新北师大版八年级下册数学 《一元一次不等式(2)》导学案
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
【学练优】⼋年级数学下册2.4⼀元⼀次不等式的应⽤(第2课时)教案(新版)北师⼤版⼀元⼀次不等式的应⽤1.会在实际问题中寻找数量关系列⼀元⼀次不等式并求解;2.能够列⼀元⼀次不等式解决实际问题.(重点,难点)⼀、情境导⼊如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?⼆、合作探究探究点:⼀元⼀次不等式的应⽤【类型⼀】商品销售问题某商品的进价是120元,标价为180元,但销量较⼩.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打⼏折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.⽅法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型⼆】竞赛积分问题某次知识竞赛共有25道题,答对⼀道得4分,答错或不答都扣2分.⼩明得分要超过80分,他⾄少要答对多少道题?解析:设⼩明答对x道题,则答错或不答的题⽬为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设⼩明答对x道题,则他答错或不答的题⽬为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数⽽且不能超过25,所以⼩明⾄少要答对22道题.答:⼩明⾄少要答对22道题.⽅法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“⾄多”“⾄少”等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】安全问题采⽯场爆破时,点燃导⽕线后⼯⼈要在爆破前转移到400⽶外的安全区域.导⽕线燃烧速度是每秒1厘⽶,⼯⼈转移的速度是每秒5⽶,导⽕线⾄少要多少⽶?解析:根据时间列不等式,导⽕线燃烧时间>⼯⼈要在爆破前转移到400⽶外的安全区域时间.解:设导⽕线的长度需要x⽶,1厘⽶/秒=0.01⽶/秒,由题意得x0.01>4005,解得x>0.8.答:导⽕线⾄少要0.8⽶.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】分段计费问题⼩明家每⽉⽔费都不少于15元,⾃来⽔公司的收费标准如下:若每户每⽉⽤⽔不超过5⽴⽅⽶,则每⽴⽅⽶收费1.8元;若每户每⽉⽤⽔超过5⽴⽅⽶,则超出部分每⽴⽅⽶收费2元,⼩明家每⽉⽤⽔量⾄少是多少?解析:当每⽉⽤⽔5⽴⽅⽶时,花费5×1.8=9元,则可知⼩明家每⽉⽤⽔超过5⽴⽅⽶.设每⽉⽤⽔x⽴⽅⽶,则超出(x-5)⽴⽅⽶,根据题意超出部分每⽴⽅⽶收费2元,列⼀元⼀次不等式求解即可.解:设⼩明家每⽉⽤⽔x⽴⽅⽶.∵5×1.8=9<15,∴⼩明家每⽉⽤⽔超过5⽴⽅⽶.则超出(x-5)⽴⽅⽶,按每⽴⽅⽶2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:⼩明家每⽉⽤⽔量⾄少是8⽴⽅⽶.⽅法总结:分段计费问题中的费⽤⼀般包括两个部分:基本部分的费⽤和超出部分的费⽤.根据费⽤之间的关系建⽴不等式求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型五】调配问题有10名菜农,每⼈可种甲种蔬菜3亩或⼄种蔬菜2亩,已知甲种蔬菜每亩可收⼊0.5万元,⼄种蔬菜每亩可收⼊0.8万元,要使总收⼊不低于15.6万元,则最多只能安排多少⼈种甲种蔬菜?解析:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.甲种蔬菜有3x亩,⼄种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4⼈种甲种蔬菜.⽅法总结:调配问题中,各项⼯作的⼈数之和等于总⼈数.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型六】⽅案决策问题为了保护环境,某企业决定购买10台污⽔处理设备.现有A、B两种型号的设备,其中每台的价格、⽉处理污⽔量及年消耗费如下表.经预算,该企业购买设备的资⾦不⾼于105万元.(1)请你设计该企业有⼏种购买⽅案;(2)若企业每⽉产⽣的污⽔量为2040吨,为了节约资⾦,应选择哪种购买⽅案.解析:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳⽅案.解:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x 取⾮负整数,∴x可取0,1,2,有三种购买⽅案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资⾦为12×1+10×9=102(万元);当x=2时,购买资⾦为12×2+10×8=104(万元).答:为了节约资⾦,应选购A型1台,B型9台.⽅法总结:此题将现实⽣活中的事件与数学思想联系起来,属于最优化问题,在确定最优⽅案时,应把⼏种情况进⾏⽐较.变式训练:见《学练优》本课时练习“课后列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引⼊,激发学⽣的学习兴趣,让学⽣积极参与,讲练结合,引导学⽣找不等关系列不等式.在教学过程中,可通过类⽐列⼀元⼀次⽅程解决实际问题的⽅法来学习,让学⽣认识到列⽅程与列不等式的区别与联系.。
北师大版数学八下2-6一元一次不等式组(2)教学设计【课标与教材分析】:课标要求:1.内容标准:会用数轴确定由两个一元一次不等式组成的不等式组的解集。
2.能力目标:通过用不等式表述数量关系的过程,体会不等式的模型思想,建立符号意识;经历借助数轴确定不等式组的解集的过程,初步建立几何直观。
体验解一元一次不等式组方法的多样性,掌握解一元一次不等式组的基本方法。
教材分析:本课内容属于数与代数领域的(二)方程与不等式中第2部分“不等式与不等式组”。
本节课是八年级下册第一章《一元一次不等式和一元一次不等式组》第6节第二课时内容。
教材首先通过“做一做”的情景引入,进一步感受不等式组解的意义。
通过具体例题展示了由两个一元一次不等式所组成的不等式组的解集的四种情况.并对确定不等式组解集的方法进行归纳总结。
【重点】:能利用数轴正确求出一元一次不等式组的解集。
理解不等式组的解集有四种情况,能根据具体题目总结出解不等式组口诀,并能简单应用。
【难点】:理解不等式组的解集有四种情况,能根据具体题目总结出解不等式组的口诀,并能简单应用。
思想方法分析:本节课让学生进一步感受不等式是解决现实问题的有效数学模型。
通过借助数轴来确定一元一次不等式组的解集,让学生通过数形结合来感受几何直观的优越性,从而突出重点。
通过对两个一元一次不等式所组成的不等式组的解集的四种情形的分析总结,并用字母表示规律,进一步发展学生的符号意识。
本节课中突出培养的是学生的符号意识、几何直观和模型思想。
【学情分析】:学生已经知道的:已掌握解一元一次不等式组的方法步骤,能借助数轴解简单的一元一次不等式组。
学生能自己解决的:能借助数轴解由两个一元一次不等式所组成的一元一次不等式组。
需要教师指导解决的:通过借助数轴解由两个一元一次不等式所组成的一元一次不等式组,引导学生对不等式组中每个不等式的解集和这个不等式组的解集进行分析总结,得到确定不等式组解集的方法口诀。
(二)多数学生对于含字母参数的不等式组中字母取值范围的问题,存在思维障碍。
课题:11.6一元一次不等式组(二)一、教学目标:1.知识与技能:(1)进一步巩固解一元一次不等式组的过程.(2)总结解一元一次不等式组的步骤及四种情形.2.过程与方法:(1)能运用不等式组解决简单的实际问题,培养学生独立思考的习惯;(2)通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.3.情感态度与价值观:把数学知识与现实生活相联系,让学生体会数学与人类生活的密切联系及对人类历史发展的作用,增强他们学数学的兴趣和积极性,从而更好地服务于社会.二、教学重点、难点:重点:利用数轴确定一元一次不等式组的解集.难点:明确不等式组解集的四种情形并能清晰地阐述自己的观点. 三、教具:导学案,PPT ,投影仪四、课型:新授课 课时:1课时 五、教学方法: 自主学习与小组探究相结合共案个性修改六、教学过程: (一)5分钟素养:《伴你学》P130,第1-6题。
(二)目标认同:(1)进一步巩固解一元一次不等式组的过程. (2)总结解一元一次不等式组的步骤及四种情形. 导入新课: [师]上节课我们已经学习了如何解由两个一元一次不等式组成的不等式组的解法,本节课我们将继续加强解法的熟练性和准确性,同时还要全面地对所有解的情况进行总结. (三)自主学习:P156。
例4、⎩⎨⎧<>-621113x x )2()1( [解]解不等式(1),得x >4.解不等式(2),得x <3.在同一条数轴上表示不等式(1),(2)的解集如图4:图4 所以,原不等式组的解集为空集即无解. (四)合作探究:例5、求不等式的整数解:合作讨论:通过刚才的解题,你认为解不等式组的方法步骤是什么?1、解一元一次不等式的步骤为:去分母,去括号,移项、合并同类项,系数化成 1.要注意的是在去分母和系数化成1这两步中不等号方向是否改变.2、解一元一次不等式组的步骤为:分别求出两个一元一次不等式的解集,在数轴上确定它们的公共部分,从而得出不等式组的解集.例5:解一:转化为不等式组求解集。
《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。
2.总结解一元一次不等式组的步骤及情形。
3.理解与掌握一元一次不等式组的解集及其应用。
一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。
五、牛刀小试内容见PPT 。
六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。
1.4 一元一次不等式导学案(二) 主备人:王军 审核人: 姓名 班级学习目标:1、会用一元一次不等式解决简单的实际问题。
2、进一步熟练解一元一次不等式,体会实际问题对解集的影响。
学习重点:一元一次不等式的解法;解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向学习难点:进一步熟练解一元一次不等式,体会实际问题对解集的影响预习导学:1、什么是一元一次不等式?2、列一元一次方程解应用题的步骤是怎样的?3、解下列不等式,并把解集分别表示在数轴上。
123x x -< 2322x x -<+合作探求:1、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错了或不答一道题扣1分.在这次竞赛中小明被评为优秀(85分或85分以上),小明至少答对了几道题?思考:用一元一次不等式解决实际问题的一般步骤是什么?2、小颖准备用21元钱去买笔和笔记本。
已知每支笔3元,每个笔记本2.2元。
现在她已经买了2个笔记本,剩下的钱用来买笔,她还可以买几只笔?归纳总结利用不等式解应用题时,出现较多的是至少(≥),至多(≤),不足(<),超过(>)等关键词。
要善于抓住这些表示不等关系的词语,列出不等式。
列一元一次不等式解应用题的步骤和列一元一次不方程解应用题的步骤是一样的。
另外还要考虑是否符合实际问题。
当堂检测:(必做题)1、用不等式表示下列各题:(1)x 的2倍与它的一半的差是非负数 ; (2)x 与3差的平方不足9;(3)x 的31与5的差介于3和8之间 ; (4)x 的3倍不超过y 的212、某次数学知识竞赛中,共有16道问答题,评分标准是:答对一道题得6分,答错一道题倒扣2分,不答不扣分.小明同学有一道题未答,那么他至少答对多少道题,才能得到60分以上的成绩?选做题:3、小明骑自行车去姥姥家,每小时走12千米。
一小时后,小明的爸爸发现小明忘记带钥匙了,立即骑摩托车去送,问要在20分钟内追上,爸爸至少以多少的速度追赶?课后作业:1、某容器装了一些水,先用去了4升,然后又用了剩下的一半。
2.4 一元一次不等式(二)
一、问题引入:
1.不等式的左右两边都是,只含有未知数,并且未知数的,像这样的不等式,叫做一元一次不等式.
2.解一元一次不等式的一般步骤是:①;②;③;
④;⑤.
3.列一元一次不等式解决实际问题的一般步骤是:①;②;
③;④;⑤.
二、基础训练:
1.2x+1是不小于-3的负数,表示为()
A.-3≤2x+1≤0 B.-3<2x+1<0 C.-3≤2x+1<0 D.-3<2x+1≤0
2.不等式
732
1
22
x x
--
+<的负整数解有()
A.1个B.2个C.3个D.4个
3.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()
A.30x-45≥300 B.30x+45≥300 C.30x-45≤300 D.30x+45≤300
三、例题展示:
例1:一次环保知识竞赛共有25道题目,规定答对一题得4分,答错或者不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或者85分以上),小明至少答对了几道题目?
例2:小王准备用21元钱买笔和笔记本,已知每支笔3元钱,每个笔记本2.2元钱,他买了2个笔记本,请你帮他算一算,她还可以买几支笔?
四、课堂检测:
1.(佛山)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔.
A 、1
B 、2
C 、3
D 、4
2.(潍坊)幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;
若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 _____________件.
3.(陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买 瓶甲饮料。
4.(江苏淮安)解下列不等式:22
1+≥
+x x ,并把解集在数轴上表示出来.
5. 当x 为何值时,代数式的值。
的值大于21)3(21x x --
6.(湖南益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输。
“益阳”车队有载重量为8吨、10吨的卡车共有12辆,全部车辆运输一次能运输110吨沙石.
(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,
准备新增购这两种卡车共6辆,车队有多少购买方案,请你一一写出.。