第五章 迭代法51迭代过程的收敛性 迭代加速
- 格式:ppt
- 大小:534.00 KB
- 文档页数:18
迭代法编辑迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法,即一次性解决问题。
迭代法又分为精确迭代和近似迭代。
“二分法”和“牛顿迭代法”属于近似迭代法。
迭代算法是用计算机解决问题的一种基本方法。
它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
目录1算法▪确定迭代变量▪建立迭代关系式▪对迭代过程进行控制▪举例2递归的基本概念和特点1算法编辑迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。
一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。
如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。
显然x*就是此方程组的解,否则称为迭代法发散。
跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。
一般如果可能,直接解法总是优先考虑的。
但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。
最常见的迭代法是牛顿法。
其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。
利用迭代算法解决问题,需要做好以下三个方面的工作:确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
一,对迭代法进行简介迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。
迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。
迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。
一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。
如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。
显然x*就是此方程组的解,否则称为迭代法发散。
跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。
一般如果可能,直接解法总是优先考虑的。
但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),(这是为什么迭代法可以求解复杂方程的原因之一)。
这时候或许可以通过迭代法寻求方程(组)的近似解(还是没有详细解释选用迭代法的原因)。
最常见的迭代法是牛顿法。
其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。
利用迭代算法解决问题,需要做好以下三个方面的工作:1.确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
复变函数迭代法的收敛性和稳定性分析首先,我们来分析复变函数迭代法的收敛性。
复变函数迭代法的收敛性取决于两个因素:初值的选择和迭代公式的选择。
对于初值的选择,通常情况下我们选择初值离所求解的收敛点较近的一个点作为初始点。
若初值选择的较好,则迭代法的收敛速度会较快。
对于迭代公式的选择,我们需要保证迭代公式的解是复平面上的函数的连续值。
只有满足该条件,才能保证迭代法的收敛性。
一般情况下,我们可以通过研究迭代公式的导数和迭代法的收敛条件来判断迭代法的收敛性。
现在,我们来分析复变函数迭代法的稳定性。
稳定性是指迭代过程中解的误差是否随着迭代次数的增加而逐渐减小。
在复变函数迭代法中,稳定性通常是通过分析迭代序列的收敛半径来确定的。
如果迭代方程的任何一个小邻域都能有收敛点,那么迭代法是稳定的;如果存在一个小邻域,该区域内的所有点都不收敛,那么迭代法是不稳定的。
此外,我们还需要考虑迭代过程是否会发散。
如果迭代过程中的解趋向于无穷大或者发散到无穷大,那么迭代法的稳定性就不能保证了。
综上所述,对于复变函数迭代法的收敛性和稳定性分析,我们需要考虑初值的选择、迭代公式的选择以及迭代过程中解的误差的减小程度。
只有在满足迭代公式的收敛条件下,初始点附近存在收敛点,并且迭代过程中解的误差随着迭代次数的增加而减小,才能保证复变函数迭代法的收敛性和稳定性。
当然,在具体的问题中,我们还需要具体分析迭代公式的特点和问题的性质,来判断复变函数迭代法的收敛性和稳定性。
在实际应用中,我们可以利用计算机进行迭代计算,通过观察迭代序列的变化情况来判断复变函数迭代法的收敛性和稳定性。
总结起来,复变函数迭代法的收敛性和稳定性分析是一个相对复杂而且具有挑战性的问题。
在实际应用中,我们需要综合考虑迭代公式的性质、初值的选择以及解的误差的减小情况,来评估复变函数迭代法的收敛性和稳定性。
迭代方法,也称为抛掷和翻转方法,是从变量的旧值连续递归新值的过程。
与迭代方法相对应的是直接方法(或一次性解决方案),即一次解决问题。
迭代算法是计算机解决问题的基本方法。
它利用计算机的快速运行速度并适合于重复操作,并使计算机重复执行一组指令(或某些步骤)。
每次执行这组指令(或这些步骤)时,都会从原始值中得出新的变量值。
迭代方法分为精确迭代和近似迭代。
典型的迭代方法(例如“二分法”和“牛顿迭代法”)是近似迭代方法。
迭代方法的主要研究课题是为有问题的问题构造收敛的迭代方案,并分析它们的收敛速度和收敛范围。
迭代方法的收敛定理可分为以下三类:
①局部收敛定理:假设存在问题的解,则可以得出结论,当初始逼近足够接近解时,迭代方法就会收敛;
②半局部收敛定理:在不假设解存在的前提下,得出迭代法根据迭代法在初始逼近时所满足的条件收敛到问题的解;
③大规模收敛定理:得出的结论是,替换方法收敛于问题的解,而无需假设初始近似值足够接近该解。
代换法广泛用于求解线性和非线性方程,优化计算和特征值计算。
迭代过程何时结束?这是编写迭代程序时必须考虑的问题。
迭代过程不能无休止地重复。
迭代过程的控制通常可以分为两种情况:一种是所需的迭代次数是某个值,并且可以计算;另一个是无法确定所需的
迭代次数。
在前一种情况下,可以构造固定数量的循环来控制迭代过程。
在后一种情况下,有必要进一步分析结束迭代过程的条件。
常用算法——迭代法迭代法是一种常见的算法设计方法,它通过重复执行一定的操作来逐步逼近问题的解。
迭代法是一种简单有效的求解问题的方法,常用于求解数值问题、优化问题以及函数逼近等领域。
本文将介绍迭代法的基本概念、原理以及常见的应用场景。
一、迭代法的基本概念迭代法的思想是通过反复应用一些函数或算子来逐步逼近问题的解。
对于一个需要求解的问题,我们首先选择一个初始解或者近似解,然后通过不断迭代更新来逼近真实解。
迭代法的核心是找到一个递推关系,使得每次迭代可以使问题的解越来越接近真实解。
常见的迭代法有不动点迭代法、牛顿迭代法、梯度下降法等。
这些方法的求解过程都是基于迭代的思想,通过不断逼近解的过程来得到问题的解。
二、迭代法的原理迭代法的基本原理是通过不断迭代求解迭代方程的解,从而逼近问题的解。
迭代法的求解过程通常分为以下几个步骤:1.选择适当的初始解或者近似解。
初始解的选择对迭代法的收敛性和效率都有影响,一般需要根据问题的特点进行合理选择。
2.构建递推关系。
通过分析问题的特点,构建递推关系式来更新解的值。
递推关系的构建是迭代法求解问题的核心,它决定了每次迭代如何更新解的值。
3.根据递推关系进行迭代。
根据递推关系式,依次更新解的值,直到满足收敛条件为止。
收敛条件可以是解的变化小于一定阈值,或者达到一定的迭代次数。
4.得到逼近解。
当迭代停止时,得到的解即为问题的逼近解。
通常需要根据实际问题的需求来判断迭代停止的条件。
三、迭代法的应用迭代法在数值计算、优化问题以及函数逼近等领域有广泛的应用。
下面将介绍迭代法在常见问题中的应用场景。
1.数值计算:迭代法可以用于求解方程的根、解线性方程组、求解矩阵的特征值等数值计算问题。
这些问题的解通常是通过迭代的方式逼近得到的。
2.优化问题:迭代法可以应用于各种优化问题的求解,如最大值最小化、参数估计、模式识别等。
迭代法可以通过不断调整参数的值来逼近问题的最优解。
3.函数逼近:迭代法可以应用于函数逼近问题,通过不断迭代来逼近一个函数的近似解。