2015-2016年最新审定苏教版八年级数学上册《6.6一次函数、一元一次方程》(优秀课件)
- 格式:ppt
- 大小:531.50 KB
- 文档页数:12
八年级数学上6.6一次函数、一元一次方程和一元一次不等
式课文练习(苏科版附答案)
一元一次方程与一元一次不等式测验
班级姓名学号成绩____________
一、填空题(每题3分,共30分)
1 =
2方程的解是方程的解是
3若x=-3是方程2(x-a)=9的解,则a=________。
4 5与x的差的比x的2倍大1的方程是__________
5若5(2x-4) 7(2x-4),则x的取值范围是 ________________。
6当a -1时,不等式(a+1)x a+1的解集是_____________。
7a的2倍与-5的和是非负数,用不等式表示为_________________。
8三个连续偶数,若中间一个为x,则最大的那个偶数为。
9周长为24的矩形(即长方形),若宽为a,则长可表示为。
10若a 2, 则│a-2│-│3-a│的值是 __________。
二、选择题(每题3分,共24分)
11 (3,那么x-=0; D、如果x=,那么x=
14下列解方程去分母正确的是( )
A由 ,得2x-1=3-3x; B由 ,得2(x-2)-3x-2=-4
c由 ,得3+3=2-3+1-6; D由 ,得12x-1=5+5 B.由-
c.由x ,得xz z D.由xz z ,得x
16关于x的不等式2x-a≤-1的解集如图所示,
则a的取值是()
A0 B-3 c-2 D-1
17某商品连续两次9折降价销售,降价后每商品售价为a元,则该商品每原价为( ) A092a B112a c D
18 (4,4;2-4,;3 ;4 ;5 ;6 ;7 ;8 ;9 ;10-1。
苏科版数学八年级上册教学设计《6-6一次函数、一元一次方程和一元一次不等式》一. 教材分析《苏科版数学八年级上册》第六章第六节主要介绍了“一次函数、一元一次方程和一元一次不等式”。
这部分内容是学生学习数学的基础知识,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
通过本节课的学习,学生需要掌握一次函数的定义、性质,以及一元一次方程和一元一次不等式的解法。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、方程等基础知识,对于解决实际问题有一定的能力。
但部分学生在理解一次函数、一元一次方程和一元一次不等式之间的关系方面可能存在困难。
因此,在教学过程中,需要关注这部分学生的学习需求,通过实例讲解、小组讨论等方式,帮助他们理解和掌握知识点。
三. 教学目标1.知识与技能:理解一次函数的定义和性质,掌握一元一次方程和一元一次不等式的解法。
2.过程与方法:通过实例分析,培养学生解决实际问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,增强学生面对困难的自信心。
四. 教学重难点1.一次函数的定义和性质。
2.一元一次方程和一元一次不等式的解法。
3.一次函数、一元一次方程和一元一次不等式之间的关系。
五. 教学方法1.实例分析:通过具体例子,让学生了解一次函数、一元一次方程和一元一次不等式的应用,提高学生的学习兴趣。
2.小组讨论:分组讨论,培养学生的团队协作能力,提高学生的逻辑思维能力。
3.问题引导:引导学生提出问题,培养学生解决问题的能力。
4.板书设计:清晰的板书,帮助学生理解和记忆知识点。
六. 教学准备1.教学PPT:制作精美的PPT,展示一次函数、一元一次方程和一元一次不等式的相关知识点。
2.实例素材:准备一些实际问题,用于引导学生运用一次函数、一元一次方程和一元一次不等式解决问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学知识解决问题,从而引出一次函数、一元一次方程和一元一次不等式的概念。
6.6 一次函数、一元一次方程和一元一次不等式一.选择题(共8小题)1.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x<C.x>3D.x<32.如图所示,直线l1:y=x+6与直线l2:y=﹣x﹣2交于点P(﹣2,3),不等式x+6>﹣x﹣2的解集是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2B.x>3C.x<﹣2或x>3D.﹣2<x<34.如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣15.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0B.x>0C.x<1D.x>16.已知一次函数y=kx+b中x取不同值时,y对应的值列表如下:x…﹣m2﹣112…y…﹣20n2+1…则不等式kx+b>0(其中k,b,m,n为常数)的解集为()A.x>1B.x>2C.x<1D.无法确定7.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.8.已知一次函数y1=kx+1(k<0)的图象与正比例函数y2=mx(m>0)的图象交于点(),则不等式的解集为()A.B.C.D.0<x<2二.填空题(共6小题)9.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.10.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.11.如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.12.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为.13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.三.解答题(共6小题)15.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.16.如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);17.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=那么称点T是点A,B的融合点.例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.18.在平面直角坐标系xOy中,已知A(0,2),动点P在y=x的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.19.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;20.【感知】如图①,在平面直角坐标系中,点C的坐标为(0,0.5),点A的坐标为(1,0),将线段CA绕着点C按逆时针方向旋转90°至线段CB,过点B作BM⊥y轴,垂足为点M,易知△AOC≌△CMB,得到点B的坐标为(0.5,1.5).【探究】如图②,在平面直角坐标系中,点A的坐标为(1,0),点C的坐标为(0,m)(m>0),将线段CA绕着点C按逆时针方向旋转90°至线段CB(1)求点B的坐标.(用含m的代数式表示)(2)直接写出点B所在直线对应的函数表达式.【拓展】如图③,在平面直角坐标系中,点A的坐标为(1,0),点C在y轴上,将线段CA绕着点C按逆时针方向旋转90°至线段CB,连结BO、BA,则BO+BA的最小值为.答案与解析一.选择题(共8小题)1.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x<C.x>3D.x<3【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B 的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=,∴点B(,0).观察函数图象,发现:当x<时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<.故选:B.【点评】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.2.如图所示,直线l1:y=x+6与直线l2:y=﹣x﹣2交于点P(﹣2,3),不等式x+6>﹣x﹣2的解集是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】利用函数图象写出直线l1:y=x+6与在直线l2:y=﹣x﹣2上方所对应的自变量的范围即可.【解答】解:当x>﹣2时,x+6>﹣x﹣2,所以不等式x+6>﹣x﹣2的解集是x>﹣2.故选:A.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2B.x>3C.x<﹣2或x>3D.﹣2<x<3【分析】根据两条直线与x轴的交点坐标及直线的位置确定不等式组的解集即可.【解答】解:∵直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),∴解集为﹣2<x<3,故选:D.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是能够结合图象作出判断,难度不大.4.如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣1【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.5.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0B.x>0C.x<1D.x>1【分析】直接利用已知点画出函数图象,利用图象得出答案.【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.【点评】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.6.已知一次函数y=kx+b中x取不同值时,y对应的值列表如下:x…﹣m2﹣112…y…﹣20n2+1…则不等式kx+b>0(其中k,b,m,n为常数)的解集为()A.x>1B.x>2C.x<1D.无法确定【分析】首先根据函数的值确定一次函数的增减性,然后根据函数经过点(1,0),即可进行判断.【解答】解:∵﹣m2﹣1<2,﹣2<n2+1,∴函数y=kx+b中y随x的增大而增大,又∵函数经过点(1,0),∴kx+b>0(其中k,b,m,n为常数)的解集为:x>1.故选:A.【点评】本题考查一次函数的性质,解题时应认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.7.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.【分析】根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【解答】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.故选:A.【点评】本题考查了一次函数综合题.解题时,将一次函数、等边三角形的性质及解直角三角形结合在一起,从而归纳出边长的规律.8.已知一次函数y1=kx+1(k<0)的图象与正比例函数y2=mx(m>0)的图象交于点(),则不等式的解集为()A.B.C.D.0<x<2【分析】将点()代入y1=kx+1,得出m=k+1,即m=k+2,再把m=k+2代入不等式组,得到,解此不等式组即可.【解答】解:∵一次函数y1=kx+1(k<0)的图象过点(),∴m=k+1,∴m=k+2,∴不等式组即为,解得<x<2.故选:A.【点评】本题考查了一次函数与一元一次不等式,一次函数图象上点的坐标特征,一元一次不等式组的解法.得出m=k+2是解题的关键.二.填空题(共6小题)9.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为x<2.【分析】直接利用图象把(﹣6,0)代入,进而得出k,b之间的关系,再利用一元一次不等式解法得出答案.【解答】解:∵图象过(﹣6,0),则0=﹣6k+b,则b=6k,故3kx﹣b=3kx﹣6k>0,∵k<0,∴x﹣2<0,解得:x<2.故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式,正确得出k与b之间的关系是解题关键.11.如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为﹣3<x<0.【分析】先把不等式x(kx+b)<0化为或,然后利用函数图象分别解两个不等式组.【解答】解:不等式x(kx+b)<0化为或,利用函数图象得为无解,的解集为﹣3<x<0,所以不等式x(kx+b)<0的解集为﹣3<x<0.故答案为﹣3<x<0.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;【点评】本题考查一次函数的交点于一元一次不等式;将一元一次不等式的解转化为一次函数图象的关系是解题的关键.13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y =﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.三.解答题(共6小题)15.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.【分析】(1)与m轴相交于点P(,0),可知OB=,OA=1;(2)设AB的解析式y=kx+b,将点B(0,),A(1,0)代入即可;(3)在移动过程中OB=﹣m,则OA=tan30°×OB=(﹣m)=1﹣m,所以s=×(﹣m)×(1﹣m)=﹣m+,(0≤m≤);当m=0时,s=,即可求Q(0,).【解答】解:(1)∵与m轴相交于点P(,0),∴OB=,∵∠ABC=30°,∴OA=1,∴S==;(2)∵B(0,),A(1,0),设AB的解析式y=kx+b,∴,∴,∴y=﹣x+;(3)在移动过程中OB=﹣m,则OA=tan30°×OB=(﹣m)=1﹣m,∴s=×(﹣m)×(1﹣m)=﹣m+,(0≤m≤)当m=0时,s=,∴Q(0,).【点评】本题考查直角三角形平移,一次函数的性质;能够通过函数图象得到B(0,)是解题的关键.16.如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);【解答】解:(1)∵y=x+4,∴A(﹣3,0)B(0,4),∵点C与点A关于y轴对称,∴C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,,解得k=﹣,b=4,∴直线BC的解析式y=﹣;(2)如图1,过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.∵OA=OC=3,OB=4,∴AC=6,AB=BC=5,∴sin∠ACD=,即,∴AD=,∵点P为直线y=x+4上,∴设P(t,t+4),∴PG=﹣t,cos∠BPG=cos∠BAO,即,∴,∵sin∠ABC=,∴PN==,∵AP=BQ,∴BQ=5+,∴S=,即S=;17.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=那么称点T是点A,B的融合点.例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.【分析】(1)x=(﹣1+7)=2,y=(5+7)=4,即可求解;(2)①由题意得:x=(t+3),y=(2t+3),即可求解;②分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.【解答】解:(1)x=(﹣1+7)=2,y=(5+7)=4,故点C是点A、B的融合点;(2)①由题意得:x=(t+3),y=(2t+3),则t=3x﹣3,则y=(6x﹣6+3)=2x﹣1;②当∠DHT=90°时,如图1所示,点E(t,2t+3),则T(t,2t﹣1),则点D(3,0),由点T是点D,E的融合点得:t=,2t﹣2=解得:t=,即点E(,6);当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);当∠HTD=90°时,由于H点为定点,则∠HTD不可能等于90°.故点E(,6)或(6,15).【点评】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.18.在平面直角坐标系xOy中,已知A(0,2),动点P在y=x的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.【分析】(1)作AH⊥OP,由y=x知:∠HOQ=30°,∠HOA=60°,由三角函数得出AH的值即为AP的最小值;(2)分点P在第三象限、点P在第一象限的线段OH上、点P在第一象限的线段OH的延长线上三种情况,用四点共圆求解;(3)分OQ=PQ、PO=OQ、PQ=OP三种情况,分别求解即可.【解答】解:(1)如图1,作AH⊥OP,则AP≥AH,∵点P在y=x的图象上∴∠HOQ=30°,∠HOA=60°∵A(0,2)∴AH=AO•sin60°=∴AP≥(2)①当点P在第三象限时,如图2,由∠QP A=∠QOA=90°,可得Q、P、O、A四点共圆,∴∠P AQ=∠POQ=30°②当点P在第一象限的线段OH上时,如图3由∠QP A=∠QOA=90°可得Q、P、O、A四点共圆∴∠P AQ+∠POQ=180°,又此时∠POQ=150°∴∠P AQ=180°﹣∠POQ=30°③当点P在第一象限的线段OH的延长线上时,由∠QP A=∠QOA=90°可得∠APQ+∠AOQ=180°∴Q、P、O、A四点共圆∴∠P AQ=∠POQ=30°(3)设P(m,m),则l AP:y=∵PQ⊥AP∴k PQ=∴l PQ:y=(x﹣m)+m∴Q(,0)∴OP2=m2,OQ2=m2﹣m+PQ2=m2﹣m+①OP=OQ时,则m2=m2﹣m+整理得:m2﹣4m+3=0解得m=2±3∴Q1(2+4,0),Q2(2﹣4,0)②当PO=PQ时,则m2=m2﹣m+整理得:2m2+解得:m=或m=﹣当m=时,Q点与O重合,舍去,∴m=﹣∴Q3(﹣2,0)③当QO=QP时,则整理得:m2﹣解得:m=∴Q4()∴点Q的坐标为(2+4,0)或(2﹣4,0)或(﹣2,0)或().【点评】本题为一次函数综合题,涉及到四点共圆、等腰三角形性质,其中(3),要注意分类求解,避免遗漏.19.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为(11,3).【分析】(1)利用待定系数法求出直线表达式;(2)先确定出直线l的解析式,最后用三角形的面积公式建立方程求解即可得出结论;(3)先判断出△ABO∽△EBC,得出,再判断出△BOC∽△CFE,即可求出CF,EF即可得出结论.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,∴,∴,∴一次函数y=kx+b的表达式为y=x+6;(2)如图,记直线l与y轴的交点为D,∵BC⊥l,∴∠BCD=90°=∠BOC,∴∠OBC+∠OCB=∠OCD+∠OCB,∴∠OBC=∠OCD,∵∠BOC=∠COD,∴△OBC∽△OCD,∴,∵B(0,6),C(2,0),∴OB=6,OC=2,∴,∴OD=,∴D(0,﹣),∵C(2,0),∴直线l的解析式为y=x﹣,设E(t,t﹣),∵A(﹣9,0),C(2,0),∴S△ACE=AC×y E=×11×(t﹣)=11,∴t=8,∴E(8,2);20.【感知】如图①,在平面直角坐标系中,点C的坐标为(0,0.5),点A的坐标为(1,0),将线段CA绕着点C按逆时针方向旋转90°至线段CB,过点B作BM⊥y轴,垂足为点M,易知△AOC≌△CMB,得到点B的坐标为(0.5,1.5).【探究】如图②,在平面直角坐标系中,点A的坐标为(1,0),点C的坐标为(0,m)(m>0),将线段CA绕着点C按逆时针方向旋转90°至线段CB(1)求点B的坐标.(用含m的代数式表示)(2)直接写出点B所在直线对应的函数表达式.【拓展】如图③,在平面直角坐标系中,点A的坐标为(1,0),点C在y轴上,将线段CA绕着点C按逆时针方向旋转90°至线段CB,连结BO、BA,则BO+BA的最小值为.【分析】【探究】(1)证明△AOC≌△CMB(AAS),即可求解;(2)点B的坐标为(m,m+1),即可求解;【拓展】BO+BA=+,BO+BA的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,即可求解.【解答】解:【探究】(1)过点B作BM⊥y轴,垂足为点M,∴∠BMC=90°,∴∠MCB+∠B=90°,∵线段CA绕着点C按逆时针方向旋转90°至线段CB,∴∠BAC=90°,CB=CA,∴∠MCB+∠ACO=90°,∴∠B=∠ACO,∵∠AOC=90°,∴△AOC≌△CMB(AAS),∴MC=OA,MB=OC,∵点C(0,m),点A(1,0),∴点B的坐标为(m,m+1);(2)点B的坐标为(m,m+1),则点B所在的直线为:y=x+1;【拓展】如图作BH⊥OH于H.设点C的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则:BO+BA=+,BO+BA的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,相当于在直线y=x上寻找一点P(m,m),使得点P到M(0,﹣1),到N(1,﹣1)的距离和最小,作M关于直线y=x的对称点M′(﹣1,0),易知PM+PN=PM′+PN≥NM′,M′N==,故:BO+BA的最小值为,故答案为.【点评】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中【拓展】,将BO+BA的值转化点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,是本题的新颖点。
第6章 一次函数知识结构:一次函数1.函数(1)概念:表示法-----列表法、图像法、函数表达式法 (2)常量、变量--------自变量的取值范围 (3)函数值 (4)函数的图像(1)正比例函数 2.一次函数的概念(2)用待定系数法求一次函数的表达式3.一次函数的图像(1)一条直线(2)画法-------列表,描点,连线1.Y=kx+b 中,当k >0时,y 随x 的增大而增大(3)性质2.Y=kx+b 中,当k <0时,y 随x 的增大而减小4.三个“一次”(1)一元一次不等式与一元一次方程 (2)一元一次不等式与一次函数 (3)一元一次方程与一次函数 (4)三个“一次”之间的关系5.应用1.求两直线的交点(1)二元一次方程组的图像解法2.求二元一次方程组的解(2)实际应用1.利用一次函数解决实际问题2.根据一次函数的图像解决实际问题6.1函数一、变量与常量二、函数的定义一般地,在一个变化过程中的两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么我们称y是x的函数,x是自变量。
三、函数的三种表示法1.函数表达式法:表示函数关系的式子叫做函数表达式,简称函数式。
用函数表达式表示函数的方法叫函数表达式法。
2.列表法:把自变量x的一系列值和函数y的对应值列成一个表,这种表示函数关系的方法是列表法。
3.图像法:一般地,对于一个函数,把自变量x与函数y的每一对对应值分别作为点的横、纵坐标,在平面直角坐标系内描出相应的点,由这些点组成的图像,就叫做这个函数的图像。
用图像来表示函数关系的方法叫做图像法。
有的函数用以上三种方法都能表示,有的函数只能用其中的一种或两种方法表示。
四、确定自变量的取值范围温馨提示:(1)在一个函数解析式中,自变量的取值必须使函数解析式有意义。
当一个函数解析式中出现不止一种上述情况时,自变量的取值是使各式成立的公共解;(2)具有实际意义或几何意义的函数,自变量的取值范围除应使函数解析式有意义外,还必须符合实际意义或几何意义。