偏最小二乘回归方法-PPT
- 格式:ppt
- 大小:535.00 KB
- 文档页数:36
偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘回归分析偏最小二乘回归分析(PartialLeastSquaresRegression,简称PLSR)是一种统计分析方法,它通过最小二乘法拟合变量间的关系来预测数据。
它可以在没有任何变量相关性、异方差假设和线性回归假设的情况下,推断出解释变量与被解释变量之间的关系。
PLSR的实质是利用原始变量的变量组合作为自变量,利用原始被解释变量的变量组合作为因变量,采用最小二乘法拟合变量之间的关系,进而推断出解释变量与被解释变量之间的关系,以及变量组合之间的关系。
PLSR能够有效地把来自大量解释变量的信息汇总到有限的因变量中,从而减少计算时间,并得到更好的预测结果。
尤其是当解释变量之间存在多重共线性时,PLSR能解决多重共线性的问题,也能够更好地拟合变量间的关系,从而获得更好的预测结果。
PLSR的应用在各种数据分析中都有一定的价值,如财务预测、市场调研及消费者行为研究等应用中都有所体现。
同样,PLSR也可以用于研究生物学遗传现象,帮助探索生物学相关变量之间的关系,从而为深入分析提供有价值的参考数据。
PLSR所涉及到的数学模型具有一定的复杂性,数据分析者在使用PLSR方法时,要注意解释变量和被解释变量之间是否存在强关联。
如果是强关联,PLSR分析可能会陷入过拟合,出现拟合不令人满意的预测结果。
同时,还要注意解释变量之间的关联性,以防止多重共线性的影响,否则PLSR的结果也可能不太理想。
因此,在使用PLSR进行数据分析之前,数据分析者应该首先分析出解释变量和被解释变量之间大致的关系,以及它们之间是否存在强关联或多重共线性;其次,数据分析者还要注意选择正确的变量组合,以保证PLSR结果的准确性。
总的来说,偏最小二乘回归分析是一种统计分析方法,它可以有效地减少计算时间,并能得到更好的预测结果,将被广泛用于各种数据分析中,但是必须注意变量的选择以及变量间的关系,以保证PLSR 结果的准确性。
偏最小二乘法PLS和PLS回归的介绍及其实现方法偏最小二乘法(Partial Least Squares,简称PLS)是一种多元统计学方法,常用于建立回归模型和处理多重共线性问题。
它是对线性回归和主成分分析(PCA)的扩展,可以在高维数据集中处理变量之间的关联性,提取重要特征并建立回归模型。
PLS回归可以分为两个主要步骤:PLS分解和回归。
1.PLS分解:PLS分解是将原始的预测变量X和响应变量Y分解为一系列的主成分。
在每个主成分中,PLS根据两者之间的协方差最大化方向来寻找最佳线性组合。
PLS根据以下步骤来获得主成分:1)建立初始权重向量w,通常是随机初始化的;2) 计算X和Y之间的协方差cov(X,Y);3)将w与X与Y的乘积进行中心化,得到新的X'和Y';4)标准化X'和Y',使得它们的标准差为1;5)多次迭代上述步骤,直到达到设定的主成分数目。
2.回归:在PLS分解之后,我们得到了一组主成分,接下来可以使用这些主成分来建立回归模型。
回归模型可以通过以下步骤来构建:1)将X和Y分别表示为主成分的线性组合;2)根据主成分得分对回归系数进行估计;3)使用估计的回归系数将新的X预测为Y。
PLS的实现可以通过以下几种方法:1.标准PLS(NIPALS算法):它是最常见的PLS算法。
它通过递归地估计每个主成分和权重向量来实现PLS分解。
该算法根据数据的方差最大化原则得到主成分。
2.中心化PLS:数据在进行PLS分解之前进行中心化。
中心化可以确保主成分能够捕捉到变量之间的相关性。
3. PLS-DA:PLS-Discriminant Analysis,是PLS在分类问题中的应用。
它通过利用PLS分解找到最佳线性组合,以区分两个或多个不同的分类。
4. PLS-SVC:PLS-Support Vector Classification,是PLS在支持向量机分类中的应用。
它通过PLS寻找最优线性组合,同时最小化分类误差。
偏最小二乘回归方法嘿,朋友们!今天咱来聊聊偏最小二乘回归方法。
这玩意儿啊,就像是一把神奇的钥匙,能打开好多数据背后隐藏的秘密大门呢!你想想看,我们生活中有那么多的数据,就像一堆乱麻。
而偏最小二乘回归方法呢,就像一个超级厉害的理线小能手,能把这些乱麻给理顺咯!它能从那些看似杂乱无章的数据中找出规律来,是不是很神奇呀!比如说,你想知道气温和冰淇淋销量之间的关系。
如果光靠眼睛看,那可真是两眼一抹黑,啥也看不出来。
但用了偏最小二乘回归方法,嘿,它就能帮你找到其中的关联啦!它能把那些复杂的数据关系变得清晰明了,就好像在黑暗中给你点亮了一盏明灯。
它可不只是能处理简单的问题哦!不管是多么复杂的数据情况,它都能迎刃而解。
这就好比一个经验丰富的老船长,不管是风平浪静的海面,还是波涛汹涌的大海,都能稳稳地驾驶着船只前进。
你再想想,如果没有这种方法,我们得在数据的海洋里迷失多久啊!那可真是像没头苍蝇一样乱撞。
但有了偏最小二乘回归方法,我们就有了方向,就可以朝着正确的目标前进啦!而且哦,它还特别灵活。
就像一个变形金刚一样,可以根据不同的情况变换自己的形态,去适应各种需求。
它能处理不同类型的数据,不同规模的数据,这多厉害呀!咱再打个比方,它就像是一个厨艺高超的大厨。
不管你给它什么食材,它都能变出美味的菜肴来。
是不是很牛?很多时候,我们面对那些密密麻麻的数据,会觉得头疼,不知道该怎么下手。
但有了偏最小二乘回归方法,就不用担心啦!它能帮我们把难题都解决掉。
它就像是我们在数据世界里的好伙伴,一直陪着我们,帮我们解决一个又一个的难题。
它让我们能更好地理解这个世界,更好地利用数据。
所以啊,朋友们,可千万别小瞧了偏最小二乘回归方法。
它可是我们探索数据世界的得力助手呢!让我们一起好好利用它,去发现更多的数据奥秘吧!。