电子电路设计及仿真
- 格式:doc
- 大小:863.50 KB
- 文档页数:27
电子电路设计中的仿真与验证方法电子电路设计是一项关键的技术活动,涉及到各种电子设备和系统的开发。
在电子电路设计的过程中,一项非常重要的任务就是进行仿真与验证。
通过仿真与验证,设计工程师可以在实际制造和测试之前,通过计算和模型来验证电路的性能和可靠性。
下面将详细介绍电子电路设计中的仿真与验证方法。
1. 仿真方法- 模拟仿真:模拟仿真是一种基于连续时间的方法,通过建立电路的数学模型,并使用模拟器进行计算来模拟电路的工作原理和性能。
在模拟仿真中,设计工程师可以调整参数和条件,观察电路的输出响应,以便对电路进行优化和改进。
- 数值仿真:数值仿真是一种基于离散时间的方法,通过将时间和电压等连续信号离散化成数字,然后使用计算机进行数值计算来模拟电路的工作原理和性能。
数值仿真方法通常使用电路仿真软件,如PSPICE、MATLAB等来进行电路的仿真计算。
2. 验证方法- 物理验证:物理验证是将电路设计转化为实际物理器件的过程。
设计工程师通过制造和测试电路板或芯片的方式,来验证电路的性能和可靠性。
物理验证包括电路布局布线、元器件选择、电路板制造和测试等环节。
- 逻辑验证:逻辑验证是验证电路的逻辑正确性和功能。
设计工程师通过使用逻辑仿真软件,如Verilog、VHDL等,来验证电路的逻辑设计是否符合要求。
逻辑验证方法通常通过对电路进行状态模拟和时序分析来实现。
- 时序验证:时序验证是验证电路的时序要求和时序约束是否满足的过程。
设计工程师通过使用时序仿真软件,如Synopsys、Cadence等,来验证电路的时序设计是否满足时序要求。
时序验证方法通常通过对电路进行时钟域分析和时序路径分析来实现。
3. 仿真与验证流程- 确定设计目标:在进行仿真与验证之前,首先需要明确电路的设计目标,包括电路的功能要求、性能指标和可靠性要求等。
- 建立电路模型:根据设计目标,设计工程师需要建立电路的数学模型或逻辑设计模型,包括电路拓扑结构、电路元器件和参数等。
电子技术仿真课程设计一、课程目标知识目标:1. 学生能理解并掌握电子电路的基本原理,包括欧姆定律、基尔霍夫定律等。
2. 学生能了解并运用常见的电子元件,如电阻、电容、二极管、晶体管等,并能解释其在电路中的作用。
3. 学生能掌握电子电路仿真软件的基本操作,进行电路设计与仿真。
技能目标:1. 学生能够运用所学知识,设计简单的电子电路,并进行仿真分析。
2. 学生能够通过软件操作,优化电路设计,解决实际电路问题。
3. 学生能够运用所学知识,对电子电路进行故障排查和性能评估。
情感态度价值观目标:1. 学生培养对电子技术的兴趣,激发创新意识,提高实践能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神。
3. 学生能够关注电子技术领域的发展,认识到电子技术在生活中的应用和价值。
本课程针对高中年级学生,结合电子技术课程内容,注重理论与实践相结合,培养学生动手操作能力和实际问题解决能力。
课程目标旨在使学生在掌握基本电子电路知识的基础上,通过电子电路仿真软件的应用,提高电子技术实践能力,激发创新思维,为未来进一步学习电子技术及相关领域奠定基础。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电子电路基础知识:- 欧姆定律、基尔霍夫定律的原理与应用。
- 常见电子元件(电阻、电容、二极管、晶体管等)的特性和用途。
2. 电子电路设计与仿真:- 电路图绘制方法与规范。
- 电子电路仿真软件(如Multisim、Proteus等)的基本操作。
- 仿真分析的基本步骤和技巧。
3. 实践操作与故障排查:- 简单电子电路的设计与搭建。
- 电路性能测试与优化。
- 常见故障分析与排查。
教学内容依据教材相关章节进行组织,具体安排如下:- 第一章:电子电路基础知识(1课时)- 第二章:电子电路设计与仿真(2课时)- 第三章:实践操作与故障排查(2课时)教学内容注重科学性和系统性,结合课程目标,旨在帮助学生掌握电子电路的基本原理和设计方法,培养实际操作能力,提高问题解决技巧。
第12章数字电子技术仿真软件Multisim 2001电路设计与仿真应用12.1 Multisim 2001软件介绍Multisim 2001是加拿大交互图像技术有限公司(IIT公司)推出的最新版本,其前身是EWB5.0(电子工作平台)。
目前我国用户所使用的Multisim2001以教育版为主。
Electronics Workbench 公司推出的以Windows为系统平台的板级仿真工具Multisim,适用于模拟/数字线路板的设计,该工具在一个程序包中汇总了框图输入、Spice仿真、HDL设计输入和仿真、可编程逻辑综合及其他设计能力。
可以协同仿真Spice、Verilog和VHDL,并能把RF设计模块添加到成套工具的一些版本中。
整套Multisim工具包括Personal Multisim、Professional Multisim、Multisim Power Professional等。
这种仿真实验是在计算机上虚拟出一个元器件种类齐备、先进的电子工作台,一方面可以克服实验室各种条件的限制,另一方面又可以针对不同目的(验证、测试、设计、纠错和创新等)进行训练,培养学生分析、应用和创新的能力。
与传统的实验方式相比,采用电子工作台进行电子线路的分析和设计,突出了实验教学以学生为中心的开放模式。
12.1.1 M ultisim 2001软件操作界面启动Multisim 2001软件后,首先进入用户界面如图12-1所示,Multisim 2001的界面基本上模拟了一个电子实验工作平台的环境。
下面分别介绍主操作界面各部分的功能及其操作方法。
图12-1 Multisim 2001的基本界面1. 系统工具条图12-2所示为Multisim 2001的系统工具条,可以看出,其风格与Windows软件是一致的。
系统工具条中各个按钮的名称及功能如下所示。
2.设计工具条Multisim 2001的设计工具条如图12-3所示,它是Multisim的核心工具。
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
电子电路的仿真与设计电子电路在现代科技中起着至关重要的作用,无论是通信、信息技术、医疗设备还是太空探索和军事装备等领域,都离不开电子电路。
而电子电路设计的核心环节之一便是电路的仿真,通过仿真来验证电路的性能和稳定性,以便于在实际应用中避免出现故障。
本文将就电子电路的仿真与设计展开讨论。
一、电子电路仿真的重要性电子电路的仿真是电路设计中至关重要的一步,它可以有效地验证电路的性能和稳定性,以便于在实际应用中避免出现故障。
在电路设计的早期阶段,需要进行仿真分析来评估电路的可行性和性能指标是否符合要求。
通过仿真可以快速评估电路的参数变化对电路性能造成的影响,比如电路的频率响应和幅度响应等。
同时,仿真还可以确定电路中存在的问题,并通过调整电路参数来优化电路性能,从而达到更好的效果。
目前市面上有许多电子电路仿真工具,比如SPICE仿真软件、MATLAB仿真工具、Multisitm仿真工具等。
这些工具以其可模拟各种类型电路的特点受到广泛的应用。
二、电子电路设计的步骤电子电路设计的步骤通常包括以下几个方面:1. 电路功能需求分析在进行电路设计之前,需要了解电路的功能需求,包括电路的输入、输出、作用和响应等。
通过分析电路的功能需求,可以为电路设计提供更加准确的方向和目标,使电路设计更加高效和有效。
2. 电路参数计算在电路设计中,需要确定一些基本元件的参数,比如电阻、电容和电感等。
这些基本元件的参数取值将直接影响电路的性能和稳定性。
因此,需要进行准确的电路参数计算来保证电路的性能和稳定性。
3. 电路模型建立电路的模型是电路设计过程中的重要组成部分,它可以通过仿真分析来验证电路的性能和稳定性。
在建立电路模型时,需要根据电路的特点选取合适的元器件进行连接。
4. 电路参数仿真在电路设计过程中,需要进行电路参数仿真,通过仿真来验证电路的性能和稳定性。
在进行电路仿真时,需要演示各种情况下电路的工作状态,以确保电路的性能和稳定性。
基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。
我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。
通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。
我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。
然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。
接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。
我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。
通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。
本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。
二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。
它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。
本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。
MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。
用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。
工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。
电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。
结果输出区则用于显示仿真结果和数据分析。
proteus电路设计与虚拟仿真流程Proteus是一款广泛使用的电路设计和仿真软件,它为电子工程师提供了完整的解决方案,从电路绘图到电路验证,再到实际物理电路的原型制作。
Proteus的工作流程主要分为四个步骤:设计、仿真、调试和布线。
下面我们将逐一介绍这四个步骤。
一、设计在Proteus中进行电路设计时,我们可以利用软件内置的元件库和部件进行电路图的绘制。
我们可以从库中选择所需的元件,并将其进行拖放,然后将它们连接在一起,以构建电路原理图。
Proteus软件支持多种元件,包括模拟元件(模拟器)和数字元件(程序模拟器)等。
二、仿真电路仿真是电子电路设计最好的解决方案。
Proteus中的仿真器非常强大,可以模拟实际电路系统,并帮助用户预测电路的行为。
这个步骤将电路原理图转换为电路模型,应用于Proteus的仿真器中。
仿真器可以模拟各种电路元件的行为和相互作用,并将其结果实时显示在仿真结果窗口中。
三、调试调试是使用Proteus软件的核心任务之一。
在该步骤中,我们可以分析和检查仿真结果以及元件的行为,以识别潜在的问题并对电路进行改进。
在调试过程中,我们可以更改元件的参数、初始化值、输入信号等,以测试电路的反应并逐步优化电路。
四、布线在该步骤中,我们可以根据前面步骤中的电路原理图进行物理布线,此步骤可以在印刷电路板(PCB)原型中实现。
Proteus中内置了布线工具,用户可以快速布线,还可以对布线进行优化,以便优化整个系统的性能。
总之,Proteus为电子工程师提供了一个完整的解决方案,可以帮助他们从电路设计到实际物理电路的制作。
电子工程师可以通过使用Proteus来节省时间和成本,以及对电路进行更好的优化和设计。
电子技术基础实验-电子电路实验设计仿真第二版课程设计1. 课程目标本课程在电子电路基础知识的基础上,通过实验设计和仿真,让学生深入理解电路原理和电路运行机制,提高学生的实验设计和实际操作能力,培养学生探究问题、解决问题的意识。
2. 课程内容本课程的主要内容包括:1.电子电路的基本元件、电路基本定律和分析方法;2.常见电路的电路分析、设计和仿真;3.电路实验设计和操作,学生需自行完成电路原理和电路设计,并进行仿真和实验验证。
3. 课程教学模式本课程采用“理论讲解+设计仿真+实验操作”的教学模式。
具体要求如下:1.理论讲解采用课堂教学和在线教学相结合的模式;2.设计仿真和实验操作主要在实验室进行,学生需自行完成电路原理、电路设计和仿真,教师及时给予指导和辅导;3.课程作业由电路设计、仿真和实验操作三部分组成,每部分占一定比例,最终成绩以综合评定为准。
4. 课程作业要求本课程作业包括电路设计、仿真和实验操作三部分,具体要求如下:4.1 电路设计1.设计一个简单直流电路,该电路要求具有输入、处理和输出三个部分,其中输入部分为一个恒压源,输出部分为一个负载,并在处理部分加入至少一个电路元件(如电阻、电容、二极管等);2.设计一个简单交流电路,该电路要求具有输入、处理和输出三个部分,其中输入部分为一个交流信号源,输出部分为一个负载,并在处理部分加入至少一个电路元件(如电阻、电容、二极管等);3.对设计的直流电路和交流电路进行仿真,并分析仿真结果是否符合设计要求。
4.2 电路实验操作1.学生根据电路设计要求,在实验室内完成电路的组装和调试;2.对组装调试成功的电路进行实验验证,记录实验数据并进行分析和比较;3.将实验结果与设计仿真结果进行对比分析,分析实验结果的准确性和可靠性。
5. 教学资源本课程所需教学资源包括:1.电路设计和仿真软件(如Multisim、Proteus等);2.电路实验器材(如函数发生器、示波器、万用表等);3.教师讲解课件和实验指导书;4.电子技术实验室。
电子电路设计中EMCEMI的模拟仿真在电子电路设计中,EMC/EMI的模拟仿真主要有以下几个方面:1.电磁辐射仿真:这是模拟和分析电子设备可能产生的电磁辐射场的方法。
通过计算电流分布,电磁辐射电场和磁场的强度,可以评估电子设备在操作过程中可能产生的辐射水平。
在设计过程中,可以根据仿真结果进行必要的修改和优化,以确保设备的辐射水平符合EMC标准。
2.电磁耦合仿真:电子设备之间存在相互之间的电磁干扰。
通过电磁耦合仿真,可以评估电子设备在正常运行状态下是否会相互干扰。
例如,一个设备的高频信号可能会干扰到附近的设备,导致其输出信号的质量下降。
通过仿真,设计工程师可以优化电子设备中的布线和互连方式,减少干扰。
3.辐射引入仿真:电子设备接收到来自其他设备的电磁辐射也可能导致干扰,这种情况下就需要进行辐射引入仿真。
通过仿真,可以评估设备对外部辐射的感受程度,设计工程师可以采取相应的措施,如屏蔽和滤波等,以减小对外部辐射的敏感性。
4.传导干扰仿真:传导干扰是指电子设备上的信号通过电缆、互连线和引脚等传导到其他设备上产生的干扰。
通过传导干扰仿真,可以模拟和评估这些传导路径上的干扰情况,找出哪些路径是最敏感的,设计工程师可以在设计过程中优化这些路径,减少干扰。
在进行EMC/EMI的模拟仿真时,设计工程师需要使用专业的仿真软件和工具,如ANSYS、CST Studio Suite、Altium Designer等。
这些工具能够提供各种电磁仿真方法和技术,帮助设计工程师全面评估电子设备的EMC/EMI性能。
总结起来,EMC/EMI的模拟仿真在电子电路设计中起着至关重要的作用。
通过仿真,设计工程师可以预测和解决可能存在的EMC/EMI问题,避免设计错误,提高产品的性能和可靠性。
随着电子设备的不断减小并且越来越复杂,EMC/EMI的模拟仿真在电子电路设计中的重要性也越来越凸显。
电子电路设计与仿真作业指导书一、引言电子电路设计与仿真是电子工程领域中重要的一门技术,通过设计和仿真可以帮助工程师进行电路的性能评估和优化。
本指导书旨在为学生提供电子电路设计与仿真作业的具体指导,让学生掌握基本的电路设计、仿真和分析能力。
二、实验环境搭建1. 软件安装为完成电子电路设计与仿真作业,学生需要安装电路设计软件,推荐使用SPICE软件,如ORCAD、Multisim等。
请自行选择合适的软件版本,按照安装向导进行软件安装。
2. 环境配置首次使用电路设计软件时,需要进行环境配置。
配置包括设置工作目录、库文件路径等。
请根据软件的具体要求进行配置,保证软件可正常运行。
三、实验内容及步骤1. 电路设计根据作业要求,学生需要完成特定电路的设计。
以示例电路“放大器设计”为例,以下说明电路设计的步骤。
1.1 确定电路功能和性能要求首先,了解电路的功能和性能要求。
例如放大器设计,需要确定放大倍数、工作频率等参数。
1.2 选择电路拓扑结构根据功能和性能要求,选择合适的电路拓扑结构。
常见的放大器有共射放大器、共基放大器、共集放大器等,选择合适的拓扑结构有助于满足设计要求。
1.3 电路参数计算根据选择的电路拓扑结构,计算电路所需的参数。
例如,根据放大倍数计算电路的电阻、电容值。
1.4 电路元件选取根据参数计算结果,选取合适的电子元件。
通常可以选择市场上常见的元器件,但应注意元器件的规格是否满足设计要求。
1.5 电路元件布局将选取的电子元件按照电路拓扑图布局,并进行连接。
连接可以通过引线、电缆等方式实现。
2. 电路仿真完成电路设计后,需要进行仿真验证。
以下是电路仿真的步骤。
2.1 构建电路模型将已设计的电路转化为仿真模型。
根据实际软件的操作方法,添加电子元件、参数设置等。
2.2 输入信号设置设置输入信号的波形、频率、幅值等参数。
2.3 运行仿真运行仿真并观察仿真结果。
根据仿真结果进行电路性能的评估,如放大器的增益、带宽等。
电子工程学中的集成电路设计与模拟仿真集成电路是电子工程学中的重要研究领域,它涵盖了电子器件、电路设计与模拟仿真等方面,为电子产品的研发与应用提供了关键支持。
本文将从集成电路的定义、设计流程、常见设计工具以及模拟仿真技术等方面进行详细介绍。
一、什么是集成电路?集成电路(Integrated Circuit,IC)是由多个电子器件(如晶体管、二极管等)以及电阻、电容等 passivating 和 interconnecting 元件组成,通过微影等工艺集成在一块芯片上。
集成电路的制造工艺分为可以分为N、P两类,其中N型工艺的耐压能力和速度优于P型工艺。
二、集成电路设计流程一个成功的集成电路设计需要经历以下几个关键步骤:1. 需求分析:根据产品的需求确定所需的集成电路功能和性能指标,并明确设计任务的范围和实施计划。
2. 电路设计:根据需求分析的结果,设计电路的框架、结构和拓扑关系。
这一步骤需要考虑到电路的稳定性、功耗、噪声等方面的因素。
3. 电路模拟:利用专业的模拟仿真软件,对设计的电路进行性能验证和优化。
通过模拟仿真,可以快速发现电路设计中存在的问题,调整电路结构,以达到设计要求。
4. 物理设计:在进行电路物理设计时,需要根据电路原理图绘制版图,并进行电路布线和布局。
这一步骤需要考虑到集成电路各部分的位置关系、电磁兼容性和供电分布等因素。
5. 制造与测试:将设计好的版图提交给集成电路制造厂商进行生产。
生产出的集成电路芯片将进行参数测试和性能验证,确保其符合设计规格。
三、常见的集成电路设计工具目前,市场上有许多专业的集成电路设计工具可供使用,比如Mentor Graphics 的 PADS,Cadence Design Systems 的 OrCAD,Synopsys 的 HSPICE 等。
这些工具提供了直观易用的界面,支持电路建模、仿真验证、版图绘制和物理设计等功能,极大地方便了集成电路设计人员的工作。
电子技术专业微型课程电子电路设计与仿真实验电子电路设计与仿真实验是电子技术专业中重要的一门课程,通过实验,学生能够深入了解电子电路设计的原理和方法,掌握电子电路仿真软件的使用,提高自己的实践动手能力。
本文将围绕电子电路设计与仿真实验展开论述,包括实验的目的、步骤和主要内容。
一、实验目的电子电路设计与仿真实验的主要目的是让学生通过实验了解电子电路的基本概念、特性及其在电子技术中的应用。
具体包括以下几个方面:1. 理解电子电路的概念和基本原理;2. 掌握常见电子元器件的特性和使用方法;3. 学习电子电路的设计思路和方法;4. 掌握电子电路仿真软件的使用;5. 提高动手实践能力,培养解决实际电路设计问题的能力。
二、实验步骤1. 实验前的准备:学生需要提前学习相关理论知识,了解电子电路的基本原理和设计思路。
同时,还需要了解本次实验的具体内容和要求。
2. 实验器材与元器件准备:学生需要准备实验所需的电子器材和元器件,比如电阻、电容、二极管、晶体管等等。
确保实验过程中所需的器材和元器件全部准备齐全。
3. 电子电路设计:根据实验的要求,学生需要进行电子电路的设计。
设计过程中,需要合理选择元器件,计算电路参数,绘制电路原理图等。
4. 电路仿真实验:将设计好的电路连接到电子电路仿真软件中,进行仿真实验。
通过仿真实验,可以观察电路的特性曲线和波形图,并进行相应的数据分析。
5. 实验结果分析和总结:根据实验结果,学生需要进行结果分析和总结。
分析实验数据,比较设计与仿真结果的差异,找出问题所在,并提出改进措施。
三、实验内容电子技术专业微型课程电子电路设计与仿真实验的内容丰富多样,根据不同的实验目的和要求,可以包括以下几个方面:1. 基础电路实验:如放大电路实验、滤波电路实验等,通过实际搭建电路和仿真实验,观察电路的特性和性能。
2. 信号处理实验:如信号调制与解调实验、信号发生器和示波器的应用实验等,通过实验了解信号处理的基本原理和方法。
信息与电气工程学院通信工程CDIO一级项目设计说明书(2014/2015学年第二学期)题目:电子电路设计及仿真班级组数:学生姓名:学号:设计周数:14周2015年5月31日一、电源设计直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成,变压器把市电交流电压变成为直流电;经过滤波后,稳压器在把不稳定的直流电压变为稳定的直流电流输出。
本设计主要采用单路输出直流稳压,构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电变为稳定的直流电,并实现固定输出电压5V。
1.1设计要求1.1.1 输入:~220V,50Hz;1.1.2 输出:直流 5V(1组)1.2设计过程1.2.1直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波、稳压电路变成平滑,脉动小的直流电,即将交流成分滤掉,保留其直流成分。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。
1.2.2直流稳压电源原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图1.1。
工频交流脉动直流 直流负载图1.1 直流稳压电源方框图其中(1)电源变压器是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变化由变压器的副边电压确定。
(2)整流电路,利用二极管单向导电性,把50Hz的正弦交流电变换成脉动的直流电。
电路图如1.2。
图1.2整流电路图在U2的正半周内,二极管D1、D3导通,D2、D4截止;U2的负半周内,D2、D4导通,D1、D3截止。
正负半周内部都有电流流过的负载电阻RL,且方向是一致的。
电路的输出波形如图1.3所示图1.3输出波形图(3)滤波电路整流电路输出电压虽然是单一方向的,但是含有较大的交流成分,不能适应大多数电子电路及设备的需要。
因此,一搬在整流后,还需利用滤波电路将脉动的直流电压变为平滑的直流电压。
电容滤波是最常见的滤波电路,在整流电路的输出端并联一个电容即构成电容滤波电路,如图1.4所示。
图1.4滤波电路滤波电容容量较大,因而一般均采用电解电容,本次我们选用4700uF的电容。
电容滤波电路是利用电容的充放电原理达到滤波的作用.在脉动直流波形的上升段,电容C充电,由于充电时间常数很小,所以充电速度很快;在脉动直流波形下降段,电容C放电,由于放电时间常数很大,所以放电速度很慢.在C还没有完全放电时再次开始进行充电.这样通过电容C的反复充放电实现了滤波作用,使输出电压趋于平滑,得到工作波形如图1.5所示。
图1.5电容滤波电路中二极管的电流和导通角(4)稳压电路虽然整流网电压波动时能将正弦交流电压变换成较为平滑的直流电压,但是,一方面,由于输出电压平均值取决于变压器副边电压有效值,所以当电网电压波动时输出电压也将随之波动;另一方面,由于整流滤波电路内阻存在,负载变化时,内阻上电压将产生电压,于是输出电压也将随之产生相反变化。
为了获得稳定性好的直流电压,必须采用稳压措施。
1.3电路仿真绘制电路图如图1.6所示。
图1.6 5V稳压电源电路仿真1.4电路调试注意,因为大容量电解电容由一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输出端常并入瓷介质小容量电容用来抵消电感效应,抑制高频干扰。
如图1.7所示,并入一个100nF的小电容来抵制干扰。
图1.7 5V稳压电源电路1.5电路指标测试电路仿真稳定后得到图1.8所示5V稳压源图1.8 5V稳压电源电路测试结果二、RC振荡器的设计2.1设计要求2.1.1 文氏桥振荡器;2.1.2输出:直流1KHz2.2设计过程2.2.1RC正弦振荡器原理RC串并联网络及其频率特性如图2.1。
图2.1RC串并联网络及其频率特性RC选频网络的传输函数为:令: R1=R2=RC1= C2=CRC串并联选频网络具有选频作用,它的频率响应特性由明显的峰值。
反馈网络的反馈系数为:令ωo=1/RC,则上式为由此可得F的幅频特性为F的相频特性为由上式可得RC串并联正反馈网络的幅频特性和相频特性的表达式和相应曲线如上图2.2。
由特性曲线图可知,当ω=ω0=1/RC时,正反馈系数|F|达最大值为1/3,且反馈信号Uf与输入信号U同相位,即φF=0,满足振荡条件中的相位平衡条件,此时电路产生谐振ω=ω0=1/RC为振荡电路的输出正弦波的角频率,即谐振频率fo为当输入信号Vi的角频率低于ω0时,反馈信号的相位超前,相位差φF为正值;而当输入信号的角频率高于ω0时,反馈信号的相位滞后,相位差φF为负值。
正是利用RC串并联网络这一选频特性,构成了RC桥式正弦波振荡电路。
2.2.2RC正弦振荡的电路组成(1)放大电路:保证电路能够从起振到动态平衡的过程,是电路获得一定幅值的输出量,实现能量的控制。
(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。
(3)正反馈网络:引入正反馈,使放大电路的输入信号等于反馈信号。
(4)稳幅环节:也就是非线性环节,作用使输出信号幅值稳定。
2.2.3起振条件2.2.4RC正弦波振荡电路原理图RC正弦波振荡电路原理图2.2。
图2.2 RC正弦波振荡原理图2.3电路仿真根据原理图连接得到得到图2.3所示正弦波振荡电路图。
图2.3正弦波2.4电路调试调整R4使输出波形为最大且失真最小的正弦波。
若电路不起振,说明振荡的振幅条件不满足,应适当加大R4的值;若输出波形严重失真,说明R4太大,应减小R4的值。
当调出幅度最大且失真最小的正弦波后,可用示波器或频率计测出振荡器的频率。
若所测频率不满足设计要求,可根据所测频率的大小,判断出选频网络的元件值是偏大还是偏小,从而改变R或C的值,使振荡频率满足设计要求。
2.5电路指标测试经过电路调试后得到输出波形如图2.4。
图2.4RC振荡电路输出波形三、滤波器的设计对于信号的频率具有选择性的电路称为滤波电路,它的功能是使特定频率范围内的信号通过,而阻止其他频率通过。
3.1设计要求设计无源和有源滤波器低通(包括无源和有源):高通(包括无源和有源):截至频率: 低通1KHz截至频率: 高通10MHz3.2设计过程(包括电路图)3.2.1滤波器基本原理(1)滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制。
(2)若滤波电路仅由无源元件(电阻、电容、电感)组成,则称为无源滤波电路。
若滤波电路由无源元件和有源元件(双极型管、单极型管、集成运放)共同组成则称为有源滤波电路。
无源滤波电路如图3.1图3.1无源滤波电路无源滤波器(如图3.1所示)的网络函数H(jω),又称为传递函数。
有源滤波电路如图3.2图3.2有源滤波电路图3.2所示的有源滤波电路的通带放大倍数、截止频率和品质因数分别为(3)根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。
我们把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。
而通带与阻带的分界点的频率f,称为截止频率或称转折频率。
图3.3中的Aup 为通带的电压放大倍数,f为中心频率,fCL和fCH分别为低端和高端截止频率。
A up A up通带阻带阻带通带f C f f C f阻带通带阻带通带阻带通带f CL f CH f f CL f CH f图3.3 各种滤波器的理想幅频特性3.2.2滤波器实验电路有源滤波器和无源滤波器的实验线路图如图3.4。
图3.4有源滤波器和无源滤波器的实验线路3.3电路仿真根据实验线路图连接电路,用Multisim仿真得到图3.5,图3.6,图3.7和图3.8图3.5 无源低通滤波器图3.6 无源高通通滤波器图3.7 有源低通通滤波器图3.8 有源高通通滤波器3.4电路调试用波特测试仪测量滤波器,进行调试,改变电阻或电容使低通截至频率达到1kHz。
高通截止频率到10MHZ。
3.5电路指标测试经过调试电路指标达到要求,如图3.9,图3.10,图3.11和图3.12。
图3.9无源低通滤波器波特测试图3.10无源高通滤波器波特测试图3.11有源低通滤波器波特测试图3.12有源高通滤波器波特测试四、高频小信号谐振放大电路设计4.1设计要求4.1.1谐振频率: 1MHz4.2设计过程4.2.1 电路连接如下4.2.2计算:确定静态工作点:由于发射极电流为0.1~5mA,则取:IEQ=1.5mAICQ≈IEQ=1.5mA 由于所取三极管的为150则:IBQ=IEQ/150=0.01mAURe在Vcc未给出时取值一般为1~2V,在Vcc已经给出时取0.1Vcc,这里给出Vcc为5V,则:URe=0.1Vcc=1VUCQ=0.5Vcc=2.5V, URC=0.5Vcc=2.5V求电阻:求RC(R3)和RE(R4):RC=URC/ICQ≈1.7 kΩ RE=URE/IEQ≈0.7 kΩ求电阻R1和R2:由于IR2>>IBQ,所以可以取IR2≈IR1=Vcc/(R2+R1)=0.1mV(取10IBQ) UBEQ=0.7mV 则有:UR2=UBEQ+URE=1.7V;R2=UR2/IR2=17 kΩUR1=Vcc-UR2=3.3V;R1=UR1 /IR1=33 kΩ求电容:C1=10μF; C2=10μF; C3=10μF由于谐振频率f=1MHz,则根据公式:f=1/(2π√LC),得到C3=500pF L=0.05mHUs=1v,Vcc=5v,C1=10uF,C2=10uF,4.3电路仿真4.4电路调试由于失真有些严重,经过调节,得到下图4.5电路指标测试五、高频谐振功率放大电路设计5.1设计要求5.1.1 单调谐谐振频率: 1MHz5.2设计过程5.2.1电路连接如下:5.2.2计算为使此高频功率谐振放大电路工作在丙类下,则:VBB取0.01v内阻取1kΩ,Rs=R2=1 kΩ由于为放大电路,则取Us=1v,频率f=1MHz根据f=1/(2π√LC)=1MHz,则可大概取得L=400pH C=0.0625mF5.3电路仿真5.3.1将以上数据带入,得到下图:5.3.2测试如下:5.4电路调试由于在数值上L应该大于C,所以经过调试,得到下图:5.5电路指标测试六、LC振荡电路设计6.1设计要求6.1.1 振荡频率: 1MHz6.2设计过程6.2.1电路连接如下:6.2.2计算确定静态工作点:由于发射极电流为0.1~5mA,则取:IEQ=1.5mA ICQ≈IEQ=1.5mA 由于所取三极管的为150 则:IBQ=IEQ/150=0.01mAURe在Vcc未给出时取值一般为1~2V,在Vcc已经给出时取0.1Vcc,这里给出Vcc为5V,则:URe=0.1Vcc=1VUCQ=0.5Vcc=2.5V, URC=0.5Vcc=2.5V求电阻:求RC(R3)和RE(R4):RC=URC/ICQ≈1.7 kΩ RE=URE/IEQ≈0.7 kΩ求电阻R1和R2:由于IR2>>IBQ,所以可以取IR2≈IR1=Vcc/(R2+R1)=0.1mV(取10IBQ) UBEQ=0.7mV 则有:UR2=UBEQ+URE=1.7V;R2=UR2/IR2=17 kΩUR1=Vcc-UR2=3.3V;R1=UR1 /IR1=33 kΩ求电容:C1=10μF; C2=10μF; C3=10μF由于谐振频率f=1MHz,则根据公式:f=1/{2π√LC4C5/(C4+C5)}=1MHz C4>C5 设C4/C5=5则可大概取得L=550nH C4=275nF C5=55nF6.3电路仿真6.3.1将数据修改,得到下图6.3.2测试如下:6.4电路调试6.4.1由于电路有些失真,则需要调节参数,得到以下图6.5电路指标测试最终测得如下:七、参考文献[1] 权明富,齐佳音,舒华英.客户价值评价指标体系设计[J].南开管理评论,2004,7(3):17-18。