新人教版八年级数学下册一次函数知识点总结
- 格式:doc
- 大小:106.00 KB
- 文档页数:3
课程标准1. 能用函数观点看一次方程(组),能用辨证的观点认识一次函数与一次方程的区别与联系.2.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想. 3.能运用一次函数的性质解决简单的不等式问题及实际问题.知识点01 一次函数与一元一次方程的关系一次函数y kx b =+(k ≠0,b 为常数),当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值. 注意:(1)求一次函数与x 轴的交点,令y=0,解出x 即为与x 轴交点的横坐标;(2)一次函数y kx b =+(k ≠0,b 为常数)是一个关于x 和y 的二元一次方程,这个方程有无数组解,但若已知x 的值(或y 的值),即可求出y 的值(或x 的值);(3)若一次函数y kx b =+,满足等式mk b n += 或0mk b n +-=,则函数必过点(m,n );同理,若一次函数图像上有个点(m ,n ),则二元一次方程有一组解为x my n =⎧⎨=⎩;知识点02 一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 注意:(1)两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数学生/课程 年级 8年级 学科 数学 授课教师日期时段核心内容一次函数与方程(组)、不等式 (第14讲)24y x =-+与31322y x =-图象的交点为(3,-2),则32x y =⎧⎨=-⎩就是二元一次方程组2431322y x y x =-+⎧⎪⎨=-⎪⎩的解.(2)当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组3531x y x y -=⎧⎨-=-⎩无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.(3)当二元一次方程组有无数组解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.知识点03 方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.知识点04 一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围. 注意:(1)求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0.从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围. (2)常见的解集:0(0)y kx b >+>或0(0)y kx b ≥+≥或0(0)y kx b <+<或0(0)y kx b ≤+≤或x m >x m ≥x m <x m ≤2x >2x ≥ 2x < 2x ≤2x <-2x ≤- 2x >- 2x ≥-4x <4x ≤ 4x > 4x ≥无论求0(0)y kx b >+>或还是0(0)y kx b <+<或,都应首先求出一次函数与x 轴交点的横坐标(即令y=0),再根据题目要求,确定x 的取值范围: ①y >0时,取x 轴上方图像自变量的范围; ②y <0时,取x 轴下方图像自变量的范围;知识点05 一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解. 注意:(1)不等式的解集中,端点无论取到取不到,该值都是对应方程的解;例如:一次函数y kx b =+,若0y >时,x 的取值范围是2x >,则方程0kx b +=的解为2x =,且一次函数y kx b =+过点(2,0);(2)一次函数y kx b =+,若当a x m << 时,y 的取值范围是b y n <<,则可得出一次函数过点(,),(,)(,),(,)a b m n a n m b 或;知识点06 如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.两个一次函数比较大小,求自变量x 的取值范围,首先要求出两一次函数的交点横坐标(列二元一次方程组),再根据图像判断。
八年级下册数学函数知识点总结一、函数的概念。
1. 变量与常量。
- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。
例如,汽车以60km/h的速度匀速行驶,行驶时间t和行驶路程s是变量,速度60km/h就是常量。
2. 函数的定义。
- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
例如,y = 2x+1,对于x的每一个值,都能通过这个式子计算出唯一的y值。
- 函数的表示方法有三种:解析式法(如y = 3x - 2)、列表法(列出x和y的对应值表格)、图象法(画出y关于x的图象)。
二、一次函数。
1. 一次函数的概念。
- 形如y=kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx是正比例函数,它是特殊的一次函数。
2. 一次函数的图象和性质。
- 图象:一次函数y = kx + b(k≠0)的图象是一条直线。
当b = 0时,y=kx的图象是经过原点(0,0)的直线。
例如,y = 2x的图象是过原点的直线,y=2x + 1的图象是y = 2x向上平移1个单位得到的直线。
- 性质。
- 当k>0时,y随x的增大而增大。
例如在y = 3x+2中,k = 3>0,y随x的增大而增大。
- 当k<0时,y随x的增大而减小。
例如在y=-2x + 3中,k=-2<0,y随x的增大而减小。
3. 一次函数图象的平移。
- 对于一次函数y = kx + b,向上(下)平移m个单位长度得到y=kx + b± m;向左(右)平移n个单位长度得到y = k(x± n)+b。
例如,y = 2x+1向上平移3个单位得到y = 2x+4,向左平移2个单位得到y = 2(x + 2)+1=2x + 5。
4. 求一次函数的解析式。
八年级下册数学一次函数知识点总结一次函数是高中数学中一个重要的概念,它具有很多独特的性质,描述平面图形,并且可以用来研究各种数学模型,因此学习和掌握它十分重要。
本文将对八年级下册数学中一次函数的知识点进行总结,希望能给学生们带来帮助。
首先,我们来了解一下什么是一次函数。
一次函数是一类特殊的函数,其定义域是实数集,其图形是一条直线,而自变量的幂等于1,其表达式的形式为f(x)=ax+b,其中a和b是实数,称为一次函数的系数,一次函数一般用来描述直线上的点的线性关系,以及一种线性函数的统一表达式。
接下来,我们来学习一次函数的几何性质。
一次函数是一条直线,因此它有一定的斜率,斜率可以表示为m=a/b,其中a/b为系数,斜率的大小可以反映直线的倾斜程度,如果斜率大于零,则直线向右上方倾斜,如果斜率小于零,则直线向左下方倾斜,而垂直于直线的实轴方向,则为偏移量b。
此外,一次函数的几何图形的对称性也是重要的,由于它的定义域是实数集,所以它可以通过对称轴对称,即对称轴为y-b=0,其结果是它的图形会对称于y轴,可以在它两边形成对称图形。
另外,一次函数也有很多数学性质,它们可以用来研究函数、求解方程和构造模型等。
一次函数的线性性是比较重要的,它的定义域是实数集,且f(x)=ax+b,其中a/b为系数,可以使用高中数学知识,来求出y=ax+b的求根公式,从而算出一次函数的x的值,也可以用来求出一元一次方程的根。
此外,一次函数还可以用来构造数学模型。
假设一次函数的表达式为f(x)=ax+b,其中a为常数,可以将它看成一条线段,从而构造出一种动态变化模型,从而得出一种由连续变化的函数来描述某个事物的动态性。
最后,我们来看一次函数应用的两个实例。
一个是市场经济中的需求函数,即商品的价格与消费者购买商品的数量之间的关系,可以用一次函数来描述,以便更好的分析需求的变化趋势;另一个是统计学中的回归函数,即某一属性与另一属性之间的关系,也可以用一次函数来描述,以便更好的分析其变化趋势。
一次函数知识点总结原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!东宫白庶子,南寺远禅师。
——白居易《远师》大地二中张清泉一、本节学习指导本节的知识相当重要,同学们要引起重视,如果给出一个式子让其判断是不是一次函数,判断方法我们要掌握。
关于一次函数的解析式的几种求法我们要会,特别是其中最常用的“待定系数法”。
本节有配套免费学习视频。
二、知识要点1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)要使y=kx+b是一次函数,必须k≠0。
如果k=0,则kx=0,y=kx+b 就不是一次函数;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线。
【重点】(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、性质:【重点】(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法【重点】(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。
(最常用)“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义x的系数不为0,x的最高次数为1,构造方程组。
②利用一次函数y=kx+b 中常数项b 恰为函数图象与y 轴交点的纵坐标,即由b 来定点;直线y=kx+b 平行于y=kx ,即由k 来定方向 。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
第十九章一次函数【思维导图】【知识要点】知识点一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a 时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a 时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
优:准确反映整个变化过程中自变量与函数的关系。
八年级下册数学一次函数知识点总结
一次函数是数学中最重要的函数,在八年级下册中,我们对一次函数的知识进行了深入的学习和讨论。
本文将以3000字的文章总结一次函数在八年级下册所涉及的知识点。
首先,我们需要从函数定义入手,八年级下册中,我们定义一次函数为有若干个变量,其中任意一个变量经过一定的运算,就能求出其他变量的函数,而这个函数的运算过程只包括乘法、除法、求幂、开根号和加减法,称为一次函数。
其次,我们要学习一次函数的图像,一次函数的图像满足一次函数的变化规律,而一次函数的变化又可以分为上升段、下降段和平行段,我们可以观察一次函数图像从而推知一次函数的增减性,从而得出一次函数的变化规律。
此外,我们还要学习一次函数的等价变换和定义域,等价变换的定义是指对一次函数的匹配,即两个函数只要满足其等价关系,则可以被认为是等价的,而定义域的定义则是指一个函数的输入值的取值范围,我们可以根据输入值的取值范围来定义函数的图像范围和函数的定义域。
最后,我们需要学习一次函数的几何意义,几何意义指一次函数图像与实际意义的对应关系,例如一次函数的图像可以表示了购买物品的总价和数量的关系,也可以表示了某项数据与时间的变化关系,由此可以更深刻的了解一次函数的实际意义所在。
综上所述,八年级下册中所学习的一次函数知识点主要包括函数
定义、图像、等价变换和定义域、几何意义等。
以上所述知识点都是一次函数的基础知识,在今后的学习中,我们会继续深入学习一次函数以及其他函数的相关知识。
级下册数学知识点归纳一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k 叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
第十九章一次函数
19.1 函数
19.1.1 变量与函数
例:
一、分别指出思考(1)~(4)的变化过程中所涉及的量,在这些量中哪些量是发生了变化的?哪些量是始终不变
的?
(1)涉及的量有:速度、时间和路程,其中时间和路程发生了变化,速度始终不变;
(2)涉及的量有:票价、张数和票房收入,其中张数和票房收入发生了变化,票价始终不变;
(3)涉及的量有:圆周率、半径和面积,其中半径和面积发生了变化,圆周率始终不变;
(4)涉及的量有:矩形的周长、边长和邻边长,其中边长和邻边长发生了变化,矩形的周长始终不变.
所以我们得到:
1、在一个变化过程中,数值发生变化的量为变量.
2、在一个变化过程中,数值始终不变的量为常量.
思考:在(1)~(4)的变化过程中,当一个量发生变化时,另一个量是否也随之发生变化?是哪一个量随哪一个
量的变化而变化?
在一些图或表格表示的问题中,可以看到两个变量间有上面哪样的关系.
3、一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其
对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数.如果当x a时y b,那么b叫做当自变
量为a时的函数值.
思考:在(1)~(4)的变化过程中,发生变化的量有限制条件吗?如何限制?
解:变化过程中,发生变化的量要符合实际问题的意义.
(1)中的时间t不能为负数,
(2)中票的张数x只能为自然数,
(3)中圆的半径r不能为负数,
(4)中一边长x最多为周长的一半且不能为负数
4、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域.
确定函数定义域的方法:。
一、常量与变量
在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。
实际上,常量就是具体的数,变量就是表示数的字母。
(注意“π”是常量)
二、自变量与函数
在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定
....的值与它对应,那么,把x叫自变量,y叫x的函数。
判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。
”
三、函数值
如果x=a时,y=b,那么把“y=b叫做x=a 时的函数值”。
四、表示函数的方法
方法(一)解析式法。
方法(二)列表法
方法(三)图像法
五、自变量的取值范围
在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。
六、自变量取值范围的求法
(一)对于解析式
1、解析式是整式。
自变量取一切实数。
2、自变量在分母。
取使分母不等于0的实数。
3、自变量在根号内
(1)在内。
自变量取一切实数。
(2)在内。
取使根号内的值为非负数的实数。
(二)对于实际问题
自变量的取值要符合实际意义。
在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分
例:求函数中自变量x的取值范围。
解:要使有意义,
必须且
即,。
所以中自变量x的取值范围是。
说明:求使函数有意义的自变量的值,就是求函数自变量的取值范围。
七、函数图象的画法步骤
(一)列表。
X …-2 -1 0 2 2 …
Y
(二)描点。
以对应的x、y作为点(x,y),把每个点描在平面直角坐标系中。
(三)连线。
把描出的点按照自变量由小到大的顺序,用平滑的线
....连结起来。
八、正比例函数
1、定义:形如(k是常数,)的函数叫做正比例函数。
2、图象:是经过(0,0)与(1,k)的直线。
(1,k)
(1,k)
k<0
k>0
y
x
o12345
1
2
3
4
5
-1
-2
-3
-4
-5
-1
-2
-3
-4
-5
3、性质:
(1)
(2)
九、一次函数 (一)定义:
形如
b
的函数叫做一次函数。
因为当b=0时,y=kx ,所以“正比例函数是特殊的一次函数”。
(二)图象:
是经过(
,0)与(0,b )两点的直
线。
因此一次函数y=kx +b 的图象也称为直线y=kx +b.
其中,(
,0)是直线与x 轴的交点坐
标,(0,b )是直线与y 轴的交点坐标。
(三)性质:(如下图)
1、
2、
3、
4、
5、
6、
(四)l 1:y=k 1x+b 1与l 2:y=k 2x+b 2的关系 1、k 1=k 2
l 1
2
;
说明:当k 1=k 2,b 1=b 2时,l 1与l 2重合。
从
(1)b>0,向上平移,(2)b<0,向下平移。
反之,从
(1)b>0,向下平移,(2)b<0,向上平移。
2、k 1
2
l 1与l 2相交;当k 12=-1时,l 1l 2。
3、求l 1与l 2的交点坐标就是 解关于x 、y 的二元一次方程组
(五)一次函数与二元一次方程组的关系 因为二元一次方程组中的两个二元一次方程都可以化为两个一次函数解析式,所以两个一次函数图象的交点坐标就是原二元一次方程组的解。
因此,可以通过两个一次函数图象交点坐标求出二元一次方程组的解。
(六)一次函数与一元一次方程的关系
因为
与x 轴相交于一点,此时y=0,得到,这是个一元一次
方程。
所以一元一次方程的解,就是对应的
一次函数图象与x 轴交点的横坐标。
即可以通过画一次函数的图象求出对应的一元一次方程的解。
(七)一次函数与一元一次不等式的关系
因为一次函数的图象与x 轴相交与一点,在x 轴上方的部分,直线上的点对应的函数值y 是正数,即
; 在x 轴下方
的部分,直线上的点对应的函数值y 是负数,
k<0,b>0
k<0,b>0
k>0,b<0
k>0,b>0
y x
o 1
2
3
4
51234
5-1
-2-3-4-5-1-2-3-4-5
即;即可以通过画一次函数的图
象求出对应的一元一次不等式的解集。
(八)判定点是否在函数图象上(或函数图象是否经过点)的方法
将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上.
(九)用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
(十)点在函数图象上(或函数图象经过点)的意思是“把点的横坐标x和纵坐标y代入函数解析式中,等号成立”。
十、一次函数的应用
在实际生活中,应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.。