分布式电动汽车四轮轮毂电机驱动系统开发
- 格式:pdf
- 大小:1.56 MB
- 文档页数:8
分布式电机四轮差速转向原理
分布式电机四轮差速转向原理主要是通过电机控制四个车轮的转向和转速,实现车辆的转向和差速控制。
具体来说,可以通过控制四个电机的转速和转向,使得车辆在转向时内外车轮的转速不同,从而实现差速转向。
在差速转向过程中,车辆的转向半径可以发生变化,从而实现在较小半径的弯道中灵活转向。
此外,通过控制四个电机的转速和转向,还可以实现车辆的原地掉头、横向移动等特殊操作。
分布式电机四轮差速转向原理的实现需要车辆具备先进的电机控制技术和传感器技术。
通过传感器感知车辆的行驶状态和驾驶员的转向指令,控制系统根据这些信息控制电机的转速和转向,从而实现车辆的差速转向。
需要注意的是,分布式电机四轮差速转向原理的应用需要针对不同的车辆和应用场景进行优化和调整,以达到最佳的操控性能和行驶效果。
浅谈新能源汽车轮毂电机1. 引言1.1 新能源汽车轮毂电机的发展背景随着技术的进步和成本的不断降低,轮毂电机逐渐成为了新能源汽车的首选动力系统之一。
相比传统的中置电机,轮毂电机具有结构紧凑、高效率、省空间等优势,使得新能源汽车在驱动系统上有了更为灵活和多样化的选择。
在全球范围内,各大汽车制造商纷纷推出了搭载轮毂电机的新能源汽车,并不断推陈出新,不断改进和创新。
政府对新能源汽车的政策支持也促进了轮毂电机技术的发展和应用。
新能源汽车轮毂电机已经成为了未来汽车行业的重要发展方向,势必会对整个行业产生深远影响。
1.2 新能源汽车轮毂电机的作用新能源汽车轮毂电机作为新能源汽车的重要组成部分,扮演着至关重要的作用。
它是一种集成在汽车轮毂内部的电机,可以直接驱动车轮转动,从而实现汽车的动力传递。
其主要作用可以总结为以下几点:1. 提供动力:新能源汽车轮毂电机可以直接为车辆提供动力,无需传统燃油发动机通过传统传动系统传递动力,减少了动力传递过程中的能量损失。
2. 实现能量回收:新能源汽车轮毂电机可以通过回收制动能量或者车辆惯性能量,在制动或减速时将部分能量转化为电能储存起来,提高了能量利用效率,减小了能量浪费。
3. 提高驾驶体验:新能源汽车轮毂电机可以实现电动驱动的瞬间响应,提高了车辆的加速性能和驾驶灵活性,使驾驶体验更加舒适和操控更加精准。
4. 降低噪音和振动:新能源汽车轮毂电机相比传统发动机具有噪音和振动较小的优势,使车辆运行更加安静和平稳。
新能源汽车轮毂电机的作用不仅在于提供动力和改善驾驶体验,还在于提高能源利用效率和降低对环境的影响,是新能源汽车的核心技术之一。
2. 正文2.1 新能源汽车轮毂电机的工作原理新能源汽车轮毂电机的工作原理是通过电能转换成机械能,驱动车辆运动。
这种电机直接安装在轮毂内部,与车轮相连,可以直接驱动车轮旋转,避免了传统燃油车辆中的传动系统,减少了能量转换过程中的能量损耗。
新能源汽车轮毂电机通常采用永磁同步电机或感应电机作为核心部件,通过轮毂上的传感器检测车速和转动方向,控制电机转速来实现车辆的加速、减速和制动。
-182-科学技术创新2019.09轮毂电机驱动技术的研究田太伟戚龙喜凌素琴(江苏远东电机制造有限公司,江苏泰州225500)摘要:新能源汽车是未来汽车行业的主流,轮毂电机驱动技术的发展象征着新能源汽车驱动发展的重要方向。
在此背景下,本文简要从轮毂电机驱动的技术进行概述,介绍轮毂电机的驱动形式以及轮毂电机驱动系统在电动汽车上的应用,以其对新能源汽车的发展具有借鉴意义。
关键词:电动汽车;驱动;特性分析中图分类号:U463.343文献标识码:A文章编号:2096-4390(2019)09-0182-02随着经济社会的不断发展,人们的生活水平得到逐步提升,对环境的要求也越来越高。
汽车排放的尾气一直被认为是环境污染的重要来源,因此使得能源与环保问题长期成为了汽车领域发展的瓶颈,其对汽车领域的发展也具有一定的制约作用。
世界各国的汽车公司以及政府都在积极推进和研究新能源汽车的发展,明确了新能源汽车的范围是纯电动汽车、燃料电池车以及插电式混合动力车等。
在新能源汽车领域,轮毂电机是汽车的核心组成部件,在新能源汽车领域起着举足轻重的作用,下文将简要对轮毂电机驱动技术进行简要介绍。
1轮毂电机驱动技术概述纵观世界新能源汽车的发展,欧洲、美国以及日本等发达国家在新能源汽车领域已经形成了较为完善的汽车产业链,欧盟计划在2020年生产新能源汽车数量超过五百万辆,同时已经下拨14.3亿欧元用来支持新能源汽车的研发;此外,日本计划在2020年将新能源汽车的占比提升至50%;我国工信部在《节能与新能源汽车产业发展规划》中指出到2020年我国的新纯电动车以及PHEV的市场份额为500万辆,汽车的电动化是大势所趋,其核心部件电机作为主要的驱动方式在新能源汽车的发展过程中发挥着重要的作用。
目前在汽车行业普遍采用的电机为轮毂电机,如图1所示为轮毂式电机的外观图。
轮毂电机安装在空间相对较小的轮毂中,使电机系统受磁场饱和、路面激励以及负载等因素的影响较为明显,因此可以严格控制轮毂汽车的性能。
分布式驱动电动汽车底盘综合控制系统的设计冯冲;丁能根;何勇灵;徐国艳;高峰【摘要】本文中为四轮线控转向、液压制动的分布式驱动电动汽车,设计了基于CAN总线的底盘综合控制系统.该系统包括整车控制器、4个车轮的驱动控制器、转向系统控制器和制动系统控制器.电动汽车的各控制器之间通过CAN总线进行通信,基于CAN2.0B协议制订了CAN网络的应用层协议.考虑电动汽车电磁干扰、温度变化和振动等因素的影响,设计了各控制器的硬件.建立了用于该电动汽车的伪逆控制分配算法.该算法除实现常规的控制量分配外,还可在控制系统出现故障或控制量饱和时实现控制再分配,提高了车辆的操纵稳定性.对所设计的控制系统进行仿真和实车验证,结果表明,该系统可有效地对执行机构的控制量进行常规分配和再分配,使电动汽车能很好地实现驾驶员的驾驶意图并维持车辆稳定.【期刊名称】《汽车工程》【年(卷),期】2015(037)002【总页数】7页(P207-213)【关键词】分布式驱动电动汽车;CAN总线;伪逆控制分配【作者】冯冲;丁能根;何勇灵;徐国艳;高峰【作者单位】北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191;北京航空航天大学交通科学与工程学院,北京100191【正文语种】中文控制器局域网(CAN)由BOSCH公司开发,具有结构简单、性能可靠、数据通信实时性强等特点,目前已广泛应用于汽车领域,并且形成了国际标准ISO 11898和ISO 11519等[1]。
电动汽车作为一种绿色交通工具,目前已成为国内外研究的热点。
电动汽车的综合性能是决定电动汽车能否广泛应用的关键因素之一,目前可通过多种方式来提高电动汽车的综合性能,例如采用四轮独立驱动[2-3]、四轮转向[4]和线控制动[5]等。
新能源汽车电机驱动系统的研究与开发随着环保主义的逐渐盛行,越来越多的人开始关注新能源汽车的开发和推广。
其中,电动汽车是最受欢迎的一种,因为它非常环保、节能,并且可以轻松充电。
但电动汽车的能量来源在于电池,这就需要更加先进和高效的电机驱动系统来实现车辆的高效运行。
本文将讨论新能源汽车电机驱动系统的研究与开发,并探讨这个领域面临的挑战和机遇。
一、电动汽车的电机驱动系统电动汽车的关键是电机驱动系统。
电机驱动系统通常包括电动机、电子控制器和电池组。
电动机是整个系统的核心,它将电能转化为机械能,用于驱动车辆。
电子控制器用来控制电动机的转速和扭矩,以及电池组与电机之间的能量转移。
电池组则用来储存能量,为电动车提供动力。
目前,电动汽车的电机驱动系统分为两种类型:交流电机和直流电机。
直流电机简单、易于控制,但效率不高;交流电机则更加高效,但成本较高。
近年来,随着磁性材料、电子元器件和嵌入式系统的不断发展,交流电机逐渐成为了电动汽车的主流。
二、电机驱动系统的研究进展在过去的十年里,电机驱动系统的研究取得了重大的进展。
主要包括以下几个方面:1、电机设计和优化电机的设计是电机驱动系统研究的关键。
新型电机需要具备高效、高性能、轻量和紧凑等特点。
随着电机技术的不断发展,越来越多的设计方法被提出,如基于有限元分析的电磁场模拟、基于优化算法的电磁参数设计等。
2、电力电子技术的应用电力电子技术是电机驱动系统的重要组成部分。
它通过变换电压和电流的方式,使电动机运行在最佳性能点。
近年来,随着工艺制造技术和电子元器件的不断改进,电力电子技术的应用也逐渐普及。
3、能量管理系统的优化能量管理系统是指在电池组与电机之间控制能量转移的系统。
能量管理系统的优化可以提高电动汽车的续航里程,并减少电池的损耗。
目前,能量管理系统的优化主要通过控制电机的转速和扭矩来实现。
三、新能源汽车电机驱动系统面临的挑战和机遇虽然新能源汽车电机驱动系统已经取得了重要进展,但仍然面临着许多挑战。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010375680.0(22)申请日 2020.05.07(71)申请人 北京理工大学地址 100081 北京市海淀区中关村南大街5号申请人 北京理工新源信息科技有限公司(72)发明人 张雷 王震坡 丁晓林 (74)专利代理机构 北京高沃律师事务所 11569代理人 杜阳阳(51)Int.Cl.G06F 30/15(2020.01)B60W 50/00(2006.01)(54)发明名称一种分布式驱动电动汽车驱动系统多目标优化方法和系统(57)摘要本发明涉及一种分布式驱动电动汽车驱动系统多目标优化方法和系统。
该方法包括:获取最优扭矩分配模型;获取汽车当前的纵向速度,并根据最优扭矩分配模型确定汽车当前各轮毂电机的扭矩值;根据轮毂电机的扭矩值实时完成整车能耗计算,同时得到簧下质量,以整车能耗和所计算得到的簧下质量为优化目标,实现车辆前后轮毂电机尺寸的最优匹配设计。
本发明针对分布式驱动电动汽车对经济性和动力性的需求,综合考虑测试工况、整车目标性能需求及最优扭矩分配控制策略,通过多目标优化设计方法合理选择四个轮毂电机的功率及尺寸配置,以在满足车辆最高车速、最大爬坡度和加速能力以及能耗要求的同时,实现分布式驱动电动汽车的驱动系统最优匹配设计。
权利要求书3页 说明书10页 附图2页CN 111553024 A 2020.08.18C N 111553024A1.一种分布式驱动电动汽车驱动系统多目标优化方法,其特征在于,包括:获取最优扭矩分配模型;所述最优扭矩分配模型为以汽车纵向速度为输入,以汽车各轮毂电机的扭矩为输出的分配模型;获取汽车当前的纵向速度,并根据所述最优扭矩分配模型确定所述汽车当前各轮毂电机的扭矩值;根据各所述轮毂电机的扭矩值确定整车能耗和簧下质量,并以所述整车能耗和所述簧下质量为优化目标,确定各所述轮毂电机的尺寸;根据各所述轮毂电机的尺寸完成对所述汽车驱动系统的控制。