PSpice 9.2电子电路设计与仿真
- 格式:doc
- 大小:235.50 KB
- 文档页数:11
电子线路SPICE设计与仿真课程设计一、课程介绍本课程是一门电子线路SPICE设计与仿真的课程,面向电子科学与技术专业的学生,旨在帮助学生熟悉SPICE软件的使用方法,了解电子线路的设计和仿真方法。
本课程包括以下内容:1.SPICE软件概述2.电子元器件的参数设置及模型库的导入3.电路的建立与仿真4.不同类型电路的设计和仿真(如放大电路、滤波电路等)二、课程目标通过本课程的学习,学生将会掌握以下能力:1.熟练使用SPICE软件进行电路设计和仿真;2.掌握常用电子元器件的模型参数设置;3.学会通过仿真结果分析电路特性,进一步优化电路设计;4.能够独立设计和仿真常见电子线路。
(如放大器、滤波器等)三、课程安排第一周1.介绍本课程内容和学习目标;2.SPICE软件的基本概念和使用方法;3.SPICE软件模型、器件和测试数据的导入和管理。
1.SPICE软件模拟电路的基本流程;2.DC和AC分析,以及仿真结果的评估与分析;3.电子元器件参数设置与模型库的导入。
第三周1.电子线路中的放大电路设计与仿真;2.放大电路的三种基本形式:共射、共基、共集;3.仿真分析和结果的评估。
第四周1.电子线路中的滤波电路设计与仿真;2.通过仿真结果优化电路设计;3.直接耦合电路、RC耦合电路等案例分析。
第五周1.电子线路中的稳压电路设计与仿真;2.Zener二极管的应用;3.稳压二极管电路、三端稳压器电路等案例分析。
第六周1.电子线路中的放大电路设计;2.比较器的设计;3.仿真分析和优化。
第七周1.电子线路中的数字电路设计;2.门电路的逻辑运算;3.仿真结果分析和优化。
1.本课程总结和复习;2.提出自己的设计和仿真项目;3.学生展示自己的作品。
四、考核方式1.平时成绩占50%,包括参与情况、作业完成情况等;2.期末成绩占50%,由设计和仿真项目及其成果、口头答辩等组成。
五、教学资料1.《电路分析基础》,王五,电子工业出版社,2018年;2.SPICE软件安装包;3.电子元器件参数和模型库。
pspice仿真实验报告Pspice仿真实验报告引言:电子电路设计与仿真是电子工程领域中的重要环节。
通过使用电路仿真软件,如Pspice,能够在计算机上对电路进行模拟,从而节省了大量的时间和成本。
本文将介绍一次使用Pspice进行的仿真实验,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是设计一个低通滤波器,通过Pspice进行仿真,并验证其性能指标。
实验步骤:1. 设计电路图:根据低通滤波器的设计要求,我们选择了一个二阶巴特沃斯滤波器。
根据滤波器的截止频率和阻带衰减要求,我们确定了电路的参数,包括电容和电感的数值。
2. 选择元件:根据电路图,我们选择了适当的电容和电感元件,并将其添加到Pspice软件中。
3. 设置仿真参数:在Pspice中,我们需要设置仿真的时间范围和步长,以及输入信号的幅值和频率等参数。
4. 运行仿真:通过点击运行按钮,Pspice将开始对电路进行仿真。
仿真结果将以图表的形式显示出来。
实验结果:通过Pspice的仿真,我们得到了低通滤波器的频率响应曲线。
从图表中可以看出,在截止频率以下,滤波器对输入信号的衰减非常明显,而在截止频率以上,滤波器对输入信号的衰减较小。
这符合我们设计的要求。
此外,我们还可以通过Pspice的仿真结果,得到滤波器的幅频特性和相频特性。
通过分析这些结果,我们可以进一步了解滤波器的性能,并对其进行优化。
讨论与分析:通过本次实验,我们深入了解了Pspice仿真软件的使用方法,并成功设计了一个低通滤波器。
通过仿真结果的分析,我们可以看到滤波器的性能符合预期,并且可以通过调整电路参数来进一步优化滤波器的性能。
然而,需要注意的是,仿真结果可能与实际电路存在一定的误差。
因此,在实际应用中,我们需要结合实际情况,对电路进行实际测试和调整。
结论:通过Pspice的仿真实验,我们成功设计了一个低通滤波器,并验证了其性能指标。
通过对仿真结果的分析和讨论,我们进一步了解了滤波器的特性,并为实际应用提供了一定的参考。
基于PSpice的开关电源设计与仿真_开关电源是一种高效率的电源系统,能将输入电压转换为稳定的输出电压。
它由不同的电子元件和模块组成,如开关管、反馈控制电路、滤波电容等。
为了确保开关电源的性能,设计和仿真是非常重要的步骤。
在本文中,我们将介绍如何使用PSpice进行开关电源的设计和仿真。
首先,我们需要了解开关电源的基本原理和要求。
开关电源通常由一个开关管和一个输出滤波电容组成。
通过周期性地开关开关管,可以实现输入电压的转换。
为了达到稳定的输出电压,需要反馈控制电路来监测输出电压,并根据需要调节开关管的开关频率和占空比。
在设计开关电源之前,需要确定以下参数:1.输入电压范围:开关电源能够接受的输入电压范围。
2.输出电压:需要得到的稳定输出电压。
3.输出电流:需要保持的输出电流水平。
4.开关频率:开关管的开关频率。
5.开关管和输出滤波电容的评估:选择适合的开关管和输出滤波电容。
6.反馈控制电路:确定适当的反馈控制电路。
接下来,我们将使用PSpice进行开关电源的设计和仿真。
2.设计反馈控制电路并将其与开关电源原理图连接。
可以选择使用比较器、反馈电阻等。
3.设置合适的仿真参数,例如输入电压范围、输出电压、输出电流等。
4.运行仿真,观察开关电源的性能。
可以检查输出电压是否稳定,开关管和滤波电容的工作状态等。
在仿真过程中,您可以通过修改参数和测试不同的设计选择,以获得最佳的开关电源性能。
还可以进行波形分析和参数优化,以确保开关电源在各种工作条件下都能正常工作。
总结起来,基于PSpice的开关电源设计和仿真是一项重要任务。
通过使用PSpice软件,我们可以在设计和测试阶段进行快速和准确的电路仿真。
这有助于我们更好地理解和优化开关电源的性能,并确保其在实际应用中能够稳定工作。
电子线路实验报告Pspice 9.2 电子电路设计与仿真实验报告学号:080105011128专业:光信班级:081班姓名:李萍一、启动PSpice 9.2—Capture CLS Lite Edition 在主页下创建一个工程项目lp二、画电路图1.打开库浏览器选择菜单Place/Part—Add Liabray,提取:三极管Q2N2222、电阻R、电容C、电源VDC、模拟地0/Source、信号源VSIN。
2.移动元件、器件。
鼠标选中该元、器件并单击,然后压住鼠标左键拖到合适位置,放开鼠标即可。
3.翻转某一元、器件符号。
4.画电路线选择菜单中Place/wire,此时将鼠标箭头变成一支笔。
5.为了突出输出端,需要键入标注V o字符,选择菜单Place/Net Alias—Vo OK!6.将建立的文件(wfh.sch)存盘。
三、修改元件、器件的标号和参数1、用鼠标箭头双击该元件符号(R或C),此时出现修改框,即可进入标号和参数的设置2、VSIN信号电源的设置:①鼠标选中VSIN信号电源的FREQ用鼠标箭头单击(符号变为红色),然后双击,键入FREQ=1KHz、同样方法即键入VoEF=0V、VAMPL=30mv。
②鼠标选中VSIN 信号电源并单击(符号变为红色)然后用鼠标箭头双击该元件符号,此时出现修改框,即可进入参数的设置,AC=30mv,鼠标选中Apply并单击,退出3、三极管参数设置:鼠标选中三极管并单击(符号变为红色)然后,选择菜单中的Edit/Pspice Model。
打开模型编辑框Edit/Pspice Model 修改Bf为50,保存,即设置Q2N2222-X的放大系数为50。
4、说明:输入信号源和输出信号源的习惯标法。
Vs、Vi、Vo(鼠标选中Place/Net Alias)单级共射放大电路四、设置分析功能1、静态①选择菜单Pspice/New simulation Profile,在New simulation对话框下,键入Bias 用鼠标单击Create,然后在屏幕上模拟类型和参数设置框;②在模拟类型和参数设置框下,见Analysis type栏中,用鼠标选中及单击Bias Point Detail;并在Output File Optiongs栏目下,单击选中“include detailed bias point information for nonlinear controlled sources and semiconductors”。
ORCAD PSPICE 9.2使用方法电力系王鲁杨2004年目录第1章 OrCAD PSpice简介 (3)1-1 关于OrCAD PSpice (3)1-2 OrCAD PSpice的特点 (4)第2章 OrCAD Capture简介 (5)2-1 启动 Capture 环境 (5)2-2 打开文件与项目 (13)第3章第一张电路图 (16)3-1 学习目的 (16)3-2 重点说明 (16)3-3 练习范例 (16)第4章使用PSPICE对电力电子电路进行仿真 (23)4-1 仿真的步骤 (23)4-2 PSpice窗口内工具栏的说明 (29)4-3 Pspice中的Probe探针 (30)4-4 暂态分析(Transient Analysis)与傅立叶分析(Fourier Analysis) .. 31第1章 OrCAD PSpice简介1-1 关于OrCAD PSpiceOrCAD是由OrCAD公司于20世纪80年代末推出的EDA软件,它是世界上使用最广的EDA软件,每天都有上百万的电子工程师在使用它,相对于其他EDA软件而言,它的功能也是最强大的。
Cadence公司在1999年与OrCAD公司合并后,更成为世界上最强大的开发EDA软件的公司,它的产品OrCAD世纪集成版OrCAD 9.2工作于Windows与WindowsNT环境下,集成了电原理图绘制、印制电路板设计、模拟与数字电路混合仿真及电路优化设计等功能。
其软件系统结构如图1-1所示。
SPICE程序的全名为Simulation Program with Integrated Circuit Emphasis。
顾名思义,它是为了执行日益庞大而复杂的集成电路(Integrated Circuit: IC)的仿真工作而发展出来的。
最早它是由美国加州柏克莱大学发展出雏型,并大力推广至各校园及企业中。
而后它改进规格成为SPICE2标准,现在世面上的SPICE兼容软件皆基于SPICE2标准。
PSpice基础仿真分析与电路控制描述简介本文档将介绍PSpice基础仿真分析和电路控制的相关概念和使用方法。
PSpice是一款电路仿真软件,可帮助电路设计师评估和优化电路性能。
PSpice的基本功能- 电路仿真:通过输入电路原理图和元件参数,PSpice可以对电路进行仿真分析,以评估电路的性能和行为。
- 波形分析:PSpice可以生成电路中各个节点电压和电流的波形图,以帮助理解电路运行情况。
- 参数扫描:PSpice可以对电路中的元件参数进行扫描,以评估元件参数对电路性能的影响。
- 优化分析:PSpice可以通过自动化搜索算法优化电路参数,以达到用户定义的目标。
仿真步骤1. 绘制电路原理图:使用PSpice提供的元件库绘制电路原理图,设置元件参数和连接关系。
2. 设置仿真选项:设置仿真类型和仿真参数,如直流分析、交流分析、变化频率分析等。
3. 运行仿真:通过点击仿真按钮或执行仿真命令,PSpice开始进行仿真计算。
4. 分析仿真结果:根据仿真结果生成的波形图和数据表格,分析电路的性能和行为。
电路控制描述- 电源控制:通过设置电源的电压或电流源来控制电路中的电压和电流。
- 开关控制:通过激活或关闭开关元件, 来控制电路中的电压或电流流动。
- 反馈控制:通过将电路输出信号与输入信号进行比较,并根据差异调整电路参数,实现对电路的控制。
示例下面是一个简单的PSpice仿真和电路控制的示例:* 这是一个简单的RC电路R1 N1 N2 1kC1 N2 N3 1uV1 N1 0 DC 10R2 N3 0 10k.tran 0.1ms 10ms.end通过上述示例,我们可以:1. 进行直流分析,评估电路的直流稳态行为。
2. 进行时间域分析,查看电路中各个节点的电压随时间的变化。
3. 通过改变元件参数、调整输入电压或通过反馈控制等方式,控制电路的行为和性能。
希望本文档能够帮助您了解PSpice的基础仿真分析和电路控制的相关内容。
机械电子09级学生自学用 2011/3/203 .三极管参数设 在OrCAD/PSpice 9. 2平台上电子电路设计与仿真Pspice 实践练习一:设计与仿真一个单级共射放大电路(提供的参考电路如图一所示)。
要求:放大电路有合适静态 工作点、电压放大倍数30左右、输入阻抗大于1KQ 、输出阻抗小于5. 1KQ 及通频带大于1MHZ 。
请 参照下列方法及步骤,自学完成Pspice 实践练习一。
一、启动Pspice9.2 一 Capture 一在主页下创建一个T.程项目exal 01. 选 File/New/ Project2. 建立一个了•目录f Create Dir (键入e:\zhu ),并双击、打开了目录;3. 选中• Analog or Mixed - Signal Circuit OK!4. 键入工程项目名exal ;5. 在设计项目创建方式选择对话下,选中・Create a blank pro OK!6. 画一直线,将建立空白的图形文件(cxal.sch )存盘。
二、画电路图(以单级共射放大电路为例,电路如图一所示)1. 打开库浏览器选择菜单Place/Part — Add Library提取:三极管Q2N2222 (bipolar 库或者Eval 库)、电阻R 、电容C (analog 库)、电源VDC (source 库)、模拟地 0/Source 、信号源 VSIN 。
2. 移动元、器件。
鼠标选中元、器件并单击(元、器件符号变为红色),然后压住鼠标左键拖到合 适位置,放开鼠标左键即可。
3. 删除某一元、器件。
鼠标选中该元、器件并单击(元、器件符号变为红色),选择菜单Edit/delete 。
4. 翻转或旋转某一元、器件符号。
鼠标选中该元、器件并单击(元、器件符号变为红色),可按键Ctrl +R 即可。
5. 画电路连线选择菜单中Place/wire,此时将鼠标箭头变成为一支笔(自己体会)。
电子线路实验报告
Pspice 9.2 电子电路设计与仿真
实验报告
学号:080105011128
专业:光信
班级:081班
姓名:李萍
一、启动PSpice 9.2—Capture CLS Lite Edition 在主页下创建一个工程项目lp
二、画电路图
1.打开库浏览器选择菜单Place/Part—Add Liabray,
提取:三极管Q2N2222、电阻R、电容C、电源VDC、模拟地0/Source、信号源VSIN。
2.移动元件、器件。
鼠标选中该元、器件并单击,然后压住鼠标左键拖到合适位置,放开鼠标即可。
3.翻转某一元、器件符号。
4.画电路线
选择菜单中Place/wire,此时将鼠标箭头变成一支笔。
5.为了突出输出端,需要键入标注V o字符,选择菜单Place/Net Alias—V o OK!
6.将建立的文件(wfh.sch)存盘。
三、修改元件、器件的标号和参数
1、用鼠标箭头双击该元件符号(R或C),此时出现修改框,即可进入标号和参数的设置
2、VSIN信号电源的设置:①鼠标选中VSIN信号电源的FREQ用鼠标箭头单击(符号变为红色),然后双击,键入FREQ=1KHz、同样方法即键入VoEF=0V、VAMPL=30mv。
②鼠标选中VSIN 信号电源并单击(符号变为红色)然后用鼠标箭头双击该元件符号,此时出现修改框,即可进入参数的设置,AC=30mv,鼠标选中Apply并单击,退出
3、三极管参数设置:鼠标选中三极管并单击(符号变为红色)然后,选择菜单中的Edit/Pspice Model。
打开模型编辑框Edit/Pspice Model 修改Bf为50,保存,即设置Q2N2222-X的放大系数为50。
4、说明:输入信号源和输出信号源的习惯标法。
Vs、Vi、Vo(鼠标选中Place/Net Alias)
单级共射放大电路
四、设置分析功能
1、静态
①选择菜单Pspice/New simulation Profile,在New simulation对话框下,键入Bias 用鼠标单击Create,然后在屏幕上模拟类型和参数设置框;
②在模拟类型和参数设置框下,见Analysis type栏中,用鼠标选中及单击Bias Point Detail;并在Output File Optiongs栏目下,单击选中“include detailed bias point information for nonlinear controlled sources and semiconductors”。
单击(A)及确定,返回!
2、瞬态,即时域分析
①选择菜单Pspice/New Simulation Profile,在New Simulation对话框下,键入TRAN,用鼠标单击Create,然后在屏幕上弹出模拟类型和参数设置框;
②在模拟类型和参数设置框下,见Analysis type栏中,用鼠标选中及单击Time Domain(Transient)→再键入下列数据:
Run to 4ms
Start saving data 0ms
Maximum step 20us
单击应用(A)即确定返回
3、频域分析
①选择菜单Pspice/New Simulation Profile,在New Simulation对话框下键入AC,用鼠标单击Create,然后在屏幕上弹出模拟类型和参数设置框;
②在模拟类型和参数设置框下,见Analysis type栏中,用鼠标选中及单击AC Sweep/Noise→然后,在AC Sweep type栏目下键入下列数据:
Start 10hz
End 100Meg
Points/decade=101
对于Logarithmic选项中:Decade(十倍频,取半对数坐标)
单击应用(A)即确定返回!
五、仿真前应作的准备工作
1.将建立或修改后的文件存盘
2.建立电路连接规则和建立网表文件
六、仿真
1、将图形文件还原,用鼠标选中及单击图形画面的右上角符号(中间的那个符号)。
2、电路静态工作点。
首先进入项目管理器窗口,用鼠标选中及单击SCHEMATITC-Bias,点击鼠标右键,单击make active;
①选择菜单Pspice/RUN(或用鼠标点击符号RUN)
②若无出错,便可查阅Pspice/View Output File文件,查阅静态电路工作点(
Vbe、Ib、Ic、Ice)。
关闭文件返回。
3、仿真输入/输出电压波形。
同样进入项目管理器窗口,激活TRAN图标,用鼠标选中及单击SCHEMATITC-TRAN,点击鼠标右键,单击make active;
①选择菜单Pspice/RUN(或用鼠标点击符号RUN)
②若无出错,便可观察瞬态或时域分析。
单击菜单Trace/Add Trace→弹出Add Trace对话框。
a.单击V(Vo)单击OK!返回(显示V(Vo)波形);
b.单击Plot/add plot to window添加一个波形显示框。
Trace/Add 弹出Trace对话框
键入V(Vs:+)单击OK返回返回(显示V(Vs:+)波形)
C.观察V(Vs:+)、V(Vo)波形,输出电压波形放大和失真情况,若有失真(饱和或截止失真)则退出仿真,进入电路参数修改,重复上述过程。
仿真通过,关闭程序返回。
输入/输出电压波形
4作幅频特性、相频特性、输入电阻及输出电阻特性曲线。
鼠标进入项目管理器窗口,激活AC图标,用鼠标选中及单击SCHEMATITC-AC,点击鼠标右键,单击make active;选择菜单Pspice/run。
若无出错,便可观察AC交流瞬态或频域分析。
单击菜单Trace/Add Trace→弹出Add Trace对话框。
①幅频特性
a.键入:dB(V(Vo)/ V(Vs:+)) 单击OK返回(显示幅频特性)
b.激活游标
c.确定中频区Av(dB)
d.移动游标从中频区下降约3dB时,横坐标频率值就是上限截止频率
e.计算通频带
△f=fH-fL=15051.594
(2)相频特性
幅频特性,相频特性曲线
(3)求解输入阻抗
再添加一个相移特性曲线窗口:
单击菜单Plot/add plot to window
键入:V(Vs:+)/I(Vs) 单击OK返回输入电阻Ri=2.5K
输入阻抗频率特性
4)求解输出阻抗
修改原电路,令Vs=0v 信号源短路,去掉负载Rl,外加一个信号源VSIN(400mv),即Vw,保存文件,进入仿真。
鼠标进入项目管理器窗口,激活AC图标,用鼠标选中及单击SCHEMATITC-AC,点击鼠标右键,单击make active;选择菜单Pspice/run。
若无出错,便可观察AC交流瞬态或频域分析。
单击菜单Trace/Add Trace→弹出Add Trace对话框。
键入:V(Vw:+)/I(Vw) 单击OK返回。
输出电阻Ro=5.0K
输出阻抗频率特性
七、实验心得与体会:
在做仿真实验时的最大心得就是一定要认真仔细,各个元器件也要认真进行设置与
仿真,再就是要按照课本上的步骤去做,否者就极有可能出错。