级: 学号:遵守 考 试 纪 律 注 意 行 为 规 范7.设x x y +=,则dydx x)211(+⋅8.设x x y sin =,则=dy dx xxx x xx)sin ln (cos sin +9.⎰=+dx x x 21arctan C x +2arctan 21 10.⎰=+dx ee xx12 C e e x x ++-)1l n ( 二、选择题:(每题2分,共20分)1.设0,2)1()1l n (2s i n2t a n li m 2222≠+=-+-+-→c a e d x c xb x a x x ,则必有( D )(A )d b 4=;(B )c a 4-=;(C )d b 4-=;(D )c a 2-= 2.设9320:0<<>k x ,则方程112=+x kx 的根的个数为( B )(A )1 ;(B ) 2 ; (C ) 3 ; (D )03.设)(x f 连续,且0)0(>'f ,则存在0>δ使得( A )(A ))(x f 在),0(δ内单增; (B )对),0(δ∈∀x 有)0()(f x f >; (C )对)0,(δ-∈∀有)0()(f x f >; (D ))(x f 在)0,(δ-内单减。
河南理工大学 2010-2011 学年第 2 学期《工科数学分析》(下)试卷(A 卷)一、填空题(共28分,每小题4分)1.函数xyz z xy u -+=32在点()2,1,1处沿方向l (其方向角分别是00060,45,60)的方向导数 是 9/2 .2.设0 < p < 1,计算级数()∑∞=--1121k k p p k =)20(,22<<-p pp3. 函数())sin(,22y x y x f +=在点)0,0(的泰勒公式(到二阶为止)为()()()2222,y x y x y x f +=++=ρρο4.函数()xx f 3=的幂级数展开式为∑∞=0!3ln n nn x n .5.设()⎰-=22x xxy dy ex F ,则=')(x F ()⎰----+-223522x xxy x x dy ey ex e6.()⎰C ds x =()15532-,其中(C )为抛物线x y =从点()0,0到点()1,1的一段弧。
7.微分方程()02='+''y y ,满足初始条件1,000='===x x y y 的特解为1ln y +=x 。
二、解答题(共50分,每小题10分)1、 设()v u ,Φ具有连续偏导数,函数()y x z ,由隐方程()bz cy az cx --Φ,=0确定,求yz b x z a∂∂+∂∂。
解:将隐方程两边全微分可得:()()()()()0,2121=-⋅Φ'+-⋅Φ'=-⋅Φ'+-⋅Φ'=--Φbdz cdy adz cdx bz cy d az cx d bz cy az cx d ………………………………………………3分 整理得:dy b a c dx b a c dz 212211Φ'+Φ'Φ'+Φ'+Φ'Φ'=……………………………………6分所以,212211,Φ'+Φ'Φ'=∂∂Φ'+Φ'Φ'=∂∂b a c y zb ac x z …………………………………………8分 y zb x z a ∂∂+∂∂=c b a c b b a c a =Φ'+Φ'Φ'+Φ'+Φ'Φ'212211,………………………………………10分2、 判定正项级数∑⎰∞=+1141n n dx x x的敛散性。
工科数学分析(下)期末考试模拟试题姓名:___________得分: _________一、填空题(每小题3分,满分18分)1、设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为_________.2.,,,-__________.222L L xdy ydx L x y=⎰+Ñ设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分1,()cc x y x y ds +=+=⎰Ñ3.设曲线为则曲线积分 ___________4、微分方程2(3xy y)dx 0x dy +-=的通解为___________5、2sin(xy)(y)______________.y yF dx x=⎰的导数为 6、{,01,0x (x),2x e x f x ππππ--≤<≤≤==则其以为周期的傅里叶级数在点处收敛于_____________.二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim0→→y x ()xy yx y x sin 11232+-(2) 220)(lim 22y x x y x y +→→2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求xvx u ∂∂⋅∂∂(中间为乘号).3..222V z x y z V +=设是由所围成的立体,求的体积.三、判断积数收敛性(每小题4分,共8分)1. ∑∞=1!.2n n n nn2.∑∞=-1!2)1(2n n nn四、(本小题8分)求向量场2(23)()(2)x z xz y y z =+-+++A i j k u r r r u r 穿过球面∑: 222(3)(1)(2)9x y z -+++-=流向外侧的通量; 五、(本小题7分)2(1sin )cos ,(0,1)(0,1)y y lx e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。
工科数学分析(下)期末考试模拟试题
:___________ 得分: _________
一、填空题(每小题3分,满分18分)
1、设()xz y x z y x f ++=2
,,,则()z y x f ,,在()1,0,1沿方向→
→→→+-=k j i l 22的方向导数为
_________.
2.,,,-__________.
22
2L L xdy ydx L x y =⎰+设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分
1,()c
c x y x y ds +=+=⎰3.设曲线为则曲线积分___________
4、微分方程2
(3xy y)dx 0x dy +-=的通解为___________
5、2
sin(xy)
(y)______________.y y
F dx x
=
⎰
的导数为 6、
{
,01,0x (x),2x e x f x ππ
ππ--≤<≤≤=
=则其以为周期的傅里叶级数在点处收敛于
_____________.
二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim
0→→y x ()
xy y
x y x sin 1
12
3
2+-
(2) 2
20
)
(lim 22
0y x x y x y +→→
2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求x
v
x u ∂∂⋅∂∂(中间为乘号).
3..222V z x y z V +=设是由所围成的立体,求的体积.
三、判断积数收敛性(每小题4分,共8分)
1.∑∞
=1!.2n n n n n
2.∑∞
=-1
!2)1(2
n n n
n
四、(本小题8分)求向量场2
(23)()(2)x z xz y y z =+-+++A i j k 穿过球面∑:222(3)(1)(2)9x y z -+++-=流向外侧的通量;
五、(本小题7分)
2(1sin )cos ,(0,1)
(0,1)y y l
x e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。
六、(本小题8分)将函数2
31)(2
++=x x x f 展开成4+x 的幂级数.
(0)0,'()1(sin ()),()
0x
t f f x e t f t dt f x ==++-⎰七、(本小题9分)已知求
22
34
23(,)x y x dx dy u x y y y -+八、(本小题7分)验证是某个函数的全微分,并求出这个函数。
(y x,y z)0,G(xy,)0(y),z z(y),
z
F x x y --====九、(本小题7分)设方程组确定隐函数
其中F ,G 都具有一阶连续偏导数,求dx
dy
十、(本小题10分)求旋转椭球面14
2
2
2
=++z y x 在第一卦限部分上的点,使该点处的切平面在三个坐标轴上的截距平方和最小.
工科数学分析(下)期末考试题答案
一、1. 3
5
3. 4. x
e Cx y 1
3
-
-= 5.
32
3sin 2sin y y y -
6.1+2e π
二、1.(1)1
2-
(2)
|)ln(|4)(|)ln(|0222
222
2
2
2y x y x y x y x ++≤+≤,
又 0ln 4lim )ln(4
)(lim 2
0222220
0==+++→→→t t
y x y x t y x ,
∴1)
(lim )22ln(22)
0,0(),(lim 2
222
==++→→→y x y x y x y x y x e
y x 。
2.()()'211g y yf f x
v
x u ++=∂∂⋅∂∂
三、1.解:11
11
)1(2lim )1()!1(2!
.2lim lim
-∞
→--∞→-∞→-=--=n n n n n n n n n
n n n n n n n u u 12)11(lim 21.<=-+=---∞→e n n n n n
由比值法,级数∑∞
=1!.2n n n n
n 收敛 2. 解:12lim )!
1(2
!
2lim lim 12)1(122
>∞==-=-∞→-∞→-∞→n n n u u n n n n n n n n
由比值法,级数∑∞
=-1
!2)1(2
n n n
n 发散
四、108π(提示:高斯公式的应用)
五、103
六、解:设4+=x t 则4-=t x
1
1
21341)24(1)(---=+--+-=
t t t t x f
t t -+--
=112
121∑∑∞
=∞=+-=002)2(21n n n t t )2(<t 所以231)(2++=x x x f =∑∑∞=∞=+-=0
02)2(21n n n t t
七、解:
,即)(sin )(x f x e x f x -+=''x e x f x f x
sin )()(+=+'' 特征方程:.,012i r r ±==+
齐次方程通解为x C x C y sin cos 21+= 再考虑方程①的特解,设特解为
)sin cos (*x C x B x Ae y x ++=
代入方程①定出系数 0
,21
,21=-==C B A
于是
.cos 21
21*x x e y x -=
式的通解.
cos 21
21sin cos 21x x e x C x C y x -++= 将1
21
1)0(',0)0(21=,=-代入上式,得C C f f ==。
所求 .
cos 21
21cos 21sin )(x x e x x x f x -+-=
231
(,)1
x u x y y y =-+八、
1221221221111
[(1)]/[]
dx z FG xF G F G FG yF G dy y y y y =++--九、
十、设所取的点为()z y x M ,,,在点M 处切平面的法向量为⎭
⎬⎫⎩⎨⎧
2,2,2z y x ,切平面方程为
()()()02
22=-+
-+-z Z z
y Y y x X x ,即 14
=++Z z yY xX (考虑到1422
2=++z y x ) 此平面在三个坐标轴上的截距分别为:
x 1,y 1,z
4 问题即为求()z y x ,,,使得函数()2221611,,z y x z y x F ++=在条件⎪⎩
⎪⎨⎧>>>=+
+0
,0,014
222z y x z y x 下求极值 令 ()⎪⎪⎭
⎫ ⎝⎛-+++++=141611,,,22
2222z y x z y x z y x G λλ 则 ⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨
⎧=-++==+-==+-==+-
=0
140220
22
022
22
2'
2'2'
2'
z y x G z z
G y y G x x G z y x λλλλ 解得 λ1822
2=
==z y x 代入约束条件得 14181812
=⎪⎭⎫
⎝
⎛++z 由 0,0,0>>>z y x 知 21=
=y x ,2=z , ∴所求点为 ⎪⎭⎫
⎝⎛2,21,21M。