轮毂电机驱动电动汽车电子差速系统研究
- 格式:pdf
- 大小:1.08 MB
- 文档页数:6
轮毂电机驱动车辆的差速控制模型研究一、电子差速原理介绍传统意思上的电子差速的基础是线控转向系统,主要指基于四轮线控转向技术的电子差速功能。
电子差速是一种全新概念的汽车电子转向系统。
它取消了差速器等机械结构,只是接收转向控制指令,使用电子线路控制转向时内外车轮之间的速度差,实现转向。
电子差速控制系统,完全摆脱了传统转向系统的各种限制,不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间,是汽车转向系统的重大革新。
(1)动力控制的硬件连接改为软连接形式,通过电子线控技术,实现各电动轮从零到最大速度的无级变速和各电动轮间的差速要求,从而省略了传统汽车转向所需的机械式操纵换档装置、离合器、变速器、机械差速器等部件,既方便了操作又使底架结构大为简化,使整车总布置和车身造型设计的自由度大大增加。
(2)可以自由设计汽车转向的力传递特性和角传递特性,给汽车转向特性的设计带来无限的空间。
(3)容易实现各电动轮的电气制动、机电复合制动和能量回馈制动,节约能源。
本文主要研究的是前轮仍采用传统转向结构,而后轮采用轮毂电机驱动的情况,主要目的是实现后轮的电子差速功能,以配合驾驶员通过转向系统输入的转向信号,实现转向功能,避免后轮轮胎过渡磨损,保证整车的操控性能。
因为仅在后轮使用轮毂电机,其控制方法与四轮都采用轮毂电机会有所不同,最显著特点是四轮轮毂电机可以直接通过线控转向系统中的转角信号计算出理论上需要的差速量,并通过对四轮的转速控制实现,但是仅在后轮使用轮毂电机,转向信号从方向盘输入,很难直接通过方向盘信号计算出准确的后轮需要的差速量,需要全新的控制策略。
这就是本文所主要研究的内容。
二、电动机原理及数学模型1、轮毂电机驱动系统的特点轮毂电机驱动系统作为一种新兴的电机驱动方式,其布置非常灵活,可以根据车辆驱动方式分别布置在电动汽车的两前轮、两后轮或四个车轮的轮毂中。
与内燃机汽车和其他驱动型式的电动汽车相比,轮毂电机驱动式电动汽车在动力源配置、底盘结构等方面有其独特的技术特征和优势,具体体现在以下几方面:①动力控制由硬连接改为软连接型式,通过电子线控技术,实现各电动轮从零到最大速度的无级变速和各电动轮间的差速控制,省略了传统汽车所需的机械式操纵换档装置、离合器、变速器、传动轴和机械差速器等,使得驱动系统和整车结构简洁、有效利用空间大、传动效率提高。
轮毂式电动汽车电子差速复合控制方法随着电动汽车技术的不断发展,轮毂式电动汽车作为一种新兴的驱动方式逐渐受到人们的关注。
这种驱动方式通过电动机直接驱动车轮,摆脱了传统汽车中的传动系统,从而具备了更高的效率和动力输出。
然而,由于轮毂式电动汽车的工作方式与传统汽车有所不同,特别是在差速器控制方面存在一些挑战。
因此,研究轮毂式电动汽车电子差速复合控制方法成为了重要的课题。
一、电子差速的原理和作用在传统的汽车中,差速器的作用是平衡车轮转速差异,使得在转弯等情况下两个驱动轮能够保持合适的转速,并提供车辆稳定性和操控性。
然而,在轮毂式电动汽车中,每个车轮都被电动机直接驱动,差速器的作用被电子差速系统所取代。
电子差速系统通过电控单元感知车轮速度和转向角度等信息,实时计算每个轮子的电机输出扭矩,从而实现差速控制。
通过精确控制每个轮子的扭矩输出,可以使车辆在转弯等情况下保持平稳,并提高车辆的操控性能。
二、电子差速复合控制方法1. 轮毂电机扭矩分配控制方法轮毂电机扭矩分配控制方法是电子差速复合控制方法中的核心。
该方法通过对每个轮子的电机输出扭矩进行控制,实现差速控制。
具体而言,可以通过根据传感器获取的数据计算每个轮子的实时速度、转向角度和车辆的状态等信息,然后利用反馈控制算法,计算出每个轮子应该输出的扭矩。
2. 扭矩向量控制方法扭矩向量控制方法是电子差速复合控制方法的一种重要扩展。
该方法通过给每个轮子分配不同大小和方向的扭矩,实现灵活的差速控制。
通过精确分配扭矩,可以使车辆在不同路况下获得最佳的牵引力和行驶稳定性。
3. 动态差速控制方法动态差速控制方法可以根据车辆的实时工况和路况情况,动态调整差速控制策略。
通过对传感器获取的数据进行实时处理,可以根据车辆的状态和驾驶员的需求,调整差速控制参数,从而保证车辆的稳定性和操控性能。
三、应用和前景展望轮毂式电动汽车电子差速复合控制方法的研究在实际应用中具有重要意义。
通过合理选择和设计差速控制策略,可以提高电动汽车的操控性、节能性和安全性。
轮毂电机应用与四轮驱动及电子差速的关系鉴于轮毂电机在电动汽车上应用的诸多优点。
但由于轮毂电机受轮毂内结构体积限制,按汽车驱动功率要求批量生产大功率轮毂电机有相应难度,而采用四轮驱动即可实现小马拉大车,通过四轮毂电机并联驱动即可比二轮毂电机驱动提高汽车总驱动力1倍。
并根据汽车理论分析只有四轮驱动才能充分利用车重产生的地面附着力,以此提高汽车行驶的稳定性及车辆越野通过性。
随着汽车材料技术的发展,需采用轻型材料来减轻车载自重,减小能耗,提高功效;并随着汽车高速行驶技术发展,对提高汽车行驶稳定性等性能指标将提出更高要求。
因此也更需采用四轮毂电机驱动来提高汽车对地面的附着力。
又由于只有驱动轮才能实现制动能量的回收,采用四轮毂电机驱动并结合兼有电动、发电回馈和电磁制动多功能的电动汽车轮毂电机技术,即可极大地提高汽车在降速制动和下坡时对动能能量的回收,以节能和提高续驶里程。
所以轮毂电机的应用将使电动汽车由性能更好的四轮驱动替代两轮驱动。
为满足驱动轮差速要求有采用机械差速和电子差速两种。
机械差速是传统汽车普遍采用的方法,其机构庞大而复杂。
而电子差速系统EDS是采用电子控制的方式来实现,有诸多优点,它与轮毂电机的应用如同一对比翼鸳鸯,即左右侧驱动轮采用轮毂电机必须通过电子差速来控制,而轮毂电机的应用又使电子差速控制变得很容易。
综上所述汽车采用四轮驱动结合四轮转向将具有诸多优点,尤其对于电动汽车采用轮毂电机驱动来说,与传统汽车相比使汽车实现四轮驱动方式变得很容易。
而且结合用直线步进电机控制转向力的汽车转向系统,能更容易地实现全面改善转向性能的四轮转向系统。
而现有汽车仅采用四轮驱动或四轮转向的单一方式其结构都相当复杂,而由两者相结合的方式至今还没有,更没有同时采用电子差速转向控制等多项技术相组合的实施方案。
虽有报道四轮驱动采用常规二轮转向的电子差速转向控制技术。
但随着汽车控制技术发展及其性能要求的提高,特别是电动汽车采用轮毂电机技术的成熟,电动汽车用四轮毂电机驱动实现四轮转向的电子差速转向控制系统技术也将被要求得以解决。
10.16638/ki.1671-7988.2020.06.009纯电动汽车电子差速系统研究综述王鹏,陶小松,曹晓玉(长安大学汽车学院,陕西西安710064)摘要:文章综述了纯电动汽车的驱动结构以及轮毂电机驱动电动汽车的优点,然后阐述了纯电动汽车电子差速系统的结构与工作原理,并详细介绍了电子差速系统的控制方法和控制理论,同时对三种控制方法进行了对比分析,指出其优缺点和适应场合。
最后对纯电动汽车电子差速的发展进行了展望。
关键词:电动汽车;电子差速;控制策略;轮毂电机中图分类号:U469.72 文献标识码:A 文章编号:1671-7988(2020)06-27-04An Overview of Electronic Differential System for Pure Electric VehiclesWang Peng, Tao Xiaosong, Cao Xiaoyu( School of Automobile, Chang'an University, Shaanxi Xi'an 710064 )Abstract:Article summarizes the pure electric vehicle drive structure and the advantages of the wheel hub motor drive electric vehicle, and then expounds the pure electric vehicle electronic differential system structure and working principle of and the electronic differential system are introduced in detail the control method and control theory, at the same time analyzed the three kinds of control methods, points out its advantages and disadvantages and to adapt to the situation. Finally, the development of electronic differential speed of pure electric vehicle is prospected.Keywords: Electric vehicles; Electronic differential; Control strategy; Wheel hub motorCLC NO.: U469.72 Document Code: A Article ID: 1671-7988(2020)06-27-04引言随着我国新能源汽车的迅猛发展,纯电动汽车因其节能、环保等优势成为新能源汽车的重要发展方向[1]。