高中数学基础知识归纳汇总
- 格式:doc
- 大小:1.32 MB
- 文档页数:8
高中数学知识点大全总结高中数学是一门重要的学科,它是其他学科的基础,也是培养学生逻辑思维能力和解决问题能力的重要手段。
在高中数学中,有许多重要的知识点需要掌握,下面将对高中数学的重要知识点进行总结。
一、初等数论1. 自然数的性质及其运算法则2. 整数的性质及其运算法则3. 有理数的性质及其运算法则4. 整除与最大公因数5. 求解同余方程6. 等比数列的性质及公式二、代数学1. 多项式的运算与恒等式2. 二次函数与一般二次方程3. 四种基本函数及其性质(线性函数、二次函数、指数函数、对数函数)4. 高次方程的求解方法(韦达定理、有理根定理、根的分布情况)三、平面几何1. 直角三角形和斜角三角函数2. 圆的性质及其相关定理(切线定理、弦定理、正弦定理、余弦定理)3. 三角函数的图像与性质4. 平面向量的定义及其运算法则(向量的模、向量的共线性、向量的夹角、向量的垂直)5. 平面几何的证明方法(巴比内斯定理、相似三角形的证明、正弦定理的证明)四、立体几何1. 三角形与四边形的性质2. 球与球面的性质3. 正多面体的性质4. 空间直线的位置关系5. 空间几何中的立体角6. 空间向量的运用(平面与直线的交线与夹角、平面与平面的夹角)五、数列与数列极限1. 等差数列与等比数列的性质及其求和公式2. 数列的极限概念与性质3. 单调数列与有界数列的性质4. 黎曼和与定积分的关系5. 等差数列与等比数列的极限六、函数与导数1. 基本初等函数的性质与图像2. 极限与连续性3. 函数的求导法则(常用函数的导数、和差积商的求导法则)4. 函数的极值与最值5. 曲线的切线与法线6. 定积分与函数的面积七、微分学应用1. 可导函数的微分近似与应用(导数与函数的近似、函数的单调性、最值问题)2. 积分与定积分的性质及其应用(黎曼和与函数的面积、曲线长度和旋转体体积)3. 微分方程的基本概念及一阶微分方程的解法4. 概率统计与数理统计的基本概念与方法(随机事件、条件概率、正态分布)以上是高中数学的一些重要知识点总结,这些知识点是高中数学学习的基础,也是高考数学考试的重点。
高中数学重点知识归纳(3篇)文章一:一、函数与导数1. 函数的概念:函数是两个集合之间的一种特定关系,具有唯一性、确定性、有序性。
2. 函数的性质:单调性、奇偶性、周期性、对称性。
3. 基本初等函数:常数函数、正比例函数、一次函数、二次函数、指数函数、对数函数、三角函数。
4. 复合函数:复合函数是由两个或两个以上的函数通过自变量和函数值的关系组合而成的函数。
5. 反函数:如果函数f(x)在其定义域内是一一对应的,那么可以通过反解法得到它的反函数f^(1)(x)。
6. 导数的概念:导数表示函数在某一点附近的变化率,是函数的局部线性近似。
7. 导数的运算:四则运算法则、复合函数求导法则、反函数求导法则。
8. 导数的应用:求极值、最值、拐点、单调区间、凹凸性。
二、三角函数与平面向量1. 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
2. 三角函数的图像与性质:周期性、奇偶性、单调性、对称性。
3. 三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理。
4. 平面向量的概念:向量有大小和方向,可以用有向线段表示。
5. 向量的运算:向量加法、向量减法、数乘向量、向量点积、向量叉积。
6. 向量的应用:解三角形、物理运动问题、线性方程组。
文章二:三、数列与极限1. 数列的概念:数列是按照一定规律排列的一列数。
2. 数列的性质:单调性、有界性、收敛性。
3. 常见数列:等差数列、等比数列、斐波那契数列。
4. 数列的极限:数列的极限表示数列无限接近于某个值。
5. 数列的求和:错位相减法、分组求和法、求和公式。
6. 数列的应用:求解级数、判断级数的收敛性、求解函数的极限。
四、解析几何1. 坐标系:直角坐标系、极坐标系。
2. 直线方程:点斜式、斜截式、两点式、截距式。
3. 圆的方程:标准式、一般式。
4. 椭圆的方程:标准式、一般式。
5. 双曲线的方程:标准式、一般式。
6. 抛物线的方程:标准式、一般式。
最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高中数学知识点全总结(精选10篇)第一篇:代数与函数代数与函数是高中数学的重要基础内容,包括多项式、因式分解、分式方程等知识点。
代数与函数的学习对于理解和应用其他数学知识具有重要的作用。
第二篇:几何几何是高中数学不可或缺的一部分,包括平面几何、立体几何、三角形及其性质、相似三角形等知识点。
几何的学习能够培养学生的空间想象力和推理能力。
第三篇:概率与统计概率与统计是高中数学的实用内容,包括事件的概率、统计图表的分析与应用等知识点。
概率与统计的学习对于培养学生的数据分析能力具有重要的意义。
第四篇:数列与数学归纳法数列与数学归纳法是高中数学中的重要知识点,包括等差数列、等比数列、递推公式的求解等内容。
数列与数学归纳法的学习对于培养学生的逻辑思维和数学推理能力具有重要作用。
第五篇:函数与导数函数与导数是高中数学中的重要内容,包括函数的性质、导数的定义与求解等知识点。
函数与导数的学习对于培养学生的数学建模能力和问题解决能力具有重要作用。
第六篇:三角函数三角函数是高中数学中常见且重要的内容,包括三角函数的定义、性质、图像与应用等知识点。
三角函数的学习对于理解三角关系、解决相关问题具有重要意义。
第七篇:立体几何立体几何是高中数学中的重要内容,包括立体的表面积与体积的计算、空间几何体的相交与相切等知识点。
立体几何的学习对于培养学生的空间想象力和几何思维具有重要作用。
第八篇:平面向量平面向量是高中数学中的一项重要内容,包括向量的定义、运算、共线与垂直等知识点。
平面向量的学习对于培养学生的几何直观和向量运算能力具有重要作用。
第九篇:三角变换三角变换是高中数学中常见的内容,包括三角函数的基础知识、三角函数的图像变换等。
三角变换的学习对于理解函数的图像与性质具有重要的帮助。
第十篇:数学推理与证明数学推理与证明是高中数学中的重要内容,包括逻辑推理、数学证明的方法与技巧等知识点。
数学推理与证明的学习对于培养学生的严密思维和推理能力具有重要作用。
高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学必考知识点大全
一、代数基础
1. 整式与分式
2. 多项式运算
3. 因式分解与公式运用
4. 二次根式与有理化
5. 分式方程与多项式方程
二、函数与方程
1. 一次函数与二次函数
2. 指数函数与对数函数
3. 三角函数及其应用
4. 参数方程与平面向量
5. 不等式与绝对值方程
三、数列与数学归纳法
1. 等差数列与等比数列
2. 通项公式与求和公式
3. 数列的极限与数列的应用
4. 数学归纳法的原理与应用
四、平面几何与立体几何
1. 相交线与平行线
2. 圆的性质与圆周角
3. 三角形的性质与判定
4. 四边形的性质与判定
5. 空间几何体的性质与计算
五、概率与统计
1. 随机事件的概率与计算
2. 排列与组合的计算
3. 概率模型与事件独立性
4. 统计图表与统计量
5. 抽样调查与统计推断
六、导数与微分
1. 函数的极限与连续性
2. 一元函数的导数计算
3. 导数的应用与函数图像
4. 高阶导数与曲线的凹凸性
5. 微分学在实际问题中的应用
七、数学证明与解题方法
1. 数学证明的基本思路
2. 数学归纳法与递推关系
3. 数学问题的建模与解决
4. 数学解题方法与策略
5. 数学解题的技巧与应用
综上所述,以上列举的是高中数学中的必考知识点大全。
熟练掌握这些知识点对于高中数学的学习和考试都具有重要意义。
希望同学们能够认真学习并掌握这些数学知识,为自己的学业打下坚实的基础。
祝愿大家在数学学习中取得优异的成绩!。
高中数学知识点总结(最全版)1. 数的性质在高中数学中,我们首先要了解数的性质。
数的性质分为四个方面:整数性质、有理数性质、实数性质和复数性质。
1.1 整数性质整数是数的一种,包括正整数、负整数和零。
整数有以下性质:•整数加法和乘法封闭性:两个整数相加或相乘的结果仍然是整数。
•整数加法和乘法结合律:a+(b+c)=(a+b)+c 和a(b c)=(a b)c。
•整数加法和乘法交换律:a+b=b+a 和 a b=b a。
•整数加法有单位元素0:a+0=0+a=a。
•整数乘法有单位元素1:a1=1a=a。
•整数加法有逆元素:对于任意的整数a,存在一个整数b,使得a+b=b+a=0。
•整数乘法有逆元素:对于任意的整数a(a≠0),存在一个整数b,使得a b=b a=1。
•整数加法和乘法分配律:a(b+c)=a b+a*c。
1.2 有理数性质有理数是可以表示为两个整数的比值的数,包括整数和分数。
有理数有以下性质:•有理数加法和乘法封闭性:两个有理数相加或相乘的结果仍然是有理数。
•有理数加法和乘法结合律、交换律、分配律等性质与整数性质相同。
1.3 实数性质实数是包括有理数和无理数的数,具有以下性质:•实数可以通过实数的加法、减法、乘法和除法运算得到。
•实数加法和乘法封闭性、结合律、交换律、分配律等性质与有理数性质相同。
1.4 复数性质复数是形如a+bi的数,其中a和b是实数,i是虚数单位,有以下性质:•复数加法和乘法是封闭的,满足结合律、交换律和分配律。
•复数乘法有单位元素1,满足任一复数a与1相乘仍得a。
•复数乘法的交换律成立,即a b=b a。
•复数乘法有逆元素,对于任一非零复数a,存在一个复数b,使得a b=b a=1。
2. 代数运算代数运算是指利用代数式进行加法、减法、乘法和除法等运算的过程。
2.1 代数式的加法和减法代数式的加法和减法遵循相同的规则,即同类项相加或相减。
同类项指的是具有相同字母和相同指数的项。
高中数学基础知识点总结归纳整理引言高中数学是学生逻辑思维和解决问题能力培养的重要阶段。
为了帮助学生更好地掌握和复习高中数学知识,本文将对高中数学的主要基础知识点进行系统的总结归纳。
第一部分:代数基础1.1 基本概念数的分类:实数、复数、有理数和无理数代数式的运算:加减乘除和乘方1.2 方程与不等式一元一次方程和不等式的解法一元二次方程的解法和判别式的应用1.3 函数函数的概念:定义域、值域、映射基本初等函数:一次函数、二次函数、指数函数、对数函数和三角函数第二部分:几何基础2.1 平面几何三角形的分类和性质:等边三角形、等腰三角形和直角三角形四边形的分类和性质:平行四边形、矩形、菱形和正方形2.2 解析几何坐标系的引入:平面直角坐标系、极坐标系直线和圆的方程,以及它们的综合应用2.3 空间几何空间图形的基本概念:点、线、面的位置关系棱柱、棱锥和球体的表面积和体积计算第三部分:数列与级数3.1 数列的概念等差数列和等比数列的定义和性质等差数列和等比数列的通项公式和求和公式3.2 级数级数的概念:收敛和发散级数求和:几何级数和调和级数第四部分:概率与统计4.1 概率论基础事件的概率,包括古典概型和几何概型条件概率和独立事件的概念4.2 统计基础数据的收集、整理和描述均值、中位数和众数的计算第五部分:微积分初步5.1 极限与导数极限的概念和运算法则导数的定义和基本导数公式5.2 积分不定积分和定积分的概念积分的基本技巧和应用第六部分:综合应用6.1 函数与方程的综合应用函数与方程结合的问题6.2 几何与代数的综合应用几何与代数结合的问题6.3 数列与极限的综合应用数列与极限结合的问题结语高中数学基础知识点的掌握对于学生的数学素养和未来学术发展至关重要。
通过系统地复习和理解每个知识点,学生可以为进一步的数学学习打下坚实的基础。
希望本文档的总结能够帮助学生构建完整的知识体系,提高解题能力。
高中数学基础知识汇总一、集合、简易逻辑(14课时,8个)1、集合;2.子集、补集;3.交集、并集;4.逻辑连结词;5.四种命题;6.充要条件。
二、函数(30课时,12个)1、映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩展;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数。
三、数列(12课时,6个)1、数列的有关概念;2.等差数列;3.等差数列的前n项和;4.数列求和的常用方法。
四、三角函数(46课时,17个)1、角的概念的扩展;2.弧度的概念;3.任意的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.期中轴线对称、伸缩变换和图象的间断点;11.函数的图象与性质;12.还请大家注意平移和伸缩变换,它们是研究图象的基本方法。
五、平面解析几何(16课时,7个)1、平面直角坐标系;2.直线方程;3.圆的方程。
六、不等式(10课时,5个)1、不等式的基本性质;2.一元一次不等式和一元二次不等式;3.不等式的证明。
七、平面向量(12课时,8个)1、向量的基本概念及表示方法;2.向量的运算。
高中语文基础知识汇总一、表达方式:记叙、描写、抒情、议论、说明二、文学体裁:诗歌、小说、散文、剧本、传记文学、报告文学、寓言三、修辞手法:比喻、借代、夸张、对偶、对比、反复、反问、设问、引用、四、表现手法:象征、联想、想象、衬托(正衬、反衬)、烘托(即托与衬的区别)、渲染、用典、动静相衬、虚实相生等五、选材剪材:选材要围绕写作中心,选择感受最深的事来写,选择材料要典型新颖。
剪裁就是对详写和略写的安排。
材料有详有略,才能突出中心。
六、结构安排:包括开头和结尾、段落和层次、过渡和照应,以及伏笔和点睛之笔。
高中数学基础知识归纳汇总(主要是文科)第一部分、集合与逻辑用语1、集合①.定义:一组对象的全体形成一个集合;②.表示方法有:列举法{1,2,3,…}、描述法{x|P}、图示法;③.常用数集:正整数集N *、空集φ;几种数集的关系:N Z Q R C Z Q⎧⎧⎧⎧⎪⎪⎪⎨⎪⎨⎪⎩⎨⎪⎪⎨⎪⎩⎪⎪⎩⎪⎪⎩Q R 自然数集整数集有理数集负整数集实数集复数集分数集无理数集虚数集ðð④.集合元素的特征:确定性、互异性、无序性;⑤.元素与的关系有:属于∈、不属于∉;⑥集合这间的关系有:包含于⊆ 、真包含于Ø 、相等=;⑦、集合的运算:交集 :A ∩B ={x|x ∈A 且x ∈B}; 并集 :A ∪B ={x|x ∈A 或x ∈B};补集 :A C U={x|x A ∉ 且x ∈U},U 为全集。
⑧若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有真子集的个数是21n-,非空真子集的个数是22-n。
2、充分(必要)条件:(1)前⇒后(顺推)则前是后的充分条件:(2)后⇒前(倒推)则前是后的必要条件;前⇔后(互推)则前是后的充分且必要条件(简称充要条件)。
3、(1)数学上的命题是指能判断真假的陈述句,其中判断为真的语句叫真命题;判断为假的语句叫假命题。
(2)命题都可以写成“若p 则q ”的形式,其中p 叫条件,q 叫结论;(3)“若p 则q ”是原命题,则它逆命题是若q 则p ;否命题是⌝p 则⌝q ;逆否命题是若⌝q 则⌝p 。
(4)原命题和它的逆否命题同真同假(等价),逆命题和否命题同真同假(等价)。
4、且(∧)、或(∨)、非(⌝)、存在(∃)、任意(∀),存在与任意互为否定。
5、一些常用词的否定形式有:第二部分、不等式与线性规划1、不等式的性质:(1)a b >且c>d 则有a c b d +>+;(若相减则变成加它的相反数)(2)0a b >>且c>d>0则有a c b d ∙>∙;(若相除则变为乘以它的倒数)(3)a b >∙且a b>0(同号时)则有11a b <; a b >∙且a b<0(异号时)则有11a b>; (4)0ab >>则有n n a b >。
(特别注意,a b 都为正数才成立)2、均值不等式:(1)对任意实数,a b ,都有222a b ab +≥,当且仅当a b =时取等号;(2,a b ,都有ab +≥,当且仅当a b =时取等号。
(3)应用—-求最值:一正二定三相等(得最值)。
3、一元二次不等式的求解:(1)特殊情况特殊处理:若根的判别式0∆≤则配方处理(或用图象法处理);(2)一般情况:若根的判别式0∆>2x 的系数要为正,若2x的系数为负则先化为正再求解)。
4、线性规划问题的处理:方法:(1,特别注意不画图容易产生有一些交点不在可行域内的情况;(2;(3可行域的面积)。
第三部分、函数与函数的应用1、函数的主要性质:(1)12x x D <∈,有12()()f x f x <()0f x '>。
12x x D <∈,有12()()f x f x >()0f x '<。
(2)奇偶性:(定义域必须关于原点对称) )()(x f x f -=-)()(x f x f =-Y 轴对称。
(3)周期性:若函数()()f x T f x +=,则()f x 称为以T为周期的周期函数(kT 也是周期,通常周期指的是最小正周期)。
(4)函数图象的三种变换(基本口诀是:x ---左增右减,乘缩除伸;y ---上增下减,乘伸除缩)①平移变换:()y f x =X −−−−−−−−−−→沿轴方向向左,向右平移a 个单位()y f x a =±(0)a >()y f x =X −−−−−−−−−−→沿轴方向向上,向下平移b 个单位()y f x b =±(0)b >②伸缩变换:()y f x =−−−−−−−−−−→1当0<k<1时,横坐标伸长到原来的倍k 1当k>1时,横坐标缩短到原来的倍k()y f kx =(0)k > ()y f x =−−−−−−−−−−→当0<k<1时,横坐标缩短到原来的k 倍当k>1时,横坐标伸长到原来的k 倍()y kf x =(0)k > ③对称变换:()y f x =Y ←−−−−→关于轴对称()y f x =-;()y f x =X ←−−−−→关于轴对称()y f x =- ()y f x =←−−−−→关于原点对称()y f x =--;()y f x =x a =←−−−−−→关于直线对称()()f a x f a x -=+ 2、二次函数(1)二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac ab 4422,。
(2)用待定系数法求二次函数的解析式时,解析式的设法有三种形式:一般式:2()f x ax bxc =++, 零点式:12()()()f x a x x x x =-⋅-,顶点式:n m x a x f +-=2)()(。
(3)二次函数c bx ax y ++=2图象:①当240b ac ∆=->时,图象与X 轴有2个交点;若20axbx c ++=有两根12,x x ,则1212;b cx x x x a a+=-=;变化:22121212()()4x x x x x x -=+-。
②当240b ac ∆=-=时,图象与X 轴只有1个交点。
③当240b ac ∆=-<时,图象与X 轴没有交点。
3、指数运算与指数函数: ①指数的性质与运算法则:mn m n aa a +⋅=;m m n n a a a -=;()n m mna a =;()n n n ab a b =; nn n a a b b ⎛⎫= ⎪⎝⎭。
② 指数函数的定义:函数(0,1)x y a a a =>≠叫做指数函数。
③指数函数的图象和性质:4、对数运算与对数函数 ①指数与对数的相互转化:N a b=⇔log a b N =(其中0a >且1a ≠)。
②对数基本性质: l o g 10a =; log 1a a = ③运算性质:(0,1,0,0)aa M N >≠>>log log log a a a MN M N =+; l o g l o g l o g a a a MM NN=-; log log n a a M n M =; 1log log a a M n。
④指数、对数式的恒等变形:(0>a且1≠a ,1,0,0,0≠>>>b b N M )l o g b aN a N =⇔ , log a Na N =;log log (log c a c bb a=≠换底公式)(c>0,c 1)⑤对数函数:函数log (0,1)a y x a a =>≠叫做对数函数。
⑥对数函数的图象和性质:5、幂函数①幂函数的定义,形如y xα=的函数叫做幂函数(α为常数)。
②性质:当0α>时,幂函数图象都过点(0,0),(1,1)点、且在第一象限都是增函数;当0α<时,幂函数图象总是经过点(1,1)点、且在第一象限都是减函数。
6、反函数的知识:(1)、指数函数xy a=与对数函数logay x=(对底数a的要求都是0,1a a>≠)互为反函数;(2)7、函数与方程的关系:(1)、函数的零点的概念:对于函数()y f x=,我们把使方程()0f x=的实数x叫做函数()y f x=的零点。
即函数()y f x=有零点⇔方程()0f x=有解⇔函数()y f x=的图象与x轴有交点。
(结合函数的图象用数形结合法求解)(2)零点存在的条件:如果函数()y f x=在区间[],a b上的图象是连续的曲线,则函数()y f x=在区间[],a b第四部分、导数1、基本初等函数的导数公式:(c为常数)①()'c=0 ②()'nx=1nnx-③(sin)'x=cos x④(cos)'x=sin x-⑤()'xa=lnxa a∙(a>0) ⑥()'x e=x e⑦(log)'ax=1lnx a∙(01)a a且>≠)⑧(ln)'x=1x⑨1x'=⑩21(tan)cosxx'=2、导数运算法则:(1)'''()u v u v±=±. (2)'''()uv u v uv=+. (3)'''2()(0)u u v uvvv v-=≠.3、导数的应用:(1)求曲线的切线的斜率和方程:000()()():()y f x f x f x K y y K x x''=⇒⇒=⇒-=∙-切线切线切线的方程为,其中切点为00(,)x y;(2)求函数的单调区间::()0()():()0f xy f x f xf x'>⇒⎧'=⇒⇒⎨'<⇒⎩增函数递增区间减函数递减区间(3)求函数的极值(注:导数为0的点不一定就是极值点但极值点的导数一定为0)()()()0y f x f x f x⇒⎧''=⇒⇒=⇒⇒⎨⇒⎩左增右减极大值极值点左减右增极小值(4)求函数的最值:()()()0y f x f x f x''=⇒⇒=⇒极值点(判断极值点是否在所给的区间内)将在所给区间内的极值点连同区间的端点代入函数求值后找出最大值和最小值。
第五部分、三角函数1、以角α的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(yxP,点P到原点的距离记为22yxr+=,则sinα=ry,cosα=rx,tanα=xy,yx=αcot。
2、同角三角函数的关系中,①平方关系是:1cossin22=+αα②相除关系是:sintancosααα=(三角计算中通常切化弦)。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
如:=-)23sin(απαcos -,15sin()2πα-=cos α-,tan(3)πα-=tan α-。
4、函数sin()y A x ωϕ=+),(其中00>>ωA 的最大值是A ,最小值是A -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与x 轴的交点都是该图象的对称中心。