钢结构设计原理课件 第4章 受弯构件计算
- 格式:ppt
- 大小:3.36 MB
- 文档页数:89
钢结构受弯构件的计算1.受弯构件的力学模型受弯构件通常由横截面为直角梁的矩形或者工字形钢材组成。
其在受力时,会形成弯曲形状,上部为受压区,下部为受拉区。
为了进行计算,需要将受弯构件简化为力学模型,通常采用简支梁或者悬臂梁。
2.受弯构件的受力分析受弯构件在受力时,上部会形成压应力,下部会形成拉应力。
首先需要根据施加载荷的形式和大小,进行受力分析。
常见的施加载荷有集中力、均布力、温度应变和装配应变等。
3.弯矩计算弯矩是受弯构件设计中的重要参数,用于反映材料的抗弯性能。
弯矩的计算可以通过力学平衡方程和构件截面的几何特性来进行。
对于简单的受弯构件,可以根据荷载和材料性能直接计算得到弯矩值。
对于复杂的受弯构件,需要使用力学原理和数值计算方法。
4.应力计算受弯构件在承受弯矩时,会产生应力,应力的计算是结构设计中的关键环节。
主要有弯曲应力、剪应力和轴向应力。
弯曲应力是受弯构件中最主要的应力,可以通过受弯构件的弯曲截面惯性矩和截面模量来计算。
5.抗弯设计在进行抗弯设计时,需要根据弯矩和应力的计算结果,选择合适的钢材型号和截面尺寸。
一般来说,抗弯设计要满足两个条件:第一是满足弯矩设计要求,即受弯构件在设计工况下的弯矩不超过其抗弯强度;第二是满足截面抗弯设计要求,即受弯构件的截面要满足平衡力矩和压应力的要求。
6.构件验算和优化设计抗弯设计完成后,需要进行构件验算,即检查所设计的构件是否满足强度和稳定性要求。
如果验算结果不符合要求,则需要进行优化设计,重新选择钢材型号和截面尺寸,或者改变结构形式。
综上所述,钢结构受弯构件的计算涉及受力分析、弯矩计算、应力计算、抗弯设计和构件验算等多个方面。
通过合理的计算和设计,可以确保钢结构受弯构件的安全可靠性。
钢结构受弯构件计算4.1 梁的类型和应用钢梁在建筑结构中应用广泛,主要用于承受横向荷载。
在工业和民用建筑中,最常见的是楼盖梁、墙架梁、工作平台梁、起重机梁、檩条等。
钢梁按制作方法的不同,可分为型钢梁和组合梁两大类,如图4-1所示。
型钢梁又可分为热轧型钢梁和冷弯薄壁型钢梁。
前者常用工字钢、槽钢、H 型钢制成,如图4-1(a)、(b)、(c)所示,应用比较广泛,成本比较低廉。
其中,H 型钢截面最为合理,其翼缘内外边缘平行,与其他构件连接方便。
当荷载较小、跨度不大时可用冷弯薄壁C 型钢[图4-1(d)、(e)]或Z型钢[图4-1(f)],可以有效节约钢材,如用作屋面檩条或墙面墙梁。
受到尺寸和规格的限制,当荷载或跨度较大时,型钢梁往往不能满足承载力或刚度的要求,这时需要用组合梁。
最常见的是用三块钢板焊接而成的H 形截面组合梁[图4-1(g)],俗称焊接H 型钢,其构造简单,加工方便。
当所需翼缘板较厚时,可采用双层翼缘板组合梁[图4-1(h)]。
荷载很大而截面高度受到限制或对抗扭刚度要求较高时,可采用箱形截面梁[图4-1(i)]。
当梁要承受动力荷载时,由于对疲劳性能要求较高,需要采用高强度螺栓连接的H 形截面梁[图4-1(j)]。
混凝土适用于受压,钢材适用于受拉,钢与混凝土组合梁[图4-1(k)]可以充分发挥两种材料的优势,经济效果较明显。
图4-1 梁的截面形式(a)工字钢;(b)槽钢;(c)H 型钢;(d),(e)C型钢;(f)Z型钢;(g)H 形截面组合梁;(h)双层翼缘板组合梁;(i)箱形截面梁;(j)高强度螺栓连接的H 形截面梁;(k)钢与混凝土组合梁为了更好地发挥材料的性能,钢材可以做成截面沿梁长度方向变化的变截面梁。
常用的有楔形梁,这种梁仅改变腹板高度,而翼缘的厚度、宽度及腹板的厚度均不改变。
因其加工方便,经济性能较好,目前已经广泛用于轻型门式刚架房屋中。
简支梁可以在支座附近降低截面高度,除节约材料外,还可以节省净空,已广泛应用于大跨度起重机梁中,另外,还可以做成改变翼缘板的宽度或厚度的变截面梁。
《钢结构设计规范》(GB50017—2003)学习指导第四章 受弯构件的计算§4.1 强度计算 一 规范原文4.1.1 在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗弯强度应按下列规定计算:f W M W M nyy y nx x x≤+γγ (4.1.1)式中 M x 、M y ——同一截面处绕x 轴和y 轴的弯矩(对工字形截面:x 轴为强轴,y轴为弱轴);W nx 、W ny ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数;对工字形截面,05.1=x γ,20.1=y γ;对箱形截面,05.1==y x γγ;对其他截面,可按表5.2.1采用;f ——钢材的抗弯强度设计值。
当梁受压翼缘的自由外伸宽度与其厚度之比大于y f /23513而不超过y f /23515时,应取0.1=x γ,y f 为钢材牌号所指屈服点。
对需要计算疲劳的梁,宜取0.1==y x γγ。
4.1.2 在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗剪强度应按下式计算:v wf It VSr ≤=(4.1.2) 式中 V ——计算截面沿腹板平面作用的剪力;S ——计算剪应力处以上毛截面对中和轴的面积矩;I ——毛截面惯性矩; t w ——腹板厚度;f v ——钢材的抗剪强度设计值。
4.1.3 当梁上翼缘受有沿腹板平面作用的集中荷载,且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:f l t Fzw c ≤=ψσ (4.1.3-1)式中 F ——集中荷载,对动力荷载应考虑动力系数;ψ——集中荷载增大系数;对重级工作制吊车梁,35.1=ψ;对其他梁,0.1=ψ;l z ——集中荷载在腹板计算高度上边缘的假定分布长度,按下式计算: R y z h h a l 25++= (4.1.3-2) a ——集中荷载沿梁跨度方向的支承长度,对钢轨上的轮压可取50mm ; h y ——自梁顶面至腹板计算高度上边缘的距离; h R ——轨道的高度,对梁顶无轨道的梁h R =0; f ——钢材的抗压强度设计值。