5700测井技术介绍—阵列感应测井原理及应用
- 格式:pdf
- 大小:761.13 KB
- 文档页数:26
5700井壁成像测井—CBIL &STAR5700-ECLIPS井壁成像测井5700井壁成像测井原理简介CBIL测井原理l CBIL仪器包括:声波发射-接收探头、电子线路、扶正器和定向器.旋转式半球型聚焦换能器按顺时针以脉冲回波的方式对井孔的整个井壁进行3600扫描测量,仪器将记录的地层的回波幅度及回波时间经定向后得到井周声波幅度和传播时间图像.用以识别、描述地层特征.l图像的井眼覆盖率可达100%。
CBIL仪器技术指标STAR测井原理l STAR测井仪是在六臂地层倾角仪基础上发展起来的。
仪器采用6个独立的极板,每个极板上分两排分布24个微电极,可测量144条微电阻率(微电导率)曲线.经数字处理可得到彩色或灰度刻度的高分辨率地层微电阻率非均质变化图像.对地层沉积、构造等地质特征进行描述。
l在8英寸井眼中,图像覆盖率可达60%。
STAR测井仪技术指标CBIL、STAR成像测井质量控制Œ测井前对CBIL仪器探头、STAR极板纽扣电极及井径进行刻度、核实检查。
对方位短节应检查井斜角、方位角以及相对方位角等变化是否灵敏,测量的数值是否可靠。
•了解记录井位所在地区的磁偏角、磁倾角等信息。
Ž成像图方位刻度正确、颜色刻度合理,图像清晰、特征明显、易辨认,反映的裂缝、溶洞、层界面等地层特征清晰,相应的方位曲线无异常变化,不得出现台阶,井斜无负值。
•同一地层常规测井曲线与成象测井图象的变化特征应有良好的一致性,曲线、图象不应出现与地层特征和井眼状况无关的抖动、跳动等异常现象。
对于由于仪器遇卡等原因而造成的图象异常,应视井眼情况进行补测。
测井中不能出现严重的由于数据通讯中断等原因造成的图象、曲线数据缺失。
•CBIL—STAR组合一起测井时,二者深度要一致。
CBIL、STAR成像测井质量控制‘进行CBIL测井时,要求井眼泥浆性能要合适,泥浆密度不能太高,尽可能减少悬浮颗粒对超声波的衰减吸收影响。
’测井过程中要求仪器居中,按井眼条件选择使用扶正器,保证仪器探头聚焦良好(对CBIL测井尤为重要),电缆张力曲线显示仪器在井下运动平稳规则。
ECLIPS-5700测井服务项目l数字井周声波成像测井l微电阻率井壁扫描成像测井l磁共振成像测井l薄层电阻率测井l多极阵列声波测井l正交偶极声波测井l高分辨率阵列感应测井l分区水泥胶结测井薄层电阻率测井——TBRT耐压(M P A)最大井眼(m m)最小井眼( m m)138558.6152TBRT应用实例l Q14井:l利用RTBR-RMLL交会图直观识别油气层。
TBRT应用实例l Q14井:l对于厚层,薄层电阻率与深侧向电阻率二者基本相同,但致密钙层在这类砂泥岩厚层的细分上利用薄层电阻率测井可以很容易识别,高阻致密钙层的RTTB远大于RD。
TBRT应用实例l Q14井:l对于厚度薄的油气层,RTTB的值远远大于深侧向电阻率RD。
l40、b1、41层RD为12-30Ωm,三孔隙度曲线没有可靠的油气指示,但RTTB达60-70Ωm以上。
三层试油,日产气51396方,累计产气39519方。
应用TBRT识别、评价薄油气层的局限l在泥浆侵入不太深的一般情况下,薄层电阻率测井对油气层有着更为优越的识别能力。
l但在泥浆侵入较深层段,由于受探测范围限制,薄层电阻率与原状地层电阻率相差较多。
这时应使用横向探测深度较大的常规双侧向测井值计算地层流体饱和度。
耐压(MPa)最大井眼(mm)最小井眼(mm)137.9533114 137.9533123MAC全波列采集l MAC仪器的单极阵列和偶极阵列各由8个接收器构成,其发射器各有两个. 在全波列测井方式下,可同时记录两套全波列和两条时差△t曲线(2ft和6in分辨率). 由单极全波列可提取纵波、横波、斯通利波等;由偶极阵列的全波列可提取地层挠曲横波.l W60-38-46井:l MAC记录的2ft时差曲线及6in时差曲线与常规声波时差曲线的直观对比。
MAC 应用实例l S116井:l利用MAC的全波列提取纵波、横波、斯通利波等的慢度、波形幅度、波至时间及衰减等,据此可以评价地层的岩性、裂缝、渗透性等特征。
阵列感应测井特点与应用分析高杰中国石油大学(北京)测井研究中心,102200摘要:阵列感应测井具有明显的优势,已经得到测井行业的普遍认可,本文结合阵列感应测井的实际应用效果,从阵列感应测井仪器设计(仪器结构、频率等)和数据处理方法入手,力图对其特点进行客观分析,对出现的问题(精度问题、泥浆影响问题、探测特性问题等)进行客观评价,为阵列感应测井仪器研制和测井资料的充分应用提供理论和方法依据。
主题词:阵列感应测井软件聚焦仪器结构环境影响测量精度前言阵列感应测井技术出现于二十世纪九十年代初,由于比传统双感应测井测量信息多、侵入反映明显、分辨率高、探测深度深、地层电阻率测量准确以及分辨油气水明显等优点,在油气勘探开发中具有良好的应用前景[1]。
目前,商用阵列感应测井仪器主要有Schlumberger公司的AIT-B和AIT-H,Baker Atlas公司的HDIL,Halliburton公司的HRAI和俄罗斯的HIL及其高频等参数测井(VIKIZ)仪器,前三家公司的仪器均在中国油气田开展测井服务。
国内许多测井公司已经购买了阵列感应测井仪器,同时,中国已经研制完成阵列感应测井仪器,目前正在推广应用。
阵列感应测井仪器已经得到测井行业的普遍认可,为了更好地进行阵列感应测井仪器系列选择、国内阵列感应测井仪器的研制和资料实际应用,有必要结合阵列感应测井的实际应用效果和特点,从阵列感应测井仪器设计和数据处理方法入手,对现有仪器进行客观分析和评价。
本文主要以AIT、HDIL和HRAI为例,进行相关问题的说明。
一、阵列感应测井仪器设计特点1.仪器结构和基本特性AIT、HDIL和HRAI的仪器结构和基本特性汇总在表1中。
表1 AIT、HDIL和HRAI的仪器结构和基本特性频率(52.65、105.3kHz);其余4个子阵列用两个频率(26.325、52.65kHz)。
28个信号。
AIT-H:1个频率,26.325kHz。
ECLIPS5700成像测井系统系统概述ECLIPS—5700(E nhanced C omputerised L ogging and I nterpretative P rocessing S ystem)测井系统由ATLAS 公司于上世纪90年代初推出的新一代成像测井系统,ECLIPS—5700成像测井系统是一种增强型计算机化的测井评价处理系统。
该系统满足了现代测井仪器阵列化、谱分析化、成像化的大规模数据处理的要求。
系统主机为2台HP C3600工作站,软件建立于分布式处理及多任务的UNIX 系统平台上,提供真正的多用户/多任务系统,允许下井仪器处理、记录、储存、显示、传送等同时进行。
具有现场快速直观处理解释功能。
经过十年的应用和发展,ECLIPS—5700成像测井系统日趋成熟,配备了较为完善的下井仪器系列,其资料采集和处理水平很高,是目前最先进的测井系统之一。
ECLIPS—5700成像测井系统,该系统是胜利测井公司于1997年由美国Wester Atlas公司引进的。
ECLIPS—5700成像测井系统又称增强型计算机测井与解释处理系统,3700系统下井仪通过改进扩展可与其兼容。
它采用菜单驱动,具备“help”功能,便于操作,ECLIPS可提供广泛的诊断,如为用户提供的可选择的电源和遥传系统诊断程序。
通过图形显示和数据处理的实时显示可不断地监视测井质量。
ECLIPS—5700成像测井系统,它代表着目前世界的最新测井技术,具有广阔的应用前景,但是由于其昂贵的售价及收费标准,在胜利油田只使用于重点探井和重点开发井。
ECLIPS—5700成像地面测井系统照片系统构成ECLIPS—5700成像测井系统主要可分为六部分一、 5753 HP3600 工作站:基于HP—UNIX操作系统的计算机,根据用户指令对输入数据完成各种处理并将其输出到各种外围设备。
二、人机交互设备(HIL):包括键盘、鼠标和双显示器等完成用户和计算机之间的联系。
阵列感应测井原理阵列感应测井(Array Induction Logging)是一种用于获取地下水文和岩性信息的测井方法。
其原理是基于电磁感应,利用工具中的多个感应线圈和测量电磁场的变化来研究地层的性质和含水情况。
本文将详细介绍阵列感应测井的原理及其应用。
一、阵列感应测井的原理阵列感应测井通过感应线圈测量地下电磁场的变化来分析地层的性质和含水情况。
其原理是基于法拉第定律和麦克斯韦方程组的电磁感应现象。
当工具经过地下时,感应线圈感应到的电磁场的变化反映了地层的电导率和磁导率的变化,从而获得地层的相关信息。
阵列感应测井工具通常由多个线圈组成,分别位于测井仪内部和侧向。
内部线圈用于感应地层中电流的分布情况,而侧向线圈则用于测量地层中电流的方向。
通过对这些电磁数据的处理和解释,可以获得地下地层的电导率和磁导率等信息。
二、阵列感应测井的应用阵列感应测井广泛应用于地下水文和岩性信息的研究。
其主要应用有以下几个方面:1. 地层电导率的研究地层的电导率是阵列感应测井的主要目标。
电导率反映了地层中的含水量和盐度等参数。
通过测量电磁场的变化,可以推断地下含水层和非含水层的位置,进而判断地下水的分布情况。
2. 岩性分析阵列感应测井还可以用于岩性分析。
不同的岩石有着不同的电导率和磁导率,因此可以通过测量电磁场的变化来判断地下岩石的类型和性质。
这对于油田勘探和开发具有重要意义。
3. 水文地质研究阵列感应测井能够提供水文地质研究中的许多重要参数,如含水层的渗透率、饱和度和盐度等。
这对于地下水资源的评估和管理非常关键。
4. 油气勘探阵列感应测井在油气勘探中也有重要的应用。
通过测量地下油气层中电磁场的变化,可以推断油气层的位置、厚度和含量等信息。
这对于油气勘探和储量评估非常重要。
总之,阵列感应测井是一种重要的地球物理勘探方法,可以提供地下水文和岩性的信息。
通过测量电磁场的变化,可以研究地层的电导率和磁导率等参数,为地下水资源评估、油气勘探和岩性分析等提供有力的支持。
水平井阵列感应测井技术研究
水平井阵列感应测井技术的原理是利用电磁场与地层之间的相互作用来测量地层电性参数。
当电磁波通过地层时,地层中的电导率将影响电磁波的传播特性,进而可以通过测量电磁波在地层中的传播速度和衰减程度来反推地层的电导率。
1.高分辨率:由于感应线圈的多点测量,可以提供更详细的地层电性参数信息,可以更准确地分辨不同地层的电性差异。
2.高灵敏度:通过对多个感应线圈测量数据的组合运算,可以消除噪音的影响,提高信号的灵敏度。
3.可高精度测井:通过对多个感应线圈测量数据的分析和解释,可以得到高精度的地层电性参数测量结果。
4.实时测井:水平井阵列感应测井技术可以实时获取地层电性参数的测量结果,提供给井下作业人员进行实时调整和决策。
该技术仍然存在一些挑战和亟待突破的问题,例如:
1.复杂地层的解释:在复杂地层中,地层电性参数的解释和解析较为困难,需要进一步的研究和改进。
2.工具设计与优化:水平井阵列感应测井工具的设计和优化是实现高精度测量的关键,需要开展更多的工具改进和测试。
3.数据解释与处理算法:水平井阵列感应测井技术产生的数据量大,对数据处理和解释算法提出了更高的要求,需要开展更多的研究和开发。
综上所述,水平井阵列感应测井技术在油气勘探和生产中具有重要的应用价值。
随着技术的不断发展和完善,相信该技术将在油气开发中发挥越来越重要的作用。
ECLIPS-5700现场操作技术要点勘探开发测井分公司2006-2-8ECLIPS-5700现场操作技术要点ECLIPS-5700成像测井技术在各区域已广泛应用,在使用过程中,由于区域要求、甲方需求以及技术人员操作技能等多方面因素影响,5700测井技术在现场应用中还存在着一些问题,根据已经出现过的问题以及一些工程、质量要求,特制定出ECLIPS-5700现场操作技术要点,望全体5700操作工程师遵照执行。
一、高分辨率感应测井1、为满足仪器居中测量,尽量减少井眼状况对浅探测电阻率曲线的影响,仪器必须加装扶正器,扶正器加在仪器探头两端,底部的可以用4341代替。
2、高分辨率感应必须和井径并测,如因井况原因无法并测的,必须征得公司与甲方同意。
3、测高分辨率感应时必须将自然电位地面电极线接好,并测出两条自然电位,其中模拟道上传的自然电位要求3514内的MODE7/SP继电器接通,因此,在仪器供电通讯正常后,必须将此继电器手动连接一次。
应选用没有3516的OCT进行测井,否则,自然电位信号干扰很大。
4、如有可能,尽量用3981所测泥浆电阻率参数进行校正。
5、仪器在搬运过程中切记不可磨碰自然电位环及玻璃钢外壳。
二、双侧向,微侧向/微球测井1、在仪器供电正常通讯后,必须进行仪器初始化操作,否则,深侧向值不对。
2、必须保障马笼头以及电缆的通断绝缘,尤其是7芯的绝缘,必须在100M欧以上,另外,10芯对外壳绝缘也必须大于500K欧以上。
3、在用3516测井时只有一条井下自然电位,不用接地面自然电位电极线,用3506测井时只有一条地面自然电位,必须接地面电极线。
地面接地线必须远离车体与地接触良好。
4、微球/微侧向推靠臂的收推必须断交流电。
在刻度微球/微侧向井径时必须将档位跳至测井档。
5、必须根据双侧向线路内的档位情况确定正确的处理参数(增强或者标准),如用增强档测量,必须在仪器组合中加上3992和3967。
6、必须在双侧向电极系两端加装扶正器、以保护电极系,另外,如井况允许,在微球/微侧向接近推靠处加装扶正器。
5700测井项目介绍ECLIPS5700成像测井系统可提供常规测井项目和成像测井项目。
常规测井项目包括:双侧向—微球型聚焦、双感应—八侧向等电阻率测井项目,补偿声波、补偿中子、补偿Z密度等孔隙度测井项目,以及自然伽玛、自然电位、井径、数字自然伽玛能谱等测井项目。
成像测井服务项目包括:数字井周声波成象测井(CBIL)、微电阻率井壁扫描成象测井(STAR,EMI、EXMI)、磁共振成象测井(MRIL-C,MRIL-P)、正交偶极子阵列声波测井(XMACII)、高分辨率阵列感应测井(HDIL,HRAI)、薄层电阻率测井(TBRT)、套管分区水泥胶结测井(SBT)等。
1、常规测井项目1)双侧向—微微球型聚焦(或双感应—八侧向)等三电阻率测井:用于测量冲洗带、侵入带和原状地层的电阻率;井间的地层对比;确定冲洗带、原状地层的含水(油)饱和度;估算地层水、泥浆滤液电阻率;阐明地层的泥质含量、致密程度等地质特征。
2)补偿中子、补偿密度(或岩性密度)、补偿声波等三孔隙度测井:确定储层的总孔隙度、有效孔隙度;并通过它们间的组合确定地层的岩性、识别气层等。
3)自然伽玛能谱测井:确定地层的粘土性质、含泥量,指示沉积环境、生油岩的有机物富集程度以及分析确定复杂岩性地层裂缝的有效性,提高地层的评价效果。
4)自然电位测井:确定地层的泥质含量、地层水电阻率;识别岩性、划分渗透性地层;用于井间地层的相关对比等。
5)自然伽玛测井:估算地层的泥质含量、指示地层的粘土变化、识别岩性、划分渗透性地层等。
6)井径测井:测量井眼变化特征,用于电阻率、孔隙度等测井资料的影响校正以及在固井时计算水泥用量。
7)井斜测井:通过对其数据的计算处理,绘制井眼轨迹图、确定井底位置。
2、新技术测井项目(成像测井项目)1)核磁共振成象测井(MRIL-C型和MRIL-P型)核磁共振成象测井仪是一种新的测井技术。
该仪器所提供的地层参数的数值,要比常规测井所提供的数值精确度高出一个数量级。
阵列感应测井方法和技术进展前言:就目前而言,测井的方法种类繁多,并且趋于系列化。
其基本的方法有电、声、放射性测井三种。
此外还有特殊方法,如电缆地层测试、地层倾角、成像、核磁共振测井。
当然还存在其他形式的测井方法,如随钻测井。
然而每种方法都只能反映岩层地质特性的某一侧面。
在实际运用中应当综合地应用多种测井方法。
[1] 阵列感应测井技术始于20世纪90年代初。
阵列感应测井技术的原理是利用阵列在接受线圈集中在一侧的好处可大大缩短仪器长度。
目前广泛应用的阵列感应测井有斯仑贝谢的AIT-A和AIT-H、Baker Altas的HDIL以及哈里伯顿的HRIA等。
与传统的双感应和双侧向相比,具有测量信息多、分辨率高、探测深度大、反映侵入直观等优点。
一、国内外研究及应用现状感应测井仪器经历了双感应测井、聚焦感应测井、阵列感应测井仪器等几个发展阶段[2]。
感应测井解决了淡水和油基泥浆井中的电阻率测量问题,由于早期的普通电阻率测井、侧向测井,只能在导电的泥浆中进行测量,有时为了获取地层原始含油饱和度信息,需要用油基泥浆或空气钻井,针对这个问题,1949年Doll提出了感应测井及其在油基泥浆井中的应用理论,该理论的根据是电磁感应原理。
如果忽略趋肤效应的影响,则依据电磁场Maxwell方程就可以推导出Doll几何因子表达式。
1962年研制出具有商用价值的双感应测井仪器,但是该测井仪器在实际应用中出现了很多问题,例如不能进行薄层分析,分辨率低,受井眼、侵入、围岩以及趋肤效应环境影响严重等,这些不足导致测井曲线不能反映实际的地层信息。
作为一维的测量和处理方法,传统的聚焦感应测井方法不能有效地消除二维的井眼、围岩,侵入等环境影响以及趋肤效应的影响。
为了解决测井方面遇到的问题,二十世纪九十年代出现了新的测井方法和测井仪器——阵列感应测井方法和阵列感应测井器。
该测井方法在测井过程中易于获取丰富的井下地层信息。
这种测井方法不仅能有效地消除二维的环境影响,获取地层的真电导率[3],而且使感应测井的应用范围更广泛,进行薄层分析和复杂的侵入解释,对油气储藏的准确评价具有重要的作用。
5700测井技术介绍——阵列声波测井原理及地质应用目录一、前言 (2)二、阵列声波测井原理 (2)1、多极子阵列声波仪器的测量原理 (2)2、交叉偶极子阵列声波仪器的测量原理 (3)3、阵列声波的测量方式 (4)4、阵列声波测井波形分析 (4)三、阵列声波的处理 (6)1、提取纵波、横波及斯通利波 (6)2、数据处理STC算法 (6)3、全波列分析处理程序 (7)四、阵列声波的基本地质应用 (8)1、利用纵波、横波及斯通利波识别裂缝 (8)2、鉴别岩性和识别气层 (9)3、在计算岩石机械特性中的应用 (10)4、压裂施工分析 (11)5、利用时滞频移识别裂缝带 (13)6、判断地层各向异性 (14)7、计算地层应力和确定应力方位 (16)五、总结及建议 (17)一、前言阵列声波仪器能够测量地层的纵波、横波、斯通利波,通过一定的数学计算方法便能提取这些波的首波传播时间,计算频散特性,从而分析出岩石的声学特性,再结合密度、泥质含量、孔隙度等曲线能够计算地层弹性力学参数、机械特性参数、泥浆参数、地层渗透率等参数,并且能够计算各向异性地层的各向异性大小和方位。
利用这些参数能够评价井眼的稳定性,评价裂缝的发育带,确定应力大小及方位,为压裂施工提供压力参数,为钻井泥浆的配制提供泥浆参数,并能判断岩石裂缝的有效性。
由于这些特点,目前阵列声波测井已得到了广泛的应用。
尤其在解决复杂的地质问题,为油田增产、增效服务方面,起到了非常重要的作用。
二、阵列声波测井原理1、多极子阵列声波仪器的测量原理多极子阵列声波测井仪器(MAC)将单极子阵列和偶极子阵列进行有效地组合,两个阵列的配置是完全独立的(如图2-1)。
该仪器的声系包括1个单极子声系和1个偶极子声系。
单极子声系包括2个单极子发射换能器T1、T2和8个接收换能器,发射换能器带宽为2KHz-15KHz,中心频率为8KHz,可以激发地层纵波、斯通利波,在地层中激发转换横波。
ECLIPS5700成像测井系统系统概述ECLIPS—5700(E nhanced C omputerised L ogging and I nterpretative P rocessing S ystem)测井系统由ATLAS 公司于上世纪90年代初推出的新一代成像测井系统,ECLIPS—5700成像测井系统是一种增强型计算机化的测井评价处理系统。
该系统满足了现代测井仪器阵列化、谱分析化、成像化的大规模数据处理的要求。
系统主机为2台HP C3600工作站,软件建立于分布式处理及多任务的UNIX 系统平台上,提供真正的多用户/多任务系统,允许下井仪器处理、记录、储存、显示、传送等同时进行。
具有现场快速直观处理解释功能。
经过十年的应用和发展,ECLIPS—5700成像测井系统日趋成熟,配备了较为完善的下井仪器系列,其资料采集和处理水平很高,是目前最先进的测井系统之一。
ECLIPS—5700成像测井系统,该系统是胜利测井公司于1997年由美国Wester Atlas公司引进的。
ECLIPS—5700成像测井系统又称增强型计算机测井与解释处理系统,3700系统下井仪通过改进扩展可与其兼容。
它采用菜单驱动,具备“help”功能,便于操作,ECLIPS可提供广泛的诊断,如为用户提供的可选择的电源和遥传系统诊断程序。
通过图形显示和数据处理的实时显示可不断地监视测井质量。
ECLIPS—5700成像测井系统,它代表着目前世界的最新测井技术,具有广阔的应用前景,但是由于其昂贵的售价及收费标准,在胜利油田只使用于重点探井和重点开发井。
ECLIPS—5700成像地面测井系统照片系统构成ECLIPS—5700成像测井系统主要可分为六部分一、 5753 HP3600 工作站:基于HP—UNIX操作系统的计算机,根据用户指令对输入数据完成各种处理并将其输出到各种外围设备。
二、人机交互设备(HIL):包括键盘、鼠标和双显示器等完成用户和计算机之间的联系。