义务教育教科书〔 RJ 〕八年级数学下册
第十九章 一次函数 19.2 一次函数
19.2.2 一次函数〔3〕
正比例函数的图象特征:
复习概念
是经过(0,0)和(1,k)两点的一条直线.
正比例函数的图象的性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小.
一次函数的图象特征:
-k+b=3 2k+b=-3
解方程组得 k=-2 b=1
∴这个一次函数的解析式为y=-2x+1
待定系数法.
象这样先设出函数解析式,再根 据条件确定解析式中未知的系数, 从而详细写出这个式子的方法, 叫做待定系数法.
他能归纳出待定系数法求函数解析式的 根本步骤吗?
求函数解析式的普通步骤是怎样的呢?
必适宜解析式
-4k+b=-9
解方程组得 k=2 b=-1
∴这个一次函数的解析式为y=2x-1
变式 知 y是 x的一次函数,当 x=-1时 y=3,当 x =2 时 y=-3,求 y关于 x 的一次函数解析式.
解:设这个一次函数的解析式为y=kx+b. 把x=-1,y=3;x=2,y=-3 分别代入上式得:
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里 原来填的数是多少?解释他的理由。
y=1-x 当x=-1时,y=2
7.假设函数y=kx+b的图象平行于y= -2x的图象且 经过点〔0,4〕, 那么直线y=kx+b与两坐标轴 围成的三角形的面积是:
解:∵y=kx+b图象与y= - 2x图象平行 ∴k=-2
可归纳为:“一设、二列、三解、四复原〞