第五章 迭代法51迭代过程的收敛性 迭代加速
- 格式:ppt
- 大小:534.00 KB
- 文档页数:18
迭代法编辑迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法,即一次性解决问题。
迭代法又分为精确迭代和近似迭代。
“二分法”和“牛顿迭代法”属于近似迭代法。
迭代算法是用计算机解决问题的一种基本方法。
它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
目录1算法▪确定迭代变量▪建立迭代关系式▪对迭代过程进行控制▪举例2递归的基本概念和特点1算法编辑迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。
一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。
如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。
显然x*就是此方程组的解,否则称为迭代法发散。
跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。
一般如果可能,直接解法总是优先考虑的。
但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。
最常见的迭代法是牛顿法。
其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。
利用迭代算法解决问题,需要做好以下三个方面的工作:确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
一,对迭代法进行简介迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。
迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。
迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。
一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。
如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。
显然x*就是此方程组的解,否则称为迭代法发散。
跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。
一般如果可能,直接解法总是优先考虑的。
但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),(这是为什么迭代法可以求解复杂方程的原因之一)。
这时候或许可以通过迭代法寻求方程(组)的近似解(还是没有详细解释选用迭代法的原因)。
最常见的迭代法是牛顿法。
其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。
利用迭代算法解决问题,需要做好以下三个方面的工作:1.确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
复变函数迭代法的收敛性和稳定性分析首先,我们来分析复变函数迭代法的收敛性。
复变函数迭代法的收敛性取决于两个因素:初值的选择和迭代公式的选择。
对于初值的选择,通常情况下我们选择初值离所求解的收敛点较近的一个点作为初始点。
若初值选择的较好,则迭代法的收敛速度会较快。
对于迭代公式的选择,我们需要保证迭代公式的解是复平面上的函数的连续值。
只有满足该条件,才能保证迭代法的收敛性。
一般情况下,我们可以通过研究迭代公式的导数和迭代法的收敛条件来判断迭代法的收敛性。
现在,我们来分析复变函数迭代法的稳定性。
稳定性是指迭代过程中解的误差是否随着迭代次数的增加而逐渐减小。
在复变函数迭代法中,稳定性通常是通过分析迭代序列的收敛半径来确定的。
如果迭代方程的任何一个小邻域都能有收敛点,那么迭代法是稳定的;如果存在一个小邻域,该区域内的所有点都不收敛,那么迭代法是不稳定的。
此外,我们还需要考虑迭代过程是否会发散。
如果迭代过程中的解趋向于无穷大或者发散到无穷大,那么迭代法的稳定性就不能保证了。
综上所述,对于复变函数迭代法的收敛性和稳定性分析,我们需要考虑初值的选择、迭代公式的选择以及迭代过程中解的误差的减小程度。
只有在满足迭代公式的收敛条件下,初始点附近存在收敛点,并且迭代过程中解的误差随着迭代次数的增加而减小,才能保证复变函数迭代法的收敛性和稳定性。
当然,在具体的问题中,我们还需要具体分析迭代公式的特点和问题的性质,来判断复变函数迭代法的收敛性和稳定性。
在实际应用中,我们可以利用计算机进行迭代计算,通过观察迭代序列的变化情况来判断复变函数迭代法的收敛性和稳定性。
总结起来,复变函数迭代法的收敛性和稳定性分析是一个相对复杂而且具有挑战性的问题。
在实际应用中,我们需要综合考虑迭代公式的性质、初值的选择以及解的误差的减小情况,来评估复变函数迭代法的收敛性和稳定性。