(完整版)第1章微细加工与MEMS技术引论
- 格式:ppt
- 大小:8.18 MB
- 文档页数:57
曾经有人问1996年化学Nobel奖获得者-Rice大学的Richard Smalley,如果重新开始,最希望从事什么领域的研究工作,他不假思索的提出一个预言性的概念:Lilliputian 工程."We're talking about the miniaturization of everything you can imagine," Smalley said. "Eventually, we will be designing tiny devices so that every atom is there for a particular reason.”1.1概念的提出碳纳米管研制,直径约为500nm,能够在电压驱动下转动。
电动机的旋转叶片是一片金叶,长度不到300nm,叶片安装在一根由多层碳纳米管做成的转轴上。
2003年世界十大科技进展:纳米电动机2004年世界十大科技进展:分子马达通过光或电的驱动,使分子围绕一个轴旋转,能够停止或暂停。
这一成果将使纳米级“分子机械”能够在一些较大机械无法应用的工业和外科手术中大显身手.2005年世界十大科技进展:找到控制单分子行动的方法利用特种显微镜仪器,让一个分子做出各种动作。
使用金属探针,刺激联苯分子的不同部位,还可以使其产生不同的电子反应。
2006年世界十大科技进展:最小发电机问世纳米发电机。
它可以收集机械能,比如人体运动、肌肉收缩、血液流动等所产生的能量;震动能,比如声波和超声波产生的能量;流体能量,比如体液流动、血液流动和动脉收缩产生的能量,并将这些能量转化为电能提供给纳米器件。
这是一个结构特殊的分子,它也有四个“轮子”,当接收到电流时就向前“行驶”,不过,它“行驶”的距离要以纳米来计算这种分子“电动车”将来可用于许多微观领域,比如把微量药物送达人体所需要的地点。
不过研究人员表示,这还有很长路要走,因为本次实验是在零下200多摄氏度的低温和高度真空环境中完成的,如何在常规环境下也能让分子“电动车”工作是首先要解决的问题。
(完整版)MEMS的主要⼯艺类型与流程MEMS的主要⼯艺类型与流程(LIGA技术简介)⽬录〇、引⾔⼀、什么是MEMS技术1、MEMS的定义2、MEMS研究的历史3、MEMS技术的研究现状⼆、MEMS技术的主要⼯艺与流程1、体加⼯⼯艺2、硅表⾯微机械加⼯技术3、结合技术4、逐次加⼯三、LIGA技术、准LIGA技术、SLIGA技术1、LIGA技术是微细加⼯的⼀种新⽅法,它的典型⼯艺流程如上图所⽰。
2、与传统微细加⼯⽅法⽐,⽤LIGA技术进⾏超微细加⼯有如下特点:3、LIGA技术的应⽤与发展4、准LIGA技术5、多层光刻胶⼯艺在准LIGA⼯艺中的应⽤6、SLIGA技术四、MEMS技术的最新应⽤介绍五、参考⽂献六、课程⼼得〇、引⾔《微机电原理及制造⼯艺I》是⼀门⾃学课程,我们在王跃宗⽼师的指导下,以李德胜⽼师的书为主要参考,结合互联⽹和图书馆的资料,实践了⾃主学习⼀门课的过程。
本⽂是对⼀学期来所学内容的总结和报告。
由于我在课程中主讲LIGA技术⼀节,所以在报告中该部分内容将单列⼀章,以作详述。
⼀、什么是MEMS技术1、MEMS的概念MEMS即Micro-Electro-Mechanical System,它是以微电⼦、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执⾏器和微系统等。
⼀般认为,微电⼦机械系统通常指的是特征尺度⼤于1µm⼩于1nm,结合了电⼦和机械部件并⽤IC集成⼯艺加⼯的装置。
微机电系统是多种学科交叉融合具有战略意义的前沿⾼技术,是未来的主导产业之⼀。
MEMS技术⾃⼋⼗年代末开始受到世界各国的⼴泛重视,主要技术途径有三种,⼀是以美国为代表的以集成电路加⼯技术为基础的硅基微加⼯技术;⼆是以德国为代表发展起来的利⽤X射线深度光刻、微电铸、微铸塑的LIGA( Lithograph galvanfomung und abformug)技术,;三是以⽇本为代表发展的精密加⼯技术,如微细电⽕花EDM、超声波加⼯。
MEMS的发展及其加工技术简介MEMS的发展及其加工技术简介一、引言随着科学的进一步发展,人类社会正向人性化、多元化的方向发展。
由此孕育而生的多元化技术已经蓬勃发展。
MEMS的出现和发展既是建立在多学科基础之上产生的交叉性学科和技术,它的出现必将为工业技术带来巨大的变革。
微小型化始终是当代科学技术发展的重要方向。
微电子技术的发展,不仅使计算机与信息技术等领域面貌一新,而且在许多领域引发了一场微小型化的革命。
以加工微米/纳米机构和系统为目的的微米/纳米技术在此背景下应运而生。
一方面,人们利用物理、化学方法将原子和分子组装起来,形成有一定功能的微米/纳米结构;另一方面,人们利用精细加工手段加工出微米/纳米结构。
前者导致了纳米生物学、纳米化学等边缘学科的产生;后者在小型机械制造领域开始了一场革命,导致了MEMS 技术的出现。
二、MEMS 技术的国内外发展概况MEMS是典型的多学科交叉的前沿性研究领域,不仅与微电子学密切相关,还与现代光学、气动力学、流体力学、热学、声学、磁学、自动控制、仿真学和材料科学等相互交叉、渗透和综合,几乎涉及到自然与工程科学的所有领域。
MEMS 的主要研究内容是建立在MEMS理论基础和技术基础之上对MEMS设计技术、MEMS 材料、MEMS微细加工及MEMS的应用领域的研究。
MEMS的发展史,最早可追朔到19 世纪。
1962 年,第一个硅微压力传感器问世,其后开发出尺寸为50~500μm的齿轮、气动涡轮、联接件等微机构。
70年代后,美国学者提出了基于硅半导体材料的微机械的设想。
1988年美国加州大学伯克利分校Muller 研究小组发明了转子直径为60~100μm 的硅静电电机,在当时引起很大轰动,它表明了应用硅微加工技术制造微小可动结构的可行性,与集成电路兼容制造微小系统的优势。
同期,MIT、Berkely、Stand—ford等大学和AT&T及NSF 的15名科学家向美国政府提出MEMS研究建议。